
In 1967, Eccles, Ito and Szentagothai published their 
landmark book The Cerebellum as a Neuronal Machine1, 
which described for the first time the detailed microcir-
cuitry of an important structure in the brain. Perhaps the 
most striking feature of the cerebellar cortical microcircuit 
(BOX 1) is that Purkinje cells (PCs), which provide the sole 
output of the cerebellar cortex, receive two very different 
types of input. Each PC is contacted directly by a single 
climbing fibre (CF) and indirectly by thousands of mossy 
fibres (MFs). The organization of these inputs, as it was 
understood until recently, is illustrated in BOX 1. MFs, 
which convey information from many different sources, 
contact granule cells, which have a direct excitatory projec-
tion to PCs through parallel fibres (PFs). CFs, which arise 
solely from the inferior olive, have a highly structured 
projection to PCs, dividing the cerebellar cortex into a 
large number of distinct zones that can be subdivided into 
microzones. A microzone is defined as a coherent strip of 
cerebellar cortex in which the PCs receive CF inputs that 
are driven by essentially identical peripheral inputs2–4; as 
the PCs in a microzone innervate a specific subset of cells 
in the deep cerebellar nuclei (BOX 1) with a specific out-
put function, a microzone probably corresponds to the 
minimal functional unit of the cerebellar cortex. Although 
microzones differ from one another in their external 
connectivity, their internal microcircuitry is generally  
considered to be similar throughout the cerebellum.

Inputs from MFs and those from CFs have different 
electrophysiological effects in PCs. PCs fire two types 

of spike (BOX 2). Simple spikes are normal action poten-
tials and are thought to be modulated by the many PFs 
that contact the PC dendritic tree. By contrast, complex 
spikes are unique to PCs. The CF input to the PC is one 
of the most powerful synaptic junctions of the CNS, and 
complex spikes occur only when the CF fires.

The fact that the cortical microcircuit seems to have the  
same structure throughout the cerebellum inspired  
the idea that there must be a ‘cerebellar algorithm’ with 
a general signal-transforming capability. Indeed, soon 
after the first classic description of cerebellar electro-
physiology had been published1, hypotheses about such 
an algorithm appeared in the form of microcircuit mod-
els proposed by Marr5 and Albus6. These models agreed 
on several points. First, the function of the cerebellum 
was assumed to be related to motor control (on the basis 
of the anatomical, clinical and lesion evidence available 
at the time7), implying that PC outputs were related 
to motor commands. Second, these commands were 
thought to be conveyed by simple spikes fired by PCs. 
Third, complex spikes were assumed to fire at too low 
a rate (1 spike per second; BOX 2) to influence cerebel-
lar output significantly, but instead it was thought that 
they might act as an error or teaching signal for the PC. 
Moreover, because this signal formed part of the com-
mand sent to the muscles, the function of the circuit as 
a whole was thought to be motor learning.

The two models also differed in certain respects, 
but their commonalities gave rise to the ‘Marr–Albus 
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By far the largest neuron of the 
cerebellum and the sole output 
of the cerebellar cortex. 
Receives climbing fibre input 
and integrates inputs from 
parallel fibres and 
interneurons.
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Abstract | Initial investigations of the cerebellar microcircuit inspired the Marr–Albus 
theoretical framework of cerebellar function. We review recent developments in  
the experimental understanding of cerebellar microcircuit characteristics and in the 
computational analysis of Marr–Albus models. We conclude that many Marr–Albus models 
are in effect adaptive filters, and that evidence for symmetrical long-term potentiation and 
long-term depression, interneuron plasticity, silent parallel fibre synapses and recurrent 
mossy fibre connectivity is strikingly congruent with predictions from adaptive-filter models 
of cerebellar function. This congruence suggests that insights from adaptive-filter theory 
might help to address outstanding issues of cerebellar function, including both microcircuit 
processing and extra-cerebellar connectivity.
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framework’ of cerebellar function, which has been 
extremely influential in driving both experimental and 
theoretical investigations. Marr–Albus-based models 
have been applied to a range of behaviours, including 
smooth-pursuit eye movements8, ocular following9, 
saccades10,11, the vestibulo-ocular reflex12–20, classical eye-
blink conditioning13,21–27 and limb control20,28–34, and in 
high-level interpretations of cerebellar function, which 

propose that the cerebellum can act as an internal 
model28,35–41, a state estimator42,43 or a Smith predictor44 
(see also Supplementary information S1 (box)).

However, several recent experimental discoveries 
concerning cerebellar connectivity, microcircuitry and 
plasticity indicate that the early descriptions of the cer-
ebellar microcircuitry on which these models are based 
require revision. Interpretations of the function of the 

 Box 1 | View of the cerebellar circuitry in the late 1990s

Basic structure of the cerebellar cortex
Of the two main afferents to the cerebellar cortex (see the figure, part a), 
climbing fibres (CFs), which are the thick ramifications of the 
olivocerebellar axons, make direct excitatory contact with Purkinje cells 
(PCs), and mossy fibres (MFs) make excitatory synaptic contacts with 
granule cells (and with Golgi cells (not shown)). Each ascending axon of  
a granule cell branches in a T to form the two ends of a parallel fibre (PF), 
which in turn make excitatory synaptic contacts with PCs and with the 
molecular layer interneurons (that is, stellate and basket cells) and Golgi 
cells. PFs extend for several millimetres along individual cerebellar folia. 
CFs and MFs also provide collaterals to the cerebellar nuclei en route to 
the cerebellar cortex (not shown). With the exception of granule cells, all 
cerebellar cortical neurons, including PCs, make inhibitory synaptic 
connections with their target neurons.

Connectivity of the cerebellar cortical microcircuitry
In the late 1990s, all of the above microcircuitry features were known. 
However, as shown, this view offered no explanation of how incoming 
information was channelled through the microcircuitry, so the specific 
processing carried out by the microcircuit was essentially unknown. In the 
figure, part b, inputs are colour-coded to signify the type of information 
(somatosensory, auditory and so on) that is conveyed. A mix of colours (for 
example, in granule and Golgi cells) indicates that the cell or synapse was 
thought to sample different types of information. In PCs and 
interneurons, the ‘mix of mixes’ illustrates that they were thought to 
receive mixed granule cell input. Also, interneurons were considered to 
provide inhibition to PCs in a non-patterned fashion in the form of 
feedforward and/or lateral inhibition. PCs were generally thought to be 
the sole recipient of CF input.

Also by the late 1990s new information had emerged about patterns 
of connectivity between specific areas of cerebellar cortex and their CF 
inputs and deep cerebellar nuclear outputs. The high degree of 
organization of these connections formed the basis for the concept of 
the microzone. Microzones seem to constitute the basic functional 
subunit of the cerebellum and are subdivisions of the previously 
established sagittal zones (for reviews see REFS 148,149). Microzones 
are defined as a coherent strip of cortex in which the PCs are activated 
by essentially identical CF inputs (the figure illustrates PCs in two 
different microzones, which receive different inputs, as indicated by the 
colour code of the CFs). Because all the PCs in a microzone have a 
common innervation territory in the deep cerebellar nuclei, they have a 
specific output effect — that is, they control one specific movement 
component or target one specific region in the downstream cerebral 
cortical areas or brainstem nuclei. A rough estimate of the number of 
microzones in the cerebellum can be obtained as follows: based on  
a microzone width of ~5 PCs (50–100 μm) in the C3 zone of the cat3, a 
microzone length of ~15 mm, and the sagittal extent of a PC dendritic 
tree of ~0.3 mm, we arrive at around 200 PCs for a microzone. If the total 
number of PCs in the cat is ~1,000,000 (REF. 150), then the total number 
of microzones in the cerebellar cortex would be ~5,000. The concept of 
the microzones is an important frame of reference for characterizing 
how incoming information is channelled through the microcircuitry. 
These figures do not show the unipolar brush cells, which are 
preferentially located in cerebellar areas with vestibular input151, or 
Lugaro cells.

Part a of the figure is modified, with permission, from REF. 148 © (2009) 
Macmillan Publishers Ltd. All rights reserved.
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Climbing fibre
(CF). Arises from cells in the 
inferior olive and provides an 
extraordinarily strong, 
‘climbing’ multi-synaptic 
contact on Purkinje cells. 
However, branches of the 
olivocerebellar axon contact 
not only Purkinje cells but also 
other neuron types of the 
cerebellum. In the latter cases, 
there is no ‘climbing’ pattern in 
the anatomical configuration  
of the contacts. Nevertheless, 
for convenience, the input from 
the olivocerebellar axons to the 
interneurons is referred to as 
‘CF’ input in the text.

Mossy fibre
(MF). Provides the bulk of the 
afferent input to the 
cerebellum and originates from 
numerous sources in the spinal 
cord, brain stem and pontine 
nuclei (the latter mediating 
input from the cerebral cortex).

Granule cell
Integrates excitatory mossy 
fibre input from external 
sources and local inhibitory 
input from Golgi cells.

Parallel fibre
(PF). Arises from granule cells 
and provides excitatory input 
to Purkinje cells and molecular 
layer interneurons.

Microzone
A narrow longitudinal strip of 
the cerebellar cortex, just a few 
Purkinje cells wide but up to 
hundreds of Purkinje cells long, 
in which all the Purkinje cells 
receive climbing fibres driven 
by the same input.

Vestibulo-ocular reflex
Reflex movement of the eyes 
elicited by vestibular 
stimulation. Its purpose is to 
keep the retinal image stable, 
preventing degradation of 
visual processing. The reflex is 
under the control of the 
floccular region of the 
cerebellum.

microcircuit have in the past focused heavily on PCs and 
their CF and PF inputs, whereas little attention has been 
paid to other components of the cerebellar microcircuitry 
(BOX 1). Moreover, newly discovered forms of plasticity 
indicate that the cerebellar circuitry can adapt its wir-
ing in response to altered functional requirements. The 
validity of models based on earlier descriptions of the 
cerebellar microcircuit is therefore called into question. 
we address this issue first by arguing that almost all of the 
Marr–Albus-derived models have the core characteristics 

of an adaptive filter (see Supplementary information S2 
(box)). we then describe several recently discovered 
microcircuitry properties, and show that they are con-
sistent with many of the requirements for fulfilling the 
basic computational features of adaptive filters. Finally, 
we indicate how the striking and unexpected congru-
ence between the computational properties of adaptive 
filters and the cerebellar microcircuitry has crucial con-
sequences for both interpreting cerebellar function and 
identifying important issues for future research.

 Box 2 | Simple and complex spikes

Properties of Purkinje cell (PC) spikes from intracellular whole-cell recordings in vivo
PCs fire simple spikes (see the figure, part a, top) at ~40 spikes per second on average. They are standard action potentials typical 
of neuronal firing throughout the nervous system. By contrast, complex spikes (see the figure, part a, bottom), which are 
characterized by multiple after-discharges and appear at ~1 spike per second on average, are unique to PCs. Complex spikes are 
generated as a result of the activation of most or all of the PC dendritic tree by the uniquely powerful climbing fibre (CF) synapse 
(see main text). CF discharge, in turn, is derived from the firing of neurons in the inferior olive. Simple spikes, which do not 
backpropagate into the PC dendritic tree152, fire spontaneously in the absence of afferent input. The spontaneous firing rate of 
simple spikes can be modulated in both excitatory and inhibitory directions by specific inputs (see the figure, part b), in a 
manner consistent with their generation by excitatory parallel fibre (PF) and inhibitory interneuronal inputs, respectively72,76,85, 
and with these inputs being summed primarily in a linear fashion153 (note, though, that other in vitro work indicates that PCs use 
nonlinear summation154). The origin of simple spike modulation is still the subject of controversy, particularly concerning the 
relative roles of PFs and the ascending part of the granule cell axon and whether PC simple spikes operate in a bistable fashion.

PF synapses versus ascending granule cell axon synapses
In recordings from the C3 zone, as shown above, the mossy fibres and granule cells that convey input from the red skin 
area, which provides excitatory drive to the simple spike activity (see the figure, part b), are not located beneath the 
PCs72,76. It is hence clear that the PFs, rather than the ascending granule cell axon, carry most of the excitatory input. This 
contrasts with the view that the ascending granule cell axon might be a dominating input in PCs, an idea that has received 
some experimental support155. However, many of the supporting experiments in vivo were made in anaesthetized animals, 
and anaesthesia can severely depress the transmission of spiking activity from the granule cell to the PF (also discussed in 
REFS 85,156). It has also been reported that the synapses made by the ascending axon and by the PFs differ in their 
susceptibility to long-term depression in PCs in vitro157, but this does not seem to be a prominent trait in PCs in vivo, where 
inputs from granule cells located beneath and from granule cells not located beneath the PC seem equally susceptible to 
potentiation and depression72. Furthermore, a recent in vitro study of ascending and PF inputs to PCs using optical 
stimulation indicates that the two inputs are functionally equivalent158.

PC bistability
Results from in vitro and anaesthetized preparations have led to suggestions that PCs have two states, an up state and a 
down state, and that the simple spike output of the PC depends mainly on the current state159. In this view, CF activation 
works as a switch between the two states, and the PC essentially becomes a binary element. However, the functional 
relevance of this bistability has been challenged by the claim that it is rarely observed in awake animals160 and in studies in 
which the PC simple-spike firing is related to behavioural parameters in activities such as smooth-pursuit eye movements 
(for example, see REFS 40,136,161–169).

There is recent evidence that in awake cats, around half of PCs show frequent long pauses (mean ~700 ms), and that the 
transition between pauses and modulated simple spike firing is sometimes (25% of the time) associated with complex 
spikes170. These data are consistent with bistability. However, the issue of functional significance is still unclear. The 
animals were not engaged in a specific behavioural task (other than sitting quietly), and the occurrence of pauses was not 
related to behavioural events. The contrast between these findings and those that report correlations between 
simple-spike modulation and behaviour in awake animals is striking and unexplained.
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Engineering control theory
A branch of engineering 
science concerned with the 
control of dynamic systems 
(including aircraft, chemical 
reactions and robots).

Silent synapses
Synapses that can be 
structurally identified but 
which provide no synaptic 
currents in the postsynaptic 
cell.

Adaptive-filter models
In 1982, Fujita introduced the adaptive filter to cerebel-
lar modelling45, influenced by Ito’s suggestion that the 
cerebellum’s role in adaptation of the vestibulo-ocular 
reflex could be understood in terms of engineering control 
theory46,47. FIGURE 1 shows how a simplified version of 
the cerebellar cortical microcircuit can be mapped onto 
an adaptive-filter structure: the (MF) filter inputs are 
analysed into (PF) component signals, which are then 
weighted (PF–PC synapses) and recombined to form the 
filter (PC simple spike) output.

The filter is adaptive because its weights can be 
adjusted by a teaching or error signal (the CF input), 
using the covariance learning rule proposed by 
Sejnowski48 (FIG. 1). According to this rule, a PF signal 
that is positively correlated with an error signal has its 
weight reduced (through long-term depression (lTD)), 
whereas a signal that is negatively correlated with an 
error signal has its weight increased (through long-term 
potentiation (lTP)). This procedure makes sense when 
correlations represent causal relations, because in that 
case reducing the impact of PF signals that are correlated 
with an error signal will reduce the error itself (provided 
that the system outputs are appropriately directed).

Adaptive filters deal with temporally varying signals 
of the kind seen in the neural control of movement and 
have proved to be highly versatile in various applica-
tions (BOX 3). Depending on the information contained 

in the error signal, they can be used for (sensory) signal 
processing, motor control and learning internal models 
(see Supplementary information S1,S2 (boxes)).

Close inspection of the Marr–Albus-based models 
indicates that many of them use time-varying signals, 
analysis of input signals, and the covariance learning 
rule9,11,17–20,26,27,38–41,43,49–55, which are key features of the 
adaptive filter (BOX 3; FIG. 1; Supplementary informa-
tion S2 (box)). Although the models themselves are often 
not explicitly described as such (see BOX 4 for a discus-
sion of how other types of model stand with respect to 
the adaptive-filter family of models), we argue that treat-
ing them as adaptive filters has an important advantage. 
The relative simplicity of adaptive filters means that their 
general computational features (BOX 3; Supplementary 
information S2 (box)) can be analysed to determine 
whether their success depends on these general features 
rather than on specific implementation details that vary 
from model to model.

recent developments17,18,20,51,56–59 have indicated that 
implementing the core computational features of an 
adaptive filter in the cerebellar circuitry leads to the pre-
dictions that symmetrical lTP and lTD, dual pathway 
plasticity, silent synapses and recurrent architecture occur 
in the microcircuitry. Below, we compare these compu-
tational predictions with recent empirical data, revealing 
a striking congruence between the two. we also discuss 
recent findings concerning the cerebellar granule layer 

Figure 1 | A simplified cerebellar microcircuit as an adaptive filter. a | A mossy fibre 
(MF) input signal is distributed over many granule cells, the axons of which form parallel 
fibres (PFs) that synapse on Purkinje cells (PCs). In Marr–Albus-type models, correlated 
firing of a PF and the single climbing fibre (CF) that winds around the PC alters the 
strength of the PF–PC synapse. Note that this figure omits a number of the microcircuit 
features shown in BOX 1, in particular the inhibitory projection from granule cells to PCs 
via stellate and basket cells. Plasticity in this projection is only rarely included in 
adaptive-filter models of cerebellar function8. b | The structure of this microcircuit can be 
identified with that of an adaptive filter as follows: the processing of a sensory input or 
motor signal input by the granule cell layer is interpreted as analysis by a bank of filters. 
PC output is modelled as a weighted sum of these PF inputs, with the weights 
corresponding to synaptic efficiencies. The CF input is interpreted as a teaching signal 
that adapts synaptic weights using the covariance learning rule48. Formally, the filter 
weights w

i
 are adjusted using by δw

i
 = – β (ep

i
), where δw

i
 is the change in weight, e is the 

teaching signal, P
i
 is the signal to the weight and (ep

i
) denotes the covariance of e and P

i
. 

The teaching signal e is often performance error, and is in that case referred to as an error 
signal. The learning rule can then be shown theoretically to minimize mean square 
performance error (e2) and is usually called the least mean square rule in artificial 
systems. c | Forward and recurrent architectures illustrated for horizontal 
vestibulo-ocular reflex (VOR) adaptation. The task of the VOR is to convert the vestibular 
signal v

head
 into motor commands m to the oculomotor plant P that move the eye so as to 

exactly compensate for head movements: v
eye

 = v
head

. This adaptable reflex is mediated by 
a direct pathway through the brainstem B, supplemented by forward and recurrent 
adaptable pathways through the floccular region of the cerebellum C that carry mainly 
vestibular information (processed in V) and a motor efference copy, respectively. It has 
been argued17 that VOR plant compensation (changes in the adaptive filter C in response 
to changes in the motor plant P) depend mainly on the recurrent pathway through C. This 
formulation has the advantage that the required teaching signal is sensory error (retinal 
slip e) as shown. In more general adaptation problems both forward and recurrent 
pathways are necessary, with the former used for vestibular compensation (that is, 
adaptation to changes in V) and the latter for plant compensation20. Previous schemes 
for plant adaptation have used only the forward pathway in a feedback error learning 
architecture179. The advantages of the recurrent architecture for control of nonlinear and 
redundant systems are discussed in REF. 54. Parts a and b are reproduced, with 
permission, from REF. 18 © (2004) The Royal Society. Part c is reproduced from REF. 58. 
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that do not fit the earlier predictions from computa-
tional analyses but are nevertheless consistent with an 
adaptive-filter model of the cerebellar circuitry. These 
developments point the way to a new understanding  
of the function of the cerebellar granular layer.

Symmetrical LTD and LTP and the covariance rule
Initial studies of cerebellar plasticity showed that 
paired stimulation of PFs and CFs induced lTD at syn-
apses between PFs and PCs (PF-lTD) (for example,  
REFS 60–65). Depression at PF–PC synapses had been 
predicted by Albus6, and the discovery of cerebellar 
lTD was accompanied by an interpretation of the Marr–
Albus framework that focused on a form of cerebellar 
learning that used only lTD39,41,63,66. However, although 
usually not made explicit, cerebellar models based on 
the adaptive filter typically use the covariance learning 
rule48, which requires both lTD and lTP (see above). 
Hence, there was a conflict between experimental and  
computational descriptions of the learning rule.

More recent investigations of PF–PC plasticity have 
indicated that lTP (PF-lTP) also occurs at this syn-
apse67,68. In vitro studies showed that PF-lTP leads to a 
reversal of the CF-induced PF-lTD in PCs69–71. In vivo, 
PF activation in a protocol that mimicked a PF-lTD pro-
tocol but omitted the CF activation led to spectacular 
receptive field expansion in PCs72, indicating that lTP 
had occurred (see below). Hence, whether a given PF 
input causes synaptic depression or potentiation depends 
on whether a CF input is present. The discovery that lTP 
also occurs in PF–PC synapses has led to a new view 
of cerebellar plasticity that is more congruent with the 
adaptive-filter model than the previous view.

Further computational analysis of the covariance 
learning rule reveals a possible explanation for why cere-
bellar lTD was discovered before lTP. The learning rule 
predicts that temporal coincidence of PF and CF firing 
produces lTD, whereas PF firing without CF firing gives 
lTP. This anti-Hebbian type of relationship can be for-
malized in the form of spike-time-dependent plasticity73, 
with pronounced lTD occurring for spikes that coincide 
in a time window of 100–200 ms74 and much weaker lTP 
for non-coincident spikes. lTD might therefore be easier 
to demonstrate experimentally.

However, the new computational analyses also 
highlight an important problem for applying the cov-
ariance learning rule to the cerebellar microcircuitry: 
simple adaptive-filter models, as shown in FIG. 1, have 
weights that can switch between positive and negative 
values, but real synapses are either excitatory or inhibi-
tory. A solution to this problem would be to include 
in the models a parallel pathway from granule cells to 
PCs through inhibitory interneurons. Synaptic weights 
between PFs and interneurons would then behave as 
though they were negative weights between PFs and 
PCs, and these weights would also have to show plas-
ticity (but with the opposite sign). Below we describe 
a parallel pathway with these properties: the indirect 
inhibitory pathway from granule cells to PCs through 
local, molecular-layer interneurons, also known as  
stellate and basket cells (BOX 1).

 Box 3 | Application of adaptive filters

In signal processing terms a filter is a process that transforms an input signal into an 
output signal. For example, a reflex arc that converts a sensory stimulus into a motor 
command can usefully be modelled as a filter (see the figure, part a). When the filter is 
linear it can be completely described by its response to a spike input, called its impulse 
response. Note that although the emphasis here is on temporal transformations, similar 
considerations apply to spatiotemporal transformations.

An adaptive filter has parameters that can be varied to affect the form of the output. 
For example, a filter might have an adjustable time constant, so that a spike input 
produces a prolonged response with an adjustable decay time or an adjustable gain, 
which varies the amplitude of the response (see the figure, part b). The parameters of an 
adaptive filter can be varied to suit a given task, for example in the case of a reflex to 
convert an aversive sensory signal into a motor signal that will produce a fast, safe 
withdrawal movement.

Analysis–synthesis filters form a flexible class of adaptive filters that work by analysing 
the input into component signals using a bank of fixed filters. In engineering systems 
these filters might be bandpass filters, which split the input into its various frequency 
components, or tapped delay lines, which delay the input signal by varying amounts. In 
biological systems leaky integrators, providing components that are increasingly 
prolonged over time, provide a plausible analysis method. The components are then 
recombined to form the output signal, the amount of each component being controlled 
by adjustable weights (see the figure, part c). These are often called linear-in-weights 
filters; however, the analysis–synthesis input–output relationship does not have to be 
linear. Nonlinear problems can be solved by including nonlinear operations, such as 
products of linear filters, or by including more complex filters (such as echo state 
networks) in the bank of fixed filters.

An important characteristic of the adaptive-filter interpretation is its computational 
sufficiency. If the cerebellar microcircuit could be shown to implement an adaptive filter, 
its usefulness for sensory processing and motor control would be clear. Adaptive filters 
are not just theoretically powerful, they have also been shown to be useful in an 
enormous range of applications ranging from process control to adaptive noise 
cancellation in headphones. A particularly relevant application area is the control of 
humanoid robots40; for example, cerebellum-inspired adaptive controllers were 
extensively used in the ERATO humanoid robot project171.
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Dual pathway plasticity
For molecular-layer interneurons to contribute to 
the implementation of the covariance learning rule 
in the cerebellar cortex, three criteria must be ful-
filled. First, CFs must be able to control plasticity 
at PF–interneuron synapses as they do at PF–PC syn-
apses, and therefore must communicate with interneu-
rons. Second, plasticity at PF–interneuron synapses 
must have the reverse sign to that of the PF-to-PC 
input, as the two pathways affect cerebellar output in 
opposite directions (note that PFs making synapses on 
interneurons also make synapses on the neighbour-
ing PC). Third, interneurons that receive CF input 
from one microzone must target PCs in the same 
microzone, otherwise the specificity of the learning 
rule would be partly or entirely lost. As we describe 
below, recent experimental data suggest that all three 
criteria are met.

Anatomical and physiological studies have shown 
that CFs contact interneurons and can evoke an electri-
cal response in interneurons72,75,76. This response does 
not resemble a traditional ionotropic or metabotropic 
signal76 and at least in vitro seems to be generated by 
extrasynaptic activation of AMPA (α-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid) and NMDA 
(N-methyl-d-aspartate) receptors77. PF–interneuron 
synapses are highly plastic (at least in vitro)78–83, and 
interneurons seem to have a fundamental role in behav-
ioural adaptation84, so the key question is whether CF 
input to interneurons regulates this plasticity.

Evidence supporting the regulation of PF–interneuron 
synapses by CFs comes from two sets of experiments. 
First, in vivo investigations showed that the cutaneous PF 
receptive fields of interneurons almost exactly matched 
the receptive fields of the local CFs. As individual MFs 
typically have small receptive fields (FIG. 2), an interpreta-
tion of this finding is that the interneurons receive active 
synapses only from the subset of PFs that receive input 
from the same skin area as the CF, whereas the interneu-
rons’ synapses with all other PFs had been rendered 
‘silent’. In other words, these findings suggested that the  
PF input onto interneurons is under the control of  
the CF85. A subsequent in vivo study combined PF and 
CF stimulation while simultaneously recording the loca-
tion of the originally very small PF input from the skin. 
The combined stimulation resulted in marked increases 
in the receptive field of the interneuron72, which later 
studies showed to be associated with a pronounced 
increase in the number of active PF synapses onto the 
interneuron76. By contrast, PF activation without CF 
activation reduced an interneuron’s receptive field size, 
which is compatible with a decrease in the number 
of effective PF synaptic inputs72. These receptive field 
changes were exactly the opposite of those recorded in 
PCs and are remarkably congruent with the prediction 
from the covariance learning rule that plasticity at the 
interneuron–PC synapse must have the opposite sign to 
plasticity at the PF–PC synapse.

Second, in vitro studies have provided strong, but 
indirect, support for the idea that CFs control plastic-
ity at PF–interneuron synapses. lTP at these synapses 
depends on the activation of NMDA receptors80,82. 
However, interneurons have only extrasynaptic NMDA 
receptors, and normal, low-intensity activation of 
PFs does not activate them80. By contrast, a single CF 
activation can activate NMDA receptors on interneu-
rons77. Therefore, as originally suggested by Szapiro 
and Barbour77, the observation in vivo that CF input 
is needed to elicit lTP at PF–interneuron synapses72,76 
probably means that only CF inputs activate the NMDA 
receptors77. Supplementary information S3 (box) dis-
cusses why CF dependency of lTP at these synapses has 
not yet been demonstrated directly in vitro.

Although CF input to interneurons might involve 
glutamate spillover77, this does not prevent it from pro-
viding a reliable, specific error signal. CF responses have a 
fast onset and a long duration (meaning that the amount 
of charge carried can be orders of magnitude larger than 
at a PF–interneuron synapse; the long duration could 

 Box 4 | Alternative models of cerebellar function

Descriptive models
In their pure form, descriptive models are concerned with reproducing aspects of 
circuit behaviour — for example the firing patterns of various classes of cerebellar  
cell — without concern for overall function. There are too many descriptive models  
to list here, but compartmental modelling is increasingly used (for example, see  
REFS 172–174). Descriptive models are to some extent complementary to the kind  
of computational model that is the focus of this Review, with the proviso that 
computational models must not predict circuit behaviour that is incompatible with 
behaviour predicted by descriptive models.

Look-up tables
The cerebellar cortex is often regarded as a gigantic memory or look-up table, which 
stores the desired response to a given set of inputs so that it functions as a pattern 
classifier or feature detector. The most widely used look-up table is based on Albus’s 
cerebellum model articulation controller (CMAC)6. Although the CMAC is rarely used 
for simulating the role of the cerebellum in behaviour175, it continues to be applied to 
certain kinds of adaptive-control problems in artificial systems. The learning rule  
used by the CMAC for adjusting its weights is of the same form as the covariance  
rule used by adaptive-filter models, but the key difference between the two types of 
model lies in input coding. It can be argued that this difference is of secondary 
importance (Supplementary information S5 (box)) and that CMACs can be seen as a 
subclass of adaptive filter rather than as a totally separate model. Indeed, the complex 
control problems that arise in biology might require a hybrid of the two.

olivary models
In these models (for example, see REF. 176), cerebellar output, as delivered by the 
excitatory projection neurons of the deep cerebellar nuclei, is determined solely by 
activity in the inferior olive. Which part of the olive is active is determined by 
quiescence in the corresponding region of the inhibitory nucleo-olivary pathway. This 
in turn is generated by Purkinje cell (PC) inhibition, which is switched on by a context 
request from the mossy fibres in a manner that depends on there being bistability in PC 
simple-spike firing. This type of model clearly depends on an interpretation of 
experimental data that differs in fundamental ways from that discussed in this Review. 
For example, the fact that PCs fire spontaneously is taken as evidence against any role 
for parallel fibres (PFs) in determining their firing rate — “even if spikes occasionally 
arise from coincidence of PF inputs, they will be masked by the high rate of ongoing 
intrinsic activity”176. Moreover, although it has been argued that in principle models of 
this kind could be used for motor control (for example, REF. 177), they have in practice 
not as yet been used either to simulate biological motor control or to control an 
artificial device. This is in contrast to the extensive use of adaptive-filter models in both 
contexts. It is important that olivary models be developed to allow a quantitative 
investigation of their feasibility for cerebellar tasks. (A recent study of underwater-vehicle 
control178 has used a model of six olivary neurons to synchronize the oscillations of its fins. 
The model includes no features of the cerebellar cortical microcircuit.)
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granular layer that synapse 
with granule cells. They receive 
excitatory input from mossy 
fibres and parallel fibres.

also mean that the CF dependency of PF–interneuron 
plasticity might have a broad temporal tuning curve sim-
ilar to that of PCs (see above))76,77. Because diffusion sig-
nalling is effective only at short distances, glutamate that 
spills over to an interneuron must be primarily derived 
from the nearest neighbouring CF–PC synapses or the 
nearest CF terminals75. An interneuron can receive input 
from two different CFs77, each of which also contacts 
up to ten PCs. As a microzone is only around ten PCs 

wide, the CFs that provide input to an interneuron will 
primarily or exclusively be located in the same micro-
zone as the interneuron. A microzone can be consid-
ered to be the minimal functional unit of the cerebellar 
cortex (see above), so the interneurons will receive CF 
input equivalent to that of the PC that the interneurons 
innervate, even if the CF–interneuron input is mediated 
by spillover.

The third criterion for the inhibitory pathway to the PCs  
to implement the covariance learning rule — the 
microzone-specific inhibition of PCs — has also gained 
experimental support. For example, all interneurons in 
a microzone have the same receptive field, which is also 
identical to the receptive fields of the CFs and the inhibi-
tory receptive fields of PCs in that microzone72,76,85. In 
addition, a study of the vestibulocerebellum86 reported 
that interneurons of the molecular layer are driven in 
phase with the local CFs (that is, the CFs of the same 
microzone), which is compatible with the view that they 
are driven by the same inputs as the CFs. By contrast, the 
neighbouring PCs were driven out of phase but inhib-
ited in phase with the CFs and the interneurons. The 
authors concluded that the in-phase depression of the 
PC activity could be explained if these PCs were inhib-
ited by the interneurons that were driven in phase with 
the CF (and thus were located in the same microzone). 
Finally, an optimal imaging analysis showed that the 
inhibition of PCs by interneurons is parasagittally organ-
ized (oriented as microzones)87. Together, these studies 
support the idea that inhibition of PCs by interneurons 
is microzone-specific.

It might seem surprising that the inhibition of PCs is 
microzone-specific, given that some interneurons have 
rather long axons. However, these axons seem to follow a 
strict parasagittal organization87,88 (which also seems to be 
true for Golgi cells86); that is, they are oriented in congru-
ence with the microzones. Second, any non-microzone-
specific connections could be rendered inactive through 
plasticity in the interneuron–PC synapse: to achieve the 
microzonal specificity, this plasticity process should lead 
to a potentiation of the interneuron–PC synapses that 
are activated in conjunction with the CF input to the PC. 
At present, such plasticity mechanisms have been inves-
tigated only in vitro, but the literature is contradictory at 
this point: CF activation has been shown to lead to either 
potentiation89 or depression90 of this synapse.

Silent synapses in the cerebellum
Silent synapses seem to be a ubiquitous feature of the 
hippocampus and neocortex91, but recent discoveries 
indicate that this phenomenon is probably carried to its 
extreme in the adult cerebellar cortex, where as many as 
98% of PF synapses might be silent.

The first indication that most of the PF–PC synapses 
are silent came from a study using electrical PF stimula-
tion and glutamate uncaging92. Further, direct evidence 
for silent PF–PC synapses was obtained by recording 
synaptic currents evoked in PCs by stimulating single 
granule cells in vitro93. Despite the fact that the granule 
cells almost certainly formed PF synapses on the PCs, 
controlled activation of the granule cells in most cases 

Figure 2 | updated view of the physiological wiring of the cerebellar cortical 
circuitry. Summary of microcircuitry organization, based mainly on findings for the 
cuneocerebellar mossy fibre (MF) system of the C3 zone, for which the microcircuitry 
characterization is most complete. Here, the information ‘quantum’ equals input from 
small receptive fields on the skin. The bottom right part of the figure shows the location of 
sample MF receptive fields (dotted lines) and defines the colour code for the four sample 
inputs with illustrated distribution in the microcircuitry: granule cells receive inputs from 
the same skin location on all of their four synapses. This means that the receptive fields  
of the downstream neurons are the summed receptive field of the granule cells from 
which they receive their input. Golgi cells have the same receptive fields as the 
surrounding MFs and granule cells. For both granule cells and Golgi cells, this is a natural 
consequence of cuneocerebellar MFs with the same receptive field terminating in close 
proximity to each other in sagittal strips of the cerebellar cortex85,94. However, presumably 
because they combine local MF and granule cell inputs, Golgi cells’ receptive fields are 
larger and consequently less specific than those of individual granule cells and MFs85,94,102, 
as indicated by the colours. The MFs carry precise information, and although this precision 
is lost in the Golgi cells, its core parts are preserved. The Golgi cell axons are distributed 
primarily in the sagittal plane86 and thereby follow the MF ‘microzones’85,94 so that the 
inhibition of granule cells comes from roughly the same input source as the MF excitation95. 
The climbing fibres (CFs) define the microzonal banding pattern of PCs3 as in BOX 1. 
However, we now know that interneurons also receive the local CF input and mainly inhibit 
PCs within the same microzone. Although the entire repertoire of the MF–granule cell 
inputs is available to both PCs and interneurons through the synapses they make with PFs, 
most of these synapses are normally ‘silent’, providing no effective input. Instead, the PF 
inputs to both interneurons and PCs are specific to the CF input (and therefore the 
microzonal identity). Note that the input patterns shown are those recorded in the normal, 
adult animal, but these are readily altered by appropriate stimulation72,76 and can be 
expected to change under conditions that induce cerebellum-dependent learning.
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The process by which 
chemically caged glutamate 
can be released by focal light. 
It is used to study the effects of 
postsynaptic activation with 
high temporal and spatial 
control.
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A bundle of parallel fibres 
(PFs). A term typically applied 
to experiments using electrical 
stimulation of PFs in which the 
local population of PFs around 
the stimulating electrode is 
activated.

failed to elicit an excitatory response at the correspond-
ing PF–PC synapse. The presence of silent synapses was 
also suggested by evidence from in vivo circuitry analysis 
using receptive field mapping85 in the C3 zone: although 
the cutaneous receptive fields of individual MFs and 
granule cells are very small94,95, the PFs that innervate 
a single PC together carry a complete representation 
of the skin3,94. However, only a fraction of the avail-
able skin inputs, and therefore only a fraction of the PF  
inputs, provide input that activates the PC3,72, leading to 
the conclusion that most inputs must be silent or other-
wise non-effective. The estimated proportion of silent 
synapses on PCs in the in vitro and in vivo studies were 
remarkably similar (85% and 95–98%, respectively), 
even though the studies involved different species and 
different functional cerebellar subdivisions.

Further evidence for silent synapses is provided by 
the nature of the changes that occur in the receptive 
fields of PCs and interneurons when the purported silent 
synapses are made effective. lTP protocols applied to 
the PFs resulted in receptive field increases of several 

thousand per cent in both cell types72. An explanation 
for this finding is that the activated population of (pre-
viously silent) PF synapses carries a representation of 
more or less the entire body skin. This would in turn 
indicate that a PF beam contains PFs carrying input from  
different receptive fields72,76.

The large number of PF synapses on an individual 
PC suggests that a high proportion of PFs carry signals 
that are irrelevant to any particular learning task; that is, 
they transmit noise. Silent synapses are a natural conse-
quence of the covariance learning rule in this situation58. 
Imagine a PC that is driven by a single PF with a synap-
tic weight. The learning rule always adjusts the value of 
the synaptic weight until it minimizes the error signal. 
If the PF firing represents noise, then by definition it 
can produce only erroneous output. Consequently, this 
PF input will continuously drive CF activation until 
the synaptic weight becomes zero and the synapse has 
become ‘silent’. This effect is shown in simulation (FIG. 3). 
Any noise (both intrinsic noise and signals providing 
information that is irrelevant to the current task) that 
is reflected in cerebellar output produces errors; the PF 
discharge positively correlates with the error as signalled 
by CF spikes. This positive correlation produces lTD 
through the covariance learning rule, eventually driv-
ing the synaptic weights on PFs that convey a weakly 
relevant signal to small values, and on those with  
no relevant signal to zero.

The covariance rule predicts that the parallel, 
inhibitory pathway also has silent synapses because 
the PF–interneuron synapses in this pathway are also 
plastic (see section on dual pathway plasticity above). 
The (noise) signal transmitted from the PF to the PC 
through the inhibitory interneuron has the opposite 
sign to the (noise) signal that is transmitted to the PC 
through the direct pathway. Hence, the PF discharge 
that is transmitted through the indirect pathway will 
be negatively correlated with error (as signalled by CF 
spikes). However, the indirect pathway has a learning 
rule that is opposite to that of the direct pathway, so 
this negative correlation produces lTD, which eventu-
ally drives the PF–interneuron synapse to silence. In the 
case that both the PF–PC and PF–interneuron synapses 
are non-zero, the covariance rule produces lTD in the 
larger of the two weights and lTP in the smaller, driv-
ing the weights to equal intermediate values so that the 
opposite effects of the two pathways cancel each other 
out. However, the covariance learning rule predicts 
that this balance is unstable, and intrinsic noise in each 
pathway will eventually drive both weights to zero (a 
similar effect is shown in FIG. 3). Note that only cor-
related noise in PF and CF discharges drives weights to 
zero; uncorrelated, spontaneous CF discharges do not 
have this effect96.

The preponderance of silent synapses is a further 
reason why a parallel, inhibitory pathway from granule 
cells to PCs is required for implementing the covariance 
learning rule: without it, silent synapses could not be 
used for learning that requires a decrease in PC output58 
(which involves an active inhibitory process). Thus, the 
dual pathway plasticity described in recent experiments 

Figure 3 | Learning dynamics with covariance learning rule. a | Optimality of synaptic 
weights and learning hysteresis illustrated in a simulation of vestibulo-ocular reflex 
adaptation (for details see REF. 58). The time course of synaptic learning is shown for two 
parallel fibres (PFs) (PF

1
 and PF

2
) carrying equal levels of a relevant signal (in this case a 

motor efference copy), with the first having lower noise; a third PF (PF
3
) carries noise 

alone. In the early stage of learning the weights on PF
1
 and PF

2
 (initially zero) are driven to 

the same value because they carry equal amounts of signal. Later in learning the noise 
carried by each PF drives these weights to their optimal values, with a higher weight 
eventually assigned to the lower-noise input PF

1
. Meanwhile, the weight on the all-noise 

channel PF
3
 (which was initially set to be non-zero) is driven to its optimal value of zero.  

b | The optimality principle applies both to ‘genuine’ noise, for example intrinsic noise in 
PF signals, and to situations in which noise is an irrelevant sensory signal. For example, 
the weight histories shown on the left also apply to an idealized learning task requiring a 
spatially localized skin sensory input. Before training, the relevant location (black cross) 
lies in the receptive field of PF

3
 (red), so that this input has high synaptic weight. Weights 

on the irrelevant PF
1
 and PF

2
 (blue and green, respectively) will be zero. If the task is 

modified so that the relevant input is now located at the black dot, then the input from 
PF

3
 is irrelevant (effectively all noise). Relevant inputs now come from PF

2
 (large green 

receptive field: always responds to a correct stimulus but often responds to irrelevant 
stimuli, hence also has a high noise content) and from PF

1
 (small blue  receptive field: also 

carries the relevant signal but rarely responds to irrelevant stimuli, hence has low noise 
content). The weight for PF

3
 will be driven to zero by long-term depression, whereas PF

2
 

and PF
1
 both learn through long-term potentiation and eventually stabilize at values that 

maximize the overall signal-to-noise ratio.
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Image slip
Movement of the entire image 
across the retina, usually 
produced by movement of the 
eyes.

Distal error problem
The natural error signal for 
learning motor commands is 
the difference between actual 
and correct commands (‘motor 
error’). However, in 
autonomous systems the 
correct command is typically 
unknown; only information 
about the sensory 
consequences of incorrect 
commands is available, such as 
the position of a pointing finger 
relative to a target (‘distal 
error’). How to use this 
information to drive motor 
learning is the distal error (or 
motor error) problem.

Coincidence detector
A neuron that acts as a 
coincidence detector responds 
only when two or more of its 
synaptic inputs are activated 
together.

is exactly what is required by an adaptive filter with noisy 
inputs and weights that are restricted to either positive 
or negative values.

Recurrent architecture
It has recently been suggested that cerebellar micro-
zones typically receive MF inputs that are related to the 
microzone’s own outputs. For example, studies using 
transneuronal transport of neurotropic viruses have 
shown that the area of cerebral cortex that receives pro-
jections from a cerebellar region also sends projections 
back to that region97. The nature of the computations  
performed by the cerebellar microcircuit in this recur-
rent architecture is an important theoretical question97,98, 
to which the adaptive-filter framework provides a 
compelling answer.

A vital clue to this answer was provided by compu-
tational analysis of a well-understood region of the cer-
ebellum, the flocculus (FIG. 1c). This region is concerned 
with the control of eye movement and receives a mas-
sive MF input related to eye movement commands19. 
It also receives, through its CF input, an error signal 
related to image slip across the retina. Applying the cov-
ariance learning rule to these two signals (FIG. 1) points 
towards a function for the recurrent projection of the 
eye movement motor command17,18. The rule indicates 
that synaptic weights cease to change when there are no 
longer any correlations between the PF inputs and the 
CF error signal (BOX 3; FIG. 1; Supplementary informa-
tion S2 (box)). As the adaptive filter continues to learn 
until this state is achieved, its goal is effectively that of 
decorrelating its inputs from some measure of the unde-
sirable effects of its output. The implicit logic behind 
this procedure is that the correlation between PF firing 
and the error signal provided by the CF is evidence of 
a causal relationship. In the case of motor commands 
and retinal slip, successfully decorrelating the two leads 
to new motor commands that do not cause inaccurate 
movements17,18,59. In effect, the system learns the most 
accurate available motor commands — an important 
goal of models of cerebellar function.

This proposed role for the recurrent architecture 
addresses a long-standing problem in adaptive motor 
control, namely that in autonomous systems the correct 
motor commands might not be known in advance and 
so cannot be used to generate error signals. However, 
in systems with a recurrent architecture the sensory 
consequences of inaccurate commands (for example, 
movement of the image across the retina in the vesti-
bulo-ocular reflex) can be used as an error signal, solv-
ing the so-called motor error problem (or distal error 
problem)54. In general terms, the recurrent architecture 
allows the cerebellum to compensate for changes in 
downstream structures (the eye muscles in the example 
of the flocculus above), whereas the forward projections 
allow compensation for changes in structures upstream 
of the cerebellum (the semi-circular canals in the  
example above)20.

Compensation for changes in downstream structures 
is especially important for motor control, and demon-
strating how it can be achieved by decorrelation control 

is particularly relevant to the idea of the cerebellum as 
a motor structure99,100. Indeed, appropriate recurrent 
connections have been observed wherever they have 
been looked for, including in the oculomotor vermis 
(involved in saccade control)101,102 and regions of the 
cerebellum involved in controlling limb movement103,104. 
This downstream compensation need not be limited to 
motor control but could have more general applicability, 
which might prove to be relevant for cerebellar functions 
in sensory or cognitive processing41,105.

Granule cell function
A central feature of signal processing in adaptive filters is 
the breakdown of input signals into different components 
(BOX 3), which in the cerebellum has been assumed to take 
place in the granular layer13,21–23,45 (BOX 1). These assump-
tions, which are related to Marr’s ideas about ‘expansion 
recoding’ in the granular layer5, are in part based on the 
observation1 that MFs branch into several terminals, so 
that the number of granule cells is greater than the number 
of MFs; according to recent estimates, the number of  
granule cells per MF is in the order of 400–800 (REF. 106).

The technical difficulties associated with recording 
from granule cells in vivo have only recently been over-
come95,107–110, but the initial results of these recordings 
do not support the idea that the granule layer performs 
complex signal decomposition95,108,110. In some studies, 
granule cells seemed to receive functionally equiva-
lent MF inputs on all four dendrites (FIG. 2), indicating 
that they might function as coincidence detectors with 
a pronounced noise-filtering capability accompanied 
by simple linear integration for suprathreshold synap-
tic input95,111. Moreover, in some experimental systems 
granule cells seem to receive modality- and receptive 
field-specific input from all afferent MF inputs95, and 
there is even evidence that granule cell inputs might be 
submodality-specific (for example they respond to either 
skin hair deflection or stimulation of tactile skin recep-
tors; they can be activated by either phasic or tonic tactile 
skin input, et cetera)95. In addition, it has been reported 
that MFs that are driven by the same modality but which 
code the input in different ways terminate on separate 
sets of granule cells (FIG. 2), and that granule cells only 
receive MF inputs with similar coding110. These find-
ings are consistent with evidence that MFs from the 
same functional systems106,112–117 or carrying the same 
input94 colocalize to terminate in the same parts of the 
granular layer118–121. If MFs carrying different informa-
tion terminate in different parts of the granule layer, it 
is unlikely that a granule cell can integrate the different 
sets of information because granule cell dendrites are 
typically very short.

Although there is disagreement about whether gran-
ule cells always receive similar MF inputs, and about 
whether granule cell firing can be triggered by a single 
MF or requires multiple MF inputs (for further details, 
see Supplementary information S4 (box)), the recent 
recording data suggest that the granular layer transmits 
MF inputs with relatively modest alterations — cer-
tainly far more modest than those required by typical  
adaptive-filter models.
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Hysteresis
A system has hysteresis when 
its current behaviour depends 
on its history. An example of 
hysteresis in learning is the 
phenomenon of savings, in 
which relearning takes place 
much more quickly than 
first-time learning.

If this is the case, then the diversity of PF signals that is 
required by adaptive-filter models would have to be sup-
plied by the MF inputs themselves. The MF inputs to a 
given microzone seem to be highly diverse (for example, 
see REFS 102,110,122), as are Golgi cell responses (which 
are driven by MFs as well as granule cells) that have been 
recorded in different parts of the cerebellum85,102,123–125. 
Although MF diversity has long been noted, and 
yamamoto et al.9 have described an adaptive-filter model 
of the flocculus that relies on it, the implications of such 
reliance for adaptive-filter models in general have not 
been considered. Two fundamental questions it raises 
are, first, whether it is possible to obtain PF responses 
that outlast the input stimulus or that start only after 
a substantial delay (as for example in classical condi-
tioning126,127) and, second, how nonlinear combinations 
of input components (such as polynomials or radial 
basis functions; see Supplementary information S2,S5  
(boxes)) could be achieved.

A further problem is that a simplified granular layer 
could not learn the efficient input codes that have been 
assumed to be necessary for individual sensorimotor 
problems128–130. These are codes that are complete but 
sparse, in order to ensure rapid learning at PF–PC syn-
apses. In theoretical accounts of the role of granular layer 
processing in adaptive-filter models of the cerebellum, 
the above problems are typically solved by incorporat-
ing inhibitory feedback from Golgi cells25,131 (see also  
REFS 132,133). Conversely, some recent data suggest that 
the role of feedback from Golgi cells might be relatively 
modest (see below). The implications of these findings 
for future research are considered below.

Conclusions and future directions
The experimental findings reviewed above indicate that 
earlier conceptions of the cerebellar microcircuit should 
be changed with regard to both its internal and external 
connectivity and the functionality and plasticity of its 
components. Computational analysis indicates that most 
of these changes fit extremely well with the adaptive- 
filter version of the original Marr–Albus theoretical 
framework. In the case of granule cell electrophysiol-
ogy, recent findings indicate that the original proposals 
concerning the details of adaptive-filter signal decom-
position need to be re-examined. we now consider the 
implications of these conclusions for our understanding 
of cerebellar function and for future research.

First, considering the cerebellar microcircuit as an 
adaptive filter could reconcile different views of cer-
ebellar function. An adaptive filter is a signal process-
ing device that seeks to decorrelate its main inputs 
from a teaching or error signal. As such it can be used 
for motor control, for sensory processing (for example, 
see REF. 105) and for learning internal models40,41,134–136 
(Supplementary information S1 (box)). The versatil-
ity of adaptive filters corresponds to the many uses of 
adaptive filters in engineering contexts (for example, see  
REF. 137); it also emphasizes that the cerebellar microcir-
cuit cannot be described as intrinsically having a sensory 
or motor function, and that the function of a particular 
microzone is determined by its external connections 

(that is, its MF and CF inputs and its PC output targets). 
Although these points about the cerebellum have been 
made previously in a general context (for example, see 
REFS 39,41,63,138), the adaptive-filter model gives them 
specific computational credibility. recent findings there-
fore bring into question the original assumptions of the 
Marr–Albus framework that the cerebellum is involved 
exclusively in motor control through motor learning, but 
they support the framework’s assumptions that simple 
and complex spike firing convey output commands and 
teaching signals, respectively.

Second, this review has shown that the computa-
tional principles that underlie many functional models 
of the cerebellar microcircuit are those of an adaptive 
filter, and that these principles fit well with several 
recent findings related to microcircuit properties. This 
indicates that the adaptive-filter interpretation of micro-
circuit function could be more important than hitherto 
realized for guiding future research, and below we give 
three examples of how this might be the case.

The first example concerns the functional implica-
tions of having two pathways. As outlined above, MF 
inputs reach the PC through a direct, excitatory PF path-
way and an indirect, inhibitory PF–interneuron pathway. 
In both of these pathways, the PF synapses are subjected 
to bidirectional plasticity under the control of CFs, result-
ing in complementary (or reciprocal) plasticity effects, 
as required for implementing an adaptive filter. what 
remains to be investigated is whether the learning rates  
in the two pathways are different. Different learning 
rates would lead to learning rate asymmetry for different 
cerebellar tasks58, as has been described for gain adapta-
tion of the vestibulo-ocular reflex139 or in systems with 
hysteresis in which acquisition and reacquisition occur at 
different rates, such as in classical conditioning126,140.

A further implication of having these two pathways 
follows from the observation that in both pathways most  
of the PF synapses are silent. learning new tasks 
is therefore likely to be initiated primarily through 
lTP (although previously relevant PF input would 
become depressed through lTD, as shown in FIG. 3a). 
Furthermore, specific learning tasks might prove to rely 
initially or primarily on lTP in only one of the two path-
ways. Identifying such possible selective pathway plastic-
ity is an important goal for future research, not least to 
provide an interpretational framework for the molecular 
analysis of cerebellar learning141,142.

The second example concerns the modularization 
of cerebellar microcircuitry. Many of the recent dis-
coveries concerning the properties of the cerebellar 
microcircuit relate to plasticity processes and how these 
shape the wiring in the cerebellar cortex. Importantly, 
because many of these processes seem to be related to 
CF activation, and because the CF system divides the 
cerebellar cortex into modular compartments (micro-
zones), plasticity-dependent changes in the wiring tend 
to make the entire cerebellar microcircuitry extremely 
modularized. For any individual microzone, the CF 
signal is the primary driver of input plasticity143,144 
and will therefore determine which signal processing 
task the microzone performs. This central role of CF 
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input mirrors the role of the ‘error’ or ‘teaching’ signal 
in cerebellar adaptive-filter models. This signal drives 
the decorrelation process and so determines the func-
tion of each individual cerebellar module (as described 
above). The identification of the exact nature of the CF 
signal is therefore crucially important for understand-
ing all cerebellar subsystems and remains one of the 
main outstanding challenges for researchers working 
on cerebellar function145.

The final example concerns signal processing in the 
granular layer. relating the new experimental find-
ings on granule cell electrophysiology to adaptive-filter 
function raises several questions. one is the extent to 
which the absence of convergence on granule cells — 
as reported for the cuneocerebellar and lateral reticular 
nucleus MF systems — is characteristic of other MF 
inputs (see Supplementary information S4 (box)). This 
is particularly important inasmuch as the PF signal 
properties of a given microzone might depend mainly 
on the coding in its MF inputs. Another question con-
cerns the contribution of Golgi cells to signal processing 
in the granular layer, which recent data suggest95,146,147 
could be relatively modest. Golgi cell inhibition of 
granule cells primarily consists of persistent tonic inhi-
bition with few distinct fast inhibitory postsynaptic 
potentials95,146,147. Accordingly, granule cells produc-
ing burst responses to skin stimulation show little sign 
of Golgi cell inhibition, even though the Golgi cells 
are relatively strongly activated by this stimulation95. 

However, considering the diversity of MF inputs and 
the diversity of activation modes of a single MF (both 
bursts and more tonic firing can be provoked in MFs 
with input from the skin; for example, see REF. 95), it is 
conceivable that during episodes of more moderate MF 
input (which barely manages to push the granule cell 
above the firing threshold) Golgi cell inhibition could 
have more influence over the transmission of MF input. 
The signal processing role of the granular layer and the 
variety of MF signalling urgently require experimental 
and theoretical investigation.

In conclusion, the multitude of recently discovered 
plasticity mechanisms and microcircuitry features rep-
resent a substantially evolved view of the original ideas 
of the cerebellum as a neuronal machine1, which in gen-
eral fits well with the adaptive-filter family of cerebellar 
models. This congruence of experimental and theoreti-
cal models strengthens the view that the cerebellum is 
especially suitable for studying general principles of 
brain function. Its organization at the microcircuit level 
has been investigated at a unique level of detail while the 
overall, general functional organization of connections 
has been characterized. In addition, parts of the cerebel-
lum are engaged in well-understood tasks, which makes 
it possible to understand the specific contribution of a 
component of the microcircuitry to a given task. The 
cerebellum therefore offers a unique opportunity for 
relating specific synaptic modifications to systems-level 
intelligent behaviour.
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