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Materials and Methods 

Recordings 

In three rats, 32- or 64- site silicon multielectrodes (4 or 8 shanks) were implanted 

in the CA1 region (28). Each shank had eight recording sites (160 µm
2
 each site, 1–3-MΩ 

impedance), and intershank distance was 200 µm. Recordings sites were staggered to 

provide a two-dimensional arrangement (20 µm vertical separation) (28). In one of the 

animals two 256 channel custom-made silicon electrodes were implanted to target the 

main regions of the hippocampus of the right hemisphere (11) The two probes were 

perpendicularly aligned to each other in order to record along both the septotemporal and 

subiculo-fimbrial axis of the hippocampus. The 32 recording sites of each shank were 

vertically aligned at 50 µm steps. The 8 shanks of each probe were placed 300 µm apart, 

thus each probe sampled a 1.55 mm x 2.1 mm area, covering several hippocampal 

regions simultaneously. The probes were gradually lowered 75-150 µm per day, until 

they recorded simultaneously from the dentate gyrus, CA3, and CA1 regions of the 

hippocampus. Each recording site was 165 µm
2
 and their impedance varied between 1.3 

to 3 MΩ. The broadband (0.3 Hz – 10 kHz) signals of the 512 recording channels and the 

spatial position of the animal were recorded by a multiplexing biosignal amplifier. 

 

Behavior 

On the linear track, rats were trained to run back and forth across the track to 

receive a water reward at both ends of the track (28). In the T-maze, rats were trained to 

perform a delayed alternation task, in which the animal had to choose either the left or the 

right arm at the decision point. After returning to the start area (40 x 40 cm
2
), the rat was 

confined for 10 seconds. In the following trial, the animal had to choose the opposite 

direction and the correct choice was rewarded by water. For 2-dimensional data in Figs. 2 

and S2, rats chased randomly dispersed drops of water or pieces of Froot Loops (~25 mg) 

on an elevated square platform (180 x 180 cm
2
, or 120 x 120 cm

2
). For dendrite-restricted 

decoding of position (Fig. S8B), rats moved freely in a 40 x 40 cm
2
 home cage.  

 

Data Analysis 

All analysis and visualization was done using Matlab, unless otherwise noted. 

 

Spike sorting 

Extracellular representations of action potentials were extracted from the recorded 

broadband signal after high pass filtering (>800 Hz) by a threshold crossing-based 

algorithm. The dimensionality of the spike waveform representations on 8 contact sites of 

a given shank was reduced using principal component analysis, and the individual spikes 

were automatically clustered into groups with the possible lowest internal variance (i.e. 

representing action potentials generated by putative single neurons) using KlustaKwik 

(27). The generated cluster groups were manually refined by discarding multiunit clusters 

showing lack of clear refractoriness in the autocorrelograms, and groups with unstable 

firing patterns over time. Further details were discussed previously (28). 

 

Bandpass filtering 
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LFP and spike rates were down-sampled to 39.06 Hz, which reduced memory 

usage and processing time while preserving the theta-band signal. LFP (and spike rate, 

for Fig. 4) was zero-phase filtered using a complex Morlet wavelet, of the form 

 
 

where fc = 8 Hz and fb = .002, resulting in a complex-valued, Hilbert-transformed time 

series. 

 

Demodulation:  

For figures 1E-F, 2, 3A, and 4A/B (phase calculation), demodulation was 

achieved by  

 
 

where X(t) is the theta-band filtered signal, Xd(t) is the demodulated signal, ϕc(t) is the 

phase of the 1
st
 principal component of the complex-valued, theta-band, multi-electrode 

signal. The 1
st
 PC reflects the oscillatory component common to all electrodes; 

demodulation therefore preserves amplitude and relative timing of the wave at each 

electrode, while discarding the theta-band oscillatory component. Conceptually, this 

operation is related to the estimation of phase precession (19), but is reversed in sign. 

 

Position decoding 

To compare the representation of position in LFP and spikes we attempted to 

decode position from these different neural signals. Here we used primarily optimal 

linear estimation (OLE) to model the instantaneous position dependence in a set of neural 

recordings. Additional decoders are described below. 

 

The central assumption of OLE is that an external variable can be linearly reconstructed 

from neural activity n using a set of functions )(x , 


i

iix xnx )(maxargˆ   (1) 

This assumption is the basis for population vector methods, template matching (1) 

and the OLE methods used here. Since place cell and FFP responses are localized 

functions of position we fit the functions )(xi  using localized basis functions. To 

capture direction selectivity in the spike/LFP responses we modeled the rat's position on 

the linear track as a circular variable  , such that the two directions of motion are 

represented on the upper and lower arcs of a ring. For track length L  the rat's position x  

varies from L  to L , and we model Lx /   using K equally-spaced von Mises 

functions ))cos(exp()( kkb   . 

Eq (1) then takes the form 

 
i k

kkii bwn )(maxarg ,  


 

and we optimized the parameters of the decoder W  by solving 

 
t

ttw BWNW
2

)(minargˆ   
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where )]()([ 1 tntnN Ct   denotes the vector of responses of all C  neurons or all 

demodulated LFP channels (real and imaginary parts separated as different covariates) at 

time t , and  )()()( 1 tKtt bbB    denotes a vector that expands the position in the 

basis. 

The decoding error was assessed using 10-fold cross validation, where the 

decoder was trained on 90% of the data and the error was tested on the remaining 10%. 

Optimizing the cross-validated decoding performance for both spikes and LFPs, we 

found K = 75 and 400  to be the best parameterization of the basis. We limited our 

analysis to the periods when the animal was running with a speed >5% of its maximum 

speed, since when the animal is not running the theta power becomes very small and the 

phase estimates imprecise. This is a fairly strict constraint that excludes 49% of the data. 

Relaxing this constraint reduced the performance of the LFP decoder, but did not 

qualitatively change the results. 

We used this same decoder to compare the position representation in putative 

single units (C=85), demodulated LFP (C=63 complex valued coefficients), and in the 

joint representation of both spikes and demodulated LFP signals. When we considered 

25% of the channels, we randomly selected one quarter of the putative single units (see 

“Spike sorting” above) or demodulated LFP sites (real and imaginary parts together). A 

bin-size of 100ms was primarily used for our analysis. Decoding accuracy decreased with 

smaller bin sizes and improved with larger bin sizes, but, again, the results were not 

qualitatively different (Fig. S2). 

To assess the dimensionality of the decoder we used principal components 

analysis (PCA) on the demodulated (complex) LFP. The first 10 components explained 

>99% of the original variance. However, as we successively added principal components, 

OLE decoding accuracy continued to improve, relying on the full dimensionality of the 

signal (Fig 2D). 

A number of other decoding strategies exist to model phase precession (12), to 

account for the Poisson-like nature of spiking activity, or to take into account the fact that 

position varies smoothly over time (13). These approaches can typically provide more 

accurate decoding from spike trains. However, here we aimed to compare decoding 

across both spike and LFP inputs. In Fig. S2, we compare several decoding strategies: 

template matching, Bayesian decoding, and Bayesian decoding with filtering. In all cases, 

open field (2D) decoding is performed simply by changing the von Mises basis in 1D to a 

Gaussian tiling in 2D. Each element is given by 

 

))()(exp()( 1

k

T

kkb μxμxx    

 

where the vector x  indicates the 2D position of the rat,   denotes the covariance of the 

functions (assumed isotropic with   10% of the field size), and μ  denotes the 2D means 

of the 144K  Gaussians that tile the field. 

 

The additional decoding methods have been previously described (13). Briefly, template 

matching is a linear decoding scheme similar to OLE where, instead of a joint 

optimization of the functions )(xi , we estimate separate functions for each neuron 
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
k

kkii xbwx )()(ˆ
,  

 

where 

 
2

)(minargˆ xbwnw iiwi  . 

 

Bayesian decoding strategies, on the other hand, rather than computing a linear 

combination of observed neural activity, attempt to model the posterior distribution 

 

)()|()|( xpxnpnxp  , 

 

typically, under the assumption that neurons are conditionally independent given the 

position 

 

)()|()|( xpxnpnxp
i

i . 

 

Here, we assume that neural activity (both spikes and LFP) is generated by a Gaussian 

noise model 

 

)),((~ iii xNn   

 

with 

 


k

kkii xbwx )()( , . 

 

Once we have constructed the encoding models using maximum likelihood 

estimation, the neural observations at each time step induce a posterior distribution over 

x . Here we consider two types of prior distributions )(xp : a noninformative flat prior 

(Bayesian), and a filtering prior, which captures the fact that the rat's position changes 

smoothly over time (BayesFilt). 

 

For the 1D case, we use a circular filter 

 

  111111 )()cos(exp
)(2

1
)()|()(    ttttttttt dxxpxx

I
dxxpxxpxp 


, 

 

and for the open field we use a simple Gaussian filter 

 

111212111 )()()(exp
2

1
)()|()(   








 tttt

T

ttttttt dxxpxx
I

xxdxxpxxpxp


. 
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Here, the filter hyperparameters   or  , depending on the task dimensionality, are 

optimized by minimizing the cross-validated error. All decoders used the same set of 

basis functions for encoding: von Mises in 1D and Gaussian in 2D. 

 

It is important to note that, in general, correlations among the inputs will degrade 

the decoding. Although OLE is relatively robust against these correlations, template 

matching and Bayesian decoding techniques require some preprocessing of the inputs to 

perform well with demodulated LFP. Neither raw LFP, demodulated LFP, LFP 

amplitude, nor the demodulated LFP phase alone performed well with these decoders. To 

address this issue, we added an additional preprocessing step of PCA-whitening after 

demodulation. Once whitening was included, Bayesian decoding performed on par with 

OLE in both 1D and 2D, and Bayesian decoding with filtering tended to outperform OLE 

(Fig S2). 

 

 

ICA for complex-valued signals 

A vectorized version of Novey and Adali’s (17) implementation (available here), 

a fixed-point algorithm using an adaptable nonlinearity, was applied to the whitened 

multi-electrode signal to identify circularly symmetric, complex-valued sources with non-

Gaussian amplitude distributions. For Figs. 3 and 4, demodulation was performed after 

running ICA on the theta-band signal. For 32- and 64- electrode experiments, analysis 

was restricted to periods where the rat was moving at least 5% of its maximum speed. 

ICA was applied separately for each rat, in each session. 

 

Sparse decomposition of broadband LFP 

The LFP was downsampled to 156.25 Hz, and zero-phase filtered with 

a Butterworth high-pass filter (4th order, 4 Hz cutoff), as well as a 60 Hz notch filter to 

remove electrical noise; the resulting signal was whitened using PCA. Jack Culpepper’s 

Matlab implementation of a convolutional sparse coding model (available here) was used, 

with 64 basis functions of 128 ms length (sufficient to represent single theta cycles), 

using a Cauchy prior on the sparsity of basis function activations. 

 

Dendrite-restricted analysis 

Somatic layers were defined by calculating the average ripple power at each 

electrode, while the rat was in its home cage. In this environment, the rat would 

frequently be immobile, allowing for the sampling of many ripple events. The events 

were filtered with an 8th order, 100-250 Hz bandpass, Butterworth filter. The resulting 

ripple map was thresholded, and followed by manual ROI selection, to identify electrodes 

restricted to the dendritic layer (Fig. S8). ICA and decoding were then performed as 

described above. 

 

Electrode map visualization 

For each FFP, its basis function (multi-electrode projection) was arranged in a 

grid resembling the geometry of the electrode array. Each basis function was multiplied 

by a constant so that its average value had 0 phase. For Fig. 3B, all FFP’s were 

normalized to have unit-norm. The average of all FFP basis functions was then subtracted 

http://mlsp.umbc.edu/codes/ACMNsym.m
https://github.com/jackculpepper/sparsenet-conv
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from each basis function (for comparison of original and mean-subtracted basis functions, 

see Movie S2). For Movie S2, the real component of the phase-rotated FFP’s was 

rendered. 

 

Linear track: Place field identification and rendering  

The activation of each demodulated independent component (IC) was binned by 

position (100 bins in each direction, 2.5 cm per bin) and averaged. These binned 

responses were renormalized by taking their z-score (across all bins, trials, and 

components). Activation magnitudes were averaged across trials, and smoothed with a 

Gaussian kernel (σ = 6 cm); all local maxima separated by more than 30 cm and larger 

than .75 were marked as place field centers. Visual inspection confirmed that this 

technique identified place fields for both IC’s and neurons. IC’s with at least one place 

field were classified as FFP’s. Fig. 3A, 4A/B: Activations were binned by trial number 

and position, and smoothed with a 2-d Gaussian kernel (σ = 1 bin). For figure 4A/B, 

colors of fields were assigned according to position of maximal average activation. 

Pairwise overlap (Fig. 4C): For each FFP or neuron, the fraction of the track where both 

elements exceeded .75 was calculated. For display purposes (Fig. 4), fields were 

truncated 30 cm on both sides of identified peaks to reduce background noise.  

 

T-maze: FFP identification and place field rendering 

IC’s whose activation magnitudes exceeded a threshold, across at least 10 runs of 

the session, were marked as FFP’s. For these IC’s, their response magnitudes were 

binned (5x5 cm bins) and averaged, then renormalized by taking their z-score (across all 

bins and FFP’s). The result was smoothed with a 2-d Gaussian kernel (σ = 5 cm). For 

each FFP, the largest contiguous region whose values exceeded a threshold of .75 was 

identified as its place field. For Fig. 4D, place fields were colored such that neighboring 

FFP’s could be easily distinguished. This was done by initializing color assignments 

randomly, then running a Kuramoto model (available here) where each node 

corresponded to one FFP, and edges between nodes were the negative of the covariance 

between corresponding FFP’s. Running this model resulted in neighboring FFP’s being 

assigned disparate phases, which were then mapped onto hue on an HSV scale. For 

scatter plots in Fig. 4D, FFP responses exceeding threshold were plotted, their radius 

corresponding to response amplitude during one time step.  Since T-maze LFP’s were 

collected from 512 electrodes, LFP’s were demodulated and downsampled to 4.88 Hz to 

reduce memory usage. 

 

Computer simulation 

The simulation consisted of 10,000 (Fig. S9) or 1,000 (Fig. S10) analog units whose 

activity was place-modulated. Each unit’s place-dependent tuning function was Gaussian 

white noise, smoothed by a Gaussian kernel (σ = 10, Fig. S9; σ = .2-10, Fig. S10), and 

rectified to be non-negative. Each unit’s spatial profile was superimposed on a 64-

electrode linear array, as a localized Gaussian (σ = 2) with randomly assigned center. The 

virtual track comprised 200 (Fig. S9) or 100 (Fig. S10) locations; each location was 

sampled once per trial, for 100 (Fig. S9) or  50 (Fig. S10) trials. When trial-by-trial 

variability was included (Fig. S10), each unit’s activity, on each trial, was scaled 

independently by a value sampled from a Gaussian distribution (μ  = 1, σ = 0-.5, 

https://github.com/cassisi/kuramoto
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minimum value 0). The range of σ was chosen to compare ICA’s behavior in the 

noiseless case (σ = 0, consistent with the theory of compressed sensing) to a 

physiologically relevant range of neuronal variability. Each electrode’s activity was 

mean-subtracted before proceeding with analysis. Decoding (Fig. S9) was performed as 

described above. For Fig. S10, the fastICA algorithm (16) (available here) was used; 

smaller simulations were used to decrease processing time; tuning width was defined as 

the half-max width of the average spatial autocovariance of units and FFP’s, respectively. 

 

 

 

http://research.ics.aalto.fi/ica/fastica/
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Fig. S1: Demodulation for extracting phase and amplitude modulations of an 

oscillating signal requires two sequential steps. First, the real-valued signal is converted 

to complex-valued using the Hilbert transform, allowing one to estimate the signal's 

instantaneous phase and amplitude at every time step. The second step requires 

knowledge of the “carrier” signal (light black line); demodulation is achieved by 

subtracting the phase of the carrier from that of the signal. This results in a complex-

valued, demodulated signal (bottom) that separates modulations of phase and amplitude 

from the oscillating carrier. 
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Fig. S2: Cross-validated median errors of spike, LFP, and joint decoders on the linear 

track (left) and in the open field (middle), as a function of bin size (top 4 rows), and as a 

function of minimum speed threshold (bottom row). (Lower right) Median error for OLE 

and Bayesian filter decoders as a function of the number of (random) channels used. 

Arrowheads in left and middle panel indicate the decoder used in the main text (Fig 2). 

For a description of the decoding techniques, see supplementary methods. 
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Fig. S3: FFP’s are position-locked. (Top left) Time courses of trajectories across all trials. 

Trajectories are aligned at the time point when the rat crosses 15% of the track. Later 

trials are indicated by warmer colors. (Top right) Corresponding time courses of velocity 

(lowpass cutoff 1 Hz). (Bottom left) Position-aligned FFPs. (Bottom right) Time-aligned 

FFPs. For bottom panels, each FFP activation is assigned a unique color, as in Fig. 4 of 

the main text.  
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Fig. S4: Features learned using complex-valued ICA. For each FFP component, its 

demodulated activation on the track (top panel) and electrode mapping (bottom panel) 

are shown. The first 22 components show place-selective responses (FFP's), with 

relatively smooth electrode maps. The remaining components include electrical artifacts, 

characterized by sparsely populated electrode maps (e.g. row 7, columns 7/8). The mean 

FFP is subtracted from all basis functions to generate the electrode maps in the bottom 

panel. The 8 x 8 arrays correspond to 8 recordings sites on each of the 8 shanks of the 

silicon probe (Fig. 1Ai). For activations and electrode maps, colors indicate relative 

phase, and brightness indicates amplitude. 
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Fig. S5: Features learned using the convolutional sparse coding algorithm. For each 

component, its magnitude of activation (top panel) and the corresponding basis 

function’s spatio-temporal waveform (bottom panel) are shown. The first 20 

components show place-selective responses, indicated by warmer-colored vertical stripes 

indicating strong activation at one particular position. In the bottom panel, each plot 

depicts 64 waveforms, one for each electrode, color-coded according to the 

corresponding electrodes' average relative phase over the full experiment; warmer colors 

indicate greater phase lag. 



 

 

14 

 

 

Fig. S6: Comparison of FFP and neuron place fields for rats ec013 and ec016. Data is 

presented analogously to Fig. 4. Note that FFP’s tile the environment more evenly than 

the neurons. 
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Fig. S7: FFP activity in the waiting area of the T-maze. (Top left) 12 example trajectories 

from each side of entry. Colors range from cold (starting point) to warm (end point). At 

each location, thickness of line indicates the velocity of the rat. (Top right) Y position of 

rat location as a function of time to release. Trials are colored from cold (early) to warm 

(late). (Bottom left) Peak activation of 8 FFP’s within the waiting area, separated by side 

of entry. Note that place fields are maintained irrespective of the side of entry. 1-second 

of the trajectory around the time of peak FFP activity is shown. The trajectory is color-

coded from cold (.5 s before peak activation) to warm (.5 s after peak activation. While 

most FFP’s show some direction tuning, trajectories are often highly variable. (Bottom 

right) FFP activations across multiple runs through the T-maze, sorted by left or right 

choice (separated by dashed line). Activations are aligned to the maximum response of 

the 1
st
 FFP to activate (black arrowhead) after rat leaves the waiting area. Each FFP is 

assigned a unique color. Note the lack of stereotypy before the animal leaves the waiting 

area. 
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Fig. S8- Preservation of information within dendritic layers A) A tiling set of FFP’s can 

be identified exclusively from within dendritic layers. Left panel shows T-maze place 

fields of FFP's derived by running ICA on full electrode array (512 sites; see Fig. 1). 

Right panel shows place fields of FFP's derived by restricting analysis to electrodes in 

dendritic layer (CA1 stratum radiatum and stratum lacunosum-moleculare). Dendritic 

layer is identified anatomically, bounded by regions exhibiting high ripple power (100-

250 Hz, lower panels), and is circumscribed by red box in right panel. Note dendrite-

only FFP place fields have slightly smaller amplitudes, and include some fields that 

appear to be the merged fields of two full-array FFP's (white asterisks, right panel). In top 

panels, place field hues are assigned to distinguish between neighbors; non-neighboring 

fields with similar hues correspond to distinct FFP’s. B) Cross-validated median errors of 

spike, LFP, separate dendritic and somatic LFP, and joint decoders on the linear track 

(top left) and in the home cage (40 x 40 cm
2
) (bottom left). Decoding was performed 

using OLE binned at 100ms for 1D data and 250ms for 2D data. Since the number of 

channels (n) can have a large effect on such comparisons, we compare random subsets of 

100 channels from each modality (blue) in addition to all channels (red). Error bars 

denote standard deviation across random subsets. Importantly, we find that limiting our 

analysis to the dendritic or somatic layer does not substantially alter the decoding 

accuracy, and suggests that the results are not driven by spike contamination in the LFP. 

The decoders also appear to be qualitatively similar. As with previous analyses, the true 

vs estimated positions for the 1D decoder are evenly distributed (all channels, right). Also 

note that in the 2-D environment, the spike-based decoder is more accurate, possibly due 

to the more omnidirectional activity of single-neuron place fields. 
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Fig. S9: Recovering position information from simulated populations. A) A large 

population of units whose activity is modulated by position is combined, resulting in an 

apparently nonselective signal. B) The multi-electrode, mixed signal can be used to 

accurately estimate current position using a linear decoder.  
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Fig. S10: FFP’s discovered by unsupervised learning reflect the response reliability and 

tuning of the underlying neuronal population. A) Place tuning of 10 (out of 1000) 

simulated units, with narrow (left) or broad (right) place tuning. B) FFP properties 

depend on the properties of the population. Here, the trial-by-trial variability, as well as 

the tuning width of the single-unit place fields, were systematically changed. When there 

is variability, increasing the width of the population’s place fields leads to an increase in 

FFP tuning width (right). FFP tuning width never exceeded that of units; all curves stayed 

below the dashed unity line. CV = coefficient of variation indicating across-trial 

variability of place-tuned responses. C) Four example populations of FFP's selected from 

the simulations in B. Without trial-by-trial variability, all discovered FFP components are 

narrowly tuned to single points along the tracks, regardless of the smoothness parameter. 

This result follows from the predictions of adaptive compressed sensing (14). Strictly 

speaking, adding trial-by-trial variability to the responses of single units violates the 

requirements of (noiseless) adaptive compressed sensing. However, we observe a regime 

of graceful degradation of the tuning of FFP's. Only when both variability and 

smoothness exceed a certain magnitude, ICA fails to converge to a uniform tiling, as seen 

in case (4). 
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Movie S1 

 Spatial dynamics of theta-band LFP recorded using 256-electrode array. Underlying 

image shows anatomy of recorded region (the two wide bands correspond to the CA1 

pyramidal layer and dentate granule cell layer, respectively), while the surface plot 

represents theta-filtered voltages measured at corresponding locations. Warmer colors 

reflect higher voltage. Real time is indicated on top.  

 

Movie S2  
Original (first part of the movie) and mean-subtracted (second part) FFP’s recorded from 

an 8x8 array silicon probe implanted in rat ec014 (as in Fig. 1Ai) running on a linear 

track. Each of the 22 panels depicts the electrode mapping of a given FFP. The unique 

nature of each FFP in anatomical space is more clearly visible after mean subtraction. 
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