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SUMMARY

Hippocampal activity patterns representing move-
ment trajectories are reactivated in immobility and
sleep periods, a process associated with memory
recall, consolidation, and decision making. It is
thought that only fixed, behaviorally relevant patterns
can be reactivated, which are stored across hippo-
campal synaptic connections. To test whether some
generalized rules govern reactivation, we examined
trajectory reactivation following non-stereotypical
exploration of familiar open-field environments. We
found that random trajectories of varying lengths
and timescales were reactivated, resembling that of
Brownian motion of particles. The animals’ behav-
ioral trajectory did not follow Brownian diffusion
demonstrating that the exact behavioral experience
is not reactivated. Therefore, hippocampal circuits
are able to generate random trajectories of any
recently active map by following diffusion dynamics.
This ability of hippocampal circuits to generate repre-
sentations of all behavioral outcome combinations,
experienced or not, may underlie a wide variety of
hippocampal-dependent cognitive functions such
as learning, generalization, and planning.

INTRODUCTION

The hippocampus plays a crucial role in navigation and episodic

memory by forming a cognitive map of space, encoded by the

spatially selective activity of place cells (O’Keefe and Dostrovsky,

1971; O’Keefe and Nadel, 1978). At any given moment, the com-

bined activity of place cells provides a signal that encodes the

instantaneous location of the animal, while the sequential firing

of these cells can represent entire movement paths through

space (O’Keefe and Recce, 1993; Skaggs et al., 1996). Such neu-

ral representations of behavior likely underpin the spatial compo-

nent for memories of places and events, that, when reinstated,

can be used for navigation in previously explored environments.

Consistent with this notion, firing sequences that encode behav-

ioral trajectories during exploration can be subsequently replayed
by the network. This takes the form of place cell representations

of movement paths that can last several seconds or more, com-

pressed into brief bursts of activity, lasting tens to hundreds of

milliseconds (Lee and Wilson, 2002). This replay occurs in a vari-

ety of behavioral and network states, which may reflect different

underlying mechanisms and cognitive functions (Foster and

Wilson, 2006; O’Neill et al., 2010). The replay of temporally com-

pressed firing sequences of neurons was first described

during transient network synchronization epochs associated

with sharp-wave ripples (SWRs) in sleep (Lee and Wilson, 2002).

However, subsequently, it has been shown that similar phenom-

ena can also occur during exploration simultaneously with theta

oscillations (Feng et al., 2015; Gupta et al., 2012; Zheng et al.,

2016). Moreover, not only have 200 Hz ripple-band oscillations

been seen during compressed trajectory replay, but simulta-

neously occurring slower gamma-beta (20–80 Hz) band oscilla-

tory components have been seen aswell. The power of the slower

oscillatory components of SWRs predicted the fidelity of replay

with different oscillatory cycles separating trajectory segments

with a discontinuous trajectory jump (Carr et al., 2012; Pfeiffer

and Foster, 2015; Yamamoto and Tonegawa, 2017).

While replay has been associated with a number of mnemonic

processes, including consolidation in sleep, goal-directed

navigation, and decision making at maze choice points (Ólafsdót-

tir et al., 2018), the mechanisms underlying its generation

remain controversial. Competing lines of evidence suggest that

sequence firing in replay is generated from either experience-

dependent mechanisms or, alternatively, reflects hardwired pre-

determined assemblies (Dragoi and Tonegawa, 2011; Grosmark

and Buzsáki, 2016; Shen and McNaughton, 1996; Silva et al.,

2015). On the one hand, both the stability of novel spatial maps

(Kentros et al., 1998) and the accurate replay of novel linear tracks

during sleep (Silva et al., 2015) require NMDA receptors. This sug-

gests that the associations between spatial cell assemblies during

behavior are formed through synaptic plasticity. Consistent with

this idea, sequences expressed on novel linear tracks during theta

oscillations only emerge after the first lap (Feng et al., 2015),

indicating that they are generated through activity-dependent

mechanisms. However, novel spatial maps and their reactivated

trajectories may in part use hardwired circuit connections, which

are then refined with the animals’ experience (Dragoi and Tone-

gawa, 2011; Shen and McNaughton, 1996). Indeed, it has been

shown that firing patterns resembling that of novel paths can

also be seen in sleep prior to the animal experiencing that path,
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termed preplay (Dragoi and Tonegawa, 2011; Grosmark and Buz-

sáki, 2016; Ólafsdóttir et al., 2015). However, it is still unclear to

what degree preplay patterns are refined as a result of exploration

to provide a more accurate replay in sleep after the experience

(Silva et al., 2015). Nevertheless, several reports describe replay

that is not simply a product of experience, particularly replay

seen during exploration (Gupta et al., 2010;Wu and Foster, 2014).

During exploration, the reactivation seen in transient SWR-

associated network bursts tends to occur when animals stop

briefly (Davidson et al., 2009; Foster andWilson, 2006). These tra-

jectories tend to originate from the animals’ current position and

point toward future goal locations, even in open two-dimensional

(2D) environments where a fixed goal is to be reached (Pfeiffer

and Foster, 2013). However, during replay in more complex

maze environments, maze segment combinations that the animal

never took before may reactivate together in the form of a novel

combined trajectory (Gupta et al., 2010). These observations

may challenge the theory that reactivated trajectories need to

be first experienced, in order to be stored in the hippocampal cir-

cuits. However, unlike replay in sleep, it cannot be ruled out that

upstream spatial sensory inputs, channeled through the entorhi-

nal cortex, may still be involved in driving reactivation events

observed during active waking periods (Yamamoto and Tone-

gawa, 2017). Indeed, this replay of inexperienced path combina-

tions through the integration of maze segments may reflect the

imagination of novel situations or map refinement (Gupta et al.,

2010). These observations do not provide a clear answer as to

whether, in the absence of sensory inputs, reactivated patterns

represent the exact spatial experience of the animal or, alterna-

tively, are generated by a more generalized process that does

not require the direct storage of patterns. We set out to examine

the mechanisms of replay by testing for its occurrence in condi-

tions that should not support sequence formation through expe-

rience-dependent mechanisms. The behavior used in replay

studies typically utilizes narrow linear tracks or mazes, in which

the animal performs repeated stereotyped trajectories. Instead,

we utilized an open-field enclosure in which the animal performed

a random pellet-chasing task and then detected replay during a

subsequent rest period, recorded in a separate sleep box. We

found that reactivated trajectories followed rules of random

movement governed by Brownian diffusion that did not directly

reflect the past behavioral trajectories of the animal. However,

our results were also not consistent with a model of replay solely

based on a limited number of preexisting cell assemblies, since

the number of replay trajectories was only constrained by the

size of the environment and the diffusion dynamics. Instead, the

data indicate that hippocampal circuits have the built-in ability

to generate sequences that link assemblies together across the

entire cognitive map, on all temporal and spatial scales. Such a

mechanism likely provides a framework on which past experi-

ences can be reactivated in sleep, or possible future paths can

be compared during navigation.

RESULTS

Reactivation of 2D Trajectories after Random Foraging
We examined reactivation following a random exploration of a

large (1.2 m diameter) circular arena during quiet immobility pe-
2 Neuron 102, 1–12, April 17, 2019
riods in the absence of sensory drive of the explored environ-

ment. So far, only one study has been able to see the reactivation

of 2D trajectories (Pfeiffer and Foster, 2013), in that case during

awake, exploration-associated SWRs. Therefore, the replay

shown in that study may have been driven by an upstream sen-

sory drive (Yamamoto and Tonegawa, 2017), while the animal

was performing a goal-seeking task. The encoding of these

reactivated trajectories, however, required the simultaneous re-

cordings from many neurons. Therefore, we reasoned that the

accurate reconstruction of 2D trajectories in big environments

requires the simultaneous recording from large assemblies.

Accordingly, in four rats we recorded CA1 multiple-unit activities

in 128 channels (32 tetrodes), yielding simultaneous recording of

383, 243, 206, and 100 putative pyramidal and 31, 18, 30, and 24

putative interneuron units during each animal’s recording ses-

sion (Figures S1 and S2). Trajectory reactivation tends to occur

during SWR oscillatory patterns (Buzsáki, 1989; Lee and Wilson,

2002; Figure 1A). We detected these SWR periods during the

quiet immobility period after exploration in the absence of theta

oscillatory periods (see STAR Methods). We subdivided each

SWR into prediction time windows and used a Bayesian method

to estimate the location encoded by putative pyramidal neurons

(Davidson et al., 2009; Zhang et al., 1998; Figures 1A–1D). Only

SWRs that met a quality threshold for the encoded probability

(see STAR Methods) and contained at least five encoded trajec-

tory points were included in the subsequent analysis to ensure

that only events with reliably encoded places were considered.

Altogether n = 558, 693, 544, and 238 SWR events passed the

quality threshold for fixed spike number encoding. Each predic-

tion window contained the same number of spikes (n = 15) to

ensure uniform coding accuracy. However, similar results were

seen using fixed duration windows (8 ms; see STAR Methods)

in which case n = 519, 624, 79, and 65 SWRs passed the quality

threshold. Reactivation speed was measured by the jump dis-

tance between neighboring predicted locations (Figures 1E

and S3). Although the reactivation speed remained relatively

similar within a SWR, different SWRs yielded wide ranges of

mean reactivation speeds, which were lognormally distributed

(see Figure 2A inset; all p > 0.3, Pearson chi-square test).

To verify that the encoded SWR trajectories represented

place assemblies of the previous environment and were not

from chance coding of temporally organized spike trains, we

shuffled the cluster identities of the active cells or performed a

random2D rotation of place fields for the events already passing

the selection criteria. Both randomized events yielded distribu-

tions with higher mean reactivation speeds (all p < 10e�277,

Kolmogorov-Smirnov [KS] test) and significantly weaker predic-

tion confidence (all p < 10e�200, KS test; Figures 2A–2C, S4A,

and S4B). Next, the role of spike timing in encoding was tested

by randomizing themwithin each SWR. As above, spike time-jit-

tered events exhibited higher mean speeds (all p < 10e�46, KS

test) and weaker encoding confidence (all p < 10e�45, KS test).

Therefore, the original SWR trajectories were encoded from

temporally organized spike trains representing the previous

environment. Using larger time-step intervals to compute the

reactivation speeds yielded relatively similar mean speed values

for the spike-jittered data. However, the mean speed of the

original data increased with time-step interval length, making



Figure 1. Reactivation of Random 2D Trajec-

tories during SWRs

(A) Neuronal population activity during a SWR. Top

four traces show low-pass filtered (<2.5 kHz) local

field potential traces from different tetrodes along

with one ripple-band (150–250 Hz) filtered trace.

Below, the raster plot marks the spike timing of n =

185 putative pyramidal neurons that were active

during the SWR.

(B and C) Stacked Bayesian probability maps (B)

from five representative prediction windows from the

SWR in (A) and the corresponding cumulative map

(C) representing the sum of all probability maps.

Hotter colors correspond to higher probability values.

(D) Trajectory reconstructed fromprobability maps of

the SWR in (A).

(E) Sorted mean (±SD) reactivation speed of SWR

events (n = 558) from one animal. The cumulative

map and the encoded trajectory of five events are

highlighted representing different reactivation

speeds. As above, the heatmap shows the posterior

probability density. Gray and black dots on the

plotted trajectories indicate the start and end points,

respectively. Examples of encoded trajectories from

additional animals are shown in Figure S3.

See also Figures S1 and S2.
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it eventually larger than the shuffled values for the spike-jittered

data (Figure S5A). We then examined whether the places ex-

pressed during SWRs were organized. First, we shuffled the

order of encoded places within a trajectory, which yielded

shifted speed distributions (all p < 10e�57, KS test), indicating

that each encoded location influenced the next. Second, we re-

placed each reactivation speed by randomly drawn speeds

from other SWRs (Figures 2D and S4C). These speed-random-

ized events exhibited a higher coefficient of variation in their

jump speed than the unshuffled data (all p < 10e�31, KS test),

indicating that each replay expressed a consistent speed

throughout the SWR. To test how the use of a quality threshold

influenced our results, we performed the same analysis using

different quality thresholds. Higher threshold values lead to a

larger separation between original and shuffled data distribu-

tions for reactivation speed (Figures S5B and S5C), but the

shuffled distributions were still significantly different from the

original distribution even when no threshold was used (i.e.,

threshold = 0; all p < 0.01, KS test). Significant differences in

the distributions were seen as well when we examined events

that fell below a quality threshold (all p < 0.04, KS test; Fig-

ure S5D). Given that with the reduction of the quality threshold

the original and shuffled distributions got more similar, it is

possible that some of the low encoding quality events ex-

pressed places or trajectories of another environment, perhaps

even ‘‘preplayed’’ assemblies of the environment the animal

explored next. The animal explored a novel environment

following the rest session we tested (see STAR Methods). The
proportion of SWR events that passed

our quality threshold for encoding the

subsequent novel environment was low

(<0.005) in the previous rest session and
was not significantly different from the proportion of events de-

tected after place fields rotation or spike time jittering generated

probability maps (Figure S5E; all p > 0.1, Binomial test). These

data question whether preplay of trajectories of the subse-

quently explored novel environment can be seen in our data.

Nevertheless, we compared the speed distributions of the

original and shuffled data at different threshold levels to check

whether any preplay can be detected in our data. At any of

the quality thresholds we tested [0:0.12], the speed distributions

were significantly different for the place field rotation generated

trajectories (all p < 10e�4, KS). However, at any threshold levels

the speed distributions of the original trajectories were not

significantly different from those of the spike time jittering trajec-

tories (Figure S5F; all p > 0.15, KS test). The speed distribution

differences with the place field rotation generated trajectories

suggest that in the rest session before the exploration of a novel

environment a small subset of the recorded units maintain

consistent correlations with that in the subsequent novel envi-

ronment exploration. Therefore, a possible explanation for

these findings is that places expressed in some events at least

partially represented patches of the subsequent novel environ-

ment. But, considering that spike time-jittered speed distribu-

tions were not different from those of the original data, these

preplayed trajectories did not exhibit a consistent order in the

expression of places to form organized trajectories in which

one location will influence the next one. Similar to SWRs repre-

senting the familiar environment, a novel environment encod-

ing SWRs expressed consistent trajectories in the subsequent
Neuron 102, 1–12, April 17, 2019 3



Figure 2. Comparison of Original and Shuffled Trajectories

(A) Sorted mean (±SD) reactivation speed of SWRs and shuffled counterparts for an example session. An equal number of original and randomized events are

displayed. Inset: lognormal distribution (dashed line) fits the distribution of mean reactivation speeds for the original events (p = 0.7, Pearson chi-square test).

(B and C) Distribution of the mean reactivation speed (B) and encoding confidence (C) for the original (n = 558) and shuffled (n = 279,000) events.

(D) Distribution of coefficient of variation of the reactivation speed for original events and those in which step sizes representing reactivation speeds were

randomly assigned from other events. Filled circles display the median of different distributions. Results for the additional animals are shown in Figure S4.

See also Figure S5.

Please cite this article in press as: Stella et al., Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion, Neuron (2019),
https://doi.org/10.1016/j.neuron.2019.01.052
post-novel rest session (Figure S5C). Hence, the apparent lack

of trajectory preplay was not due to an impairment of replaying

these trajectories after the novel environment exploration.

Reactivation Followed Brownian Diffusion Dynamics
Given that each replay location depended on the previous loca-

tions and that place changes maintained a defined speed range,

we then asked whether these trajectories can be approximated

by a random walk process akin to random particle movements

during diffusion (Rudnick and Gaspari, 2004). In physics, diffu-

sion processes are described by a power law between mean

distance and time, which represents an exponential relationship

characterized by the value of the exponent (Metzler et al., 2012;

Vlahos et al., 2008). In Brownian trajectories, the exponent is

equal to 0.5. To check the relationship between time and dis-

tance, first SWR trajectories were subdivided into homogeneous

groups according to their mean reactivation speed. For each re-

activation speed group, within each SWR, we took all possible

pairs of time windows and measured the distance between pre-

dicted places and the time interval between them. On a log-log
4 Neuron 102, 1–12, April 17, 2019
scale, they showed a linear relationship (Figure 3A). The power

law exponents (a), calculated by the slope of the fits, consistently

fell near 0.5 (all p > 0.2, Wilcoxon signed-rank test; Figures 3A,

5A, and 5D) with the slope estimates with the smallest confi-

dence intervals yielding slopes closest to 0.5 (r = 0.64 p <

10e�4; Figures 5B and 5E). Shuffling the places within a trajec-

tory resulted in almost flat lines with slopes significantly smaller

than the original ones (all p < 0.0003, Wilcoxon one-tailed

signed-rank test). Moreover, at any time interval, the distances

obtained from the original data were fitted better by a Rayleigh

distribution than the shuffled data, as expected for a 2D Brow-

nian diffusion process (Rudnick and Gaspari, 2004) (all p <

0.0002, Mann-Whitney test; Figures 3B, 3C, 5C, and 5F). These

distance distributions also showed a significant overlap (all p >

0.1, Wilcoxon signed-rank test) with those produced by a

simulated Brownian process with the same speed and length

statistics (Figures 3B, 3C, 5C, and 5F). Crucially, the same anal-

ysis applied to the trajectories of the animal and to trajectories

reconstructed using neural activity expressed during active

behavior yielded different results, with both exponents a
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Figure 3. Reactivated Trajectories Resemble Brownian Diffusion

(A) Log-log plot of the time interval (i.e., encoded window distance) and the distance of reactivated positions for different mean reactivation speed groups (n = 59,

287, 87, 33, and 32, respectively, for each). Mean (±SEM) distance is shown for the original events (blue) and those in which the position order was shuffled (red)

along with linear regression fit for original events (dashed line) and slopes values (a). Scheme on the top explains how the time-distance relationship was

measured on different trajectories. The distances were measured from the reference point t0 to the next trajectory points (t2, t3 .). Four trajectories are displayed

on the sides that were all aligned together to originate from the same location. The circles around common starting location illustrate the distancemeasurement to

the next trajectory points relative to t0.

(B) Distribution of trajectory distances and the best-fit Rayleigh distribution for different time intervals for original (n = 1,915, 1,084, 562, and 250) and shuffled

events (n = 584,331, 392,171, 223,826, and 107,002). Left column: original data; right column: encoded points shuffling. Pink overlaid bars show the distribution

obtained from a simulated Brownian motion with equal diffusion constant (n equal to original events, all p > 0.1, Wilcoxon signed-rank test).

(C) Average chi-square distance for different time-step intervals between the distribution of trajectory distances and the Rayleigh best fit (blue, with ±SD shade).

Red and pink lines: the same measure for shuffled events and simulated Brownian motion, respectively. Results for additional animals are summarized in

Figures 5A–5C.

See also Figure S7.
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(all p < 10e�4,Wilcoxon signed-rank test) and Rayleigh fit (all p <

0.02, Mann-Whitney test) being incompatible with a Brownian

diffusion (Figures 4 and 5G–5I). Also, comparison with a simu-

lated Brownian motion indicated a significant discrepancy in

the distance distribution for Dt > 2 (all p < 0.001, Wilcoxon

signed-rank test) (Figures 4B and 4C).

We showed above that reactivated trajectories, once started

from a point were random; however, their starting position and

the direction of the initial trajectory may express bias. Therefore,

first we evaluated to what extent the reactivation of starting

points was randomly arranged over the environment. By

computing the entropy of their spatial density distribution (Fig-

ure 6A), we found that, although not completely uniform, their

degree of randomness was close to the maximum entropy

(>90%; Figure 6B) and similar to that of the rat’s behavior (either

while running or during the entire exploratory session). However,

the distribution of the trajectory starting locations was not related

to that of behavioral occupation time during behavioral periods

of running (>5 cm/s, running all p > 0.2) or periods including

the entire exploration session (all p > 0.08; Figure 6C). Second,

we examined the distribution of the direction of the initial reacti-
vated trajectory (i.e., the first step from the starting point to the

second encoded point).We computed this distribution for events

starting from different zones of the environment (distinguishing

the central zone blocks from those close the environmental

boundary; Figures 6D and 6E). For each of these groups of

events, we compared the distribution of reactivation starting

directions to a uniform distribution (Figure 6F). After correcting

for multiple comparisons, we found that the first steps were

not significantly directionally tuned for events originating in the

central blocks (all p > 0.1, Rayleigh-test, Benjamini-Hochberg

correction), while we found some degree of tuning in the initial

propagation of events originating in blocks in the vicinity of

boundaries (all p < 0.05, Rayleigh-test, Benjamini-Hochberg

correction).

Network Oscillations Predict Reactivation Dynamics
Co-modulation of different network oscillations may highlight dif-

ferences in circuit processes during reactivation. Past work

showed that beta-gamma band (20–30 Hz) oscillatory power

correlated with large jumps in reactivated trajectories (Pfeiffer

and Foster, 2015). Therefore, we examinedwhether the presence
Neuron 102, 1–12, April 17, 2019 5
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Figure 4. Animal Trajectories during Exploration Are Different from Brownian Diffusion

(A) Log-log plot of the time interval and the mean distance (±SEM) traveled by the animal for different temporal resolutions (G on the left, representing the time

between trajectory points for Dt = 1). Linear regression fits (dashed line) and slopes values (a) are also shown.

(B) The example demonstrates the comparison of Rayleigh best fit (black line) and the actual distribution (blue bars). Time interval G = 1.1 s is shown with

representative time-step intervals. Pink overlaid bars show the distribution obtained from a simulated Brownian motion with equal diffusion constant (n equal to

original events) (for Dt > 1 p < 0.001, Wilcoxon signed-rank test).

(C) Average (shaded region: ±SD) chi-square distance between the distribution of trajectory distances and the best-fit Rayleigh distribution for different time-step

intervals. Pink line: same measure for simulated Brownian motion. Note that the chi-square distance diverges for larger time intervals. Results for additional

animals are summarized in Figures 5G–5I.

See also Figure S7.
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of an underlying network oscillation predicted such jumps. Oscil-

lations may show a relationship with additional assembly mea-

sures because assembly differences are not solely related to

the encoded distance (Leutgeb et al., 2005). We assessed popu-

lation activity difference (PAD) by a modified cosine distance

between spike-count vectors as measured across prediction

time windows (see STAR Methods). We chose this measure

because it quantifies the orthogonality of assemblies and reacti-

vated assemblies have been suggested to be orthogonal

(Malvache et al., 2016) (Figures 7A and S6). Although the PAD

(i.e., Figure 7A, Dt = 1) was increased with the distance of the

encoded positions across neighboring windows, it saturated

beyond a certain distance (Figure 7A, inset). The curves with Dt

> 1 window distance were similar, but these progressively up-

shifted with Dt (Figure 7A). Accordingly, PAD correlated with

window distanceDt (all p < 0.0001), and this correlationwas inde-

pendent of the encoded distance (all p < 0.0002, partial correla-

tion). This partial correlation analysis was performed by taking

all prediction window pairs in each SWR and calculating window

distance, PAD, and encoded distance and tested whether win-

dow distances can be predicted by PAD even when the correla-

tions between PAD and encoded distance were taken into

account. In addition, we examined the increase of PAD with win-

dow distance in cases when the same place was encoded over a

series of consecutive prediction windows (see encoded distance
6 Neuron 102, 1–12, April 17, 2019
0 at Figure 7A). BecausePADcorrelatedwith elapsed reactivation

time (i.e., window distance) independently from reactivated posi-

tions, reactivation time and trajectory positions may be coded

separately during SWRs. Interestingly, the substantial orthogo-

nality of the two ensemble measures was confirmed by looking

at the distance-time relationship (as in Figure 3) but this timeusing

a PAD metric. To do so, the PAD distances measured across

different encoding windows were nonlinearly embedded in a

two-dimensional space for eachof thespeedgroups (FigureS7A).

Two major differences appeared in this case with respect to

the embedded PAD distance measure: first, the speed of the

PAD increase was similar in different reactivation speed groups,

and, second, rather than following a power law, an exponential

function fitted the curves best. Both findings point to major differ-

ences in the mechanisms regulating the evolution of the two

ensemble measures during SWRs.

Finally, we assessed whether SWR events associated with

different average reactivation speed (i.e., average encoding

distance at Dt = 1) or average PAD (Dt = 1) are related to other

aspects of network activity. Putative interneuron firing rate corre-

lated with the average PAD (all p < 10e�7) but not with average

reactivation speed (all p > 0.07) during SWRs (Figures 7C, 7D,

and S6) indicating that putative interneuron activity was stronger

when the orthogonality of place cell population patterns was

higher during SWRs, independent of the average reactivation
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Figure 5. Testing for Brownian Diffusion Properties and Comparison of Different Conditions

(A) Average regression slope obtained (see Figure 3A) from original data (blue) and encoded positions shuffling (magenta) for each animal’s session using fixed-

spike windows. The theoretical prediction of a slope equal to 0.5 is shown for reference (blue line).

(B) Results for individual regression lines. For each regression, we show the relationship between the discrepancy of the slope from 0.5 (absolute value) and the

size of the confidence interval on the estimated slope value for the original data using fixed-spikes windows. For every session, the estimated slopes were

gathered by using different reactivation speed group subdivisions starting from 3 up to themaximumnumber of subdivision in which at least aminimum number of

SWRs events belong to each group (see STAR Methods). The correlation line between the two quantities is also shown (r = 0.64, p < 10e�4, n = 39).

(C) Average chi-square distance between the distribution of reconstructed trajectory distances and the Rayleigh best fit (maximum likelihood). Results are shown

for every session from different animals using fixed-spikes windows. Results for the original data (blue) and simulated Brownian motion (purple) were not

significantly different (all p > 0.4, Wilcoxon signed-rank test), but original data chi-square distances were significantly different from those resulted from encoded

positions shuffling (red, all p < 0.005, Wilcoxon signed-rank test).

(D–F) Same as above but using fixed-time windows. Average regression slopes (D), results for individual regression lines (E), and average chi-square distance

between the distribution of reconstructed trajectory distances and the Rayleigh best-fit (F) are shown. Regression result for (E): r = 0.59, p < 10e�4, n = 36. Results

for the original data and simulated Brownian motion were not significantly different (all p > 0.35,Wilcoxon signed-rank test), but original data chi-square distances

were significantly different from those resulting from encoded positions shuffling (red, all p < 0.01, Wilcoxon signed-rank test).

(G–I) Same as above but showing results from the analysis of the trajectories of the animals. Average regression slopes (G), results for individual regression lines

(H), and average chi-square distance between the distribution of reconstructed trajectory distances and the Rayleigh best-fit (I) are shown. Slopes in (G) obtained

from active (5 cm/s) behavior (blue) and from reconstructed positions from neural activity (purple) were similar (all p > 0.4, Wilcoxon test). Regression result for (H):

r = 0.14, p = 0.4, n = 48. Results from original trajectories and those from simulated Brownian motion were different (all p < 0.001, Wilcoxon signed-rank test).

All error bars ± SD.

See also Figure S7.
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Figure 6. The Start Location and Propagation

Directionality of Reactivated Trajectories Are

Random

(A) Examples of the spatial distributions representing the

density of the encoded starting positions during SWRs, the

animal’s occupation time for periods of active behavior

(speed > 5 cm/s) and over the entire exploration session.

(B) Entropy estimate of the degree of randomness of spatial

distributions for trajectory starting position density (blue),

active behavior (gray), and behavior in the entire session

(ochre). Entropy values were normalized to the maximum

entropy of the uniform distribution over the same number of

spatial bins (horizontal line). Data for grouped animals are

shown.

(C) Spatial correlation of reactivation starting point density

with running occupation time (gray) and entire session

occupation time (ochre) were not significant in any of the

four animals (run: all p > 0.2, entire session: all p > 0.09).

(D) Example of the distribution of the direction of the first

encoded trajectory steps. Distributions were calculated

separately for different sub-regions of the environment

depending on where the trajectory was originated from

(see inset on the top right for an illustration of the division of

the environment in 25 sub-regions). The red circle illustrates

the boundaries of the environment, while the dashed

rectangle illustrates the separation of histogram zones

near the center or the boundaries.

(E) The displacement distribution of the reactivation tra-

jectories measured relative to the trajectory origin. The first

four trajectory point distributions (columns) are shown from

two different zones of trajectory origin (rows) as in (D). In-

tensity levels represent probability values with hot colors

indicating higher relative probabilities than colder colors.

(F) The session-by-session lowest p value (each point

corresponds to separate session per animal) for testing

uniformity of the directionality of reactivation first-steps

(Rayleigh-test, Benjamini-Hochberg correction for multiple

comparisons). p values were evaluated separately for

portions of the environment either laying at its center (Core

zone, left) or along its border ones (Periphery, right; all p <

0.03) (see STAR Methods). Lines mark the 0.05 signifi-

cance level.
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speed. Similar to putative interneuron activity, we also found that

the PAD but not reactivation speed correlated with the number of

active putative pyramidal cells in the SWR and with their firing

rate (all p < 10e�4) during the reactivation event (Figure S7B).

Both the average PAD and reactivation speed measured within

each SWR showed a distinct relationshipwith local field potential

oscillatory power. While the average PAD showed a strong cor-

relation with the ripple band (150–200 Hz, all p < 10e�12), reac-

tivation speed was correlated with fast gamma power (z80 Hz,

all p < 10e�5; Figures 7B and S6). In addition, both the reactiva-

tion speed (all p < 0.0004) and PAD (all p < 0.005) were correlated

with a slow z30 Hz-peaked gamma band power. Putative inter-

neuron SWR firing rate correlated with both slow gamma (all p <

10e�8) and ripples (all p < 10e�13) but not with fast gamma
8 Neuron 102, 1–12, April 17, 2019
oscillations (Figures 7E and S6). Therefore,

both ripple-band power and enhanced putative

interneuron firing rate predicted reactivation

events involving larger changes in assembly
pattern orthogonality. In contrast, fast gamma oscillations pre-

dicted reactivation speed within an event.

DISCUSSION

We showed that, following non-stereotypical exploration of open

environments, SWR events reactivated random, 2D trajectories

of the previous environment that were governed by a Brownian

diffusion process. The pattern of the replayed trajectories was

not a direct representation of behavior since the animals’ trajec-

tory did not exhibit Brownian statistics. This suggests that these

reactivated 2D trajectories were not a replay of directly learned

and stored patterns. Moreover, the flexible expression of our

patterns, covering wide ranges of temporal and spatial scales,



Figure 7. Network Oscillations Associated with Different Reactivation Events
(A) The relationship between the encoded distance of trajectory positions and PADduring SWR for an example session is shown. Solid line: neighboring trajectory

positions (i.e., time interval Dt = 1); dashed lines represent Dt = 2,3,4. Triangles: average PAD for Dt = 1,2,3 calculated from continuous sequences encoding the

same spatial bin (Dt = 1to Dt = 2 all p < 10e�6; Dt = 2 to Dt = 3 all p < 0.015, Wilcoxon signed-rank test). Inset: linear regression slopes obtained from subsets of

data of increasing encoded distance interval (*p < 0.01; rest: p > 0.15).

(B) Correlation of the average PAD (top) and average reactivation speed (bottom) with the different bands of the SWR-associated power spectrum (single

session). The correlation was calculated across different SWR events (n = 558) (PADz30 Hz p < 0.003, PAD 150–200 Hz p < 10e�13; reactivation speedz30 Hz

p < 10e�4, reactivation speed z80 Hz p = 10e�6).

(C) Correlation of summed putative interneuron firing rate with the average PAD or with reactivation speed for a single session (±SEM). For each SWR, the average

PAD and reactivation speed were measured for Dt = 1 (PAD, p < 10e�6, reactivation speed p = 0.44).

(D) Same as (C) but correlations were calculated for single putative interneurons, and the distribution of correlations coefficients is shown.

(E) Correlation of summed putative interneuron rate with different components of the SWR-associated power spectrum for a single session (z30 Hz p < 10e�9,

150–200 Hz p < 10e�14).

Results for the additional animals are shown in Figure S6.
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makes it unlikely that they reflected a limited repertoire of pre-

wired assemblies. It is also unlikely that sensory experience

has driven these patterns because the animal rested and slept

in a different sleep box without any visual contact with the

explored environment. Instead, our data suggest that the hippo-

campus is capable of expressing random trajectories of any

stored map, although preexisting connection topology of hippo-

campal principal cells may influence expression dynamics (Guz-

man et al., 2016).
We used a random foraging behavioral paradigm in order to

disentangle neural representations from stereotyped behavioral

motifs. Under such circumstances, one might expect that SWR

firing encodes individual places or path segments from prior

exploration. Alternatively, when the animal does not experience

similar, stereotyped trajectories multiple times, replay might be

disordered, where the set of assemblies active during a given

SWR are unrelated to each other, and their expression of a loca-

tion at one instance will not influence the next one. However, the
Neuron 102, 1–12, April 17, 2019 9
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assembly firing observed here represented a random walk

through the environment, where each encoded place within the

SWR was separated by a similar distance (i.e., had a consistent

reactivation speed). Such trajectories can be analogous to that

of gaseous particle trajectories in which the temperature of the

media influences the trajectory speed, and, each time the parti-

cle collides with another, it will change itsmovement to a random

direction. The Brownian reactivated trajectories we observed

can be modeled as the sequential recruitment of place cell

assemblies in which activation of one assembly triggers the

expression of the next (Monasson and Rosay, 2015; Romani

and Tsodyks, 2015) in any spatial direction, but assembly transi-

tions of a SWR allow similar distances only. This ability enables

the hippocampus to reactivate memory traces covering diverse

spatiotemporal scales to meet mnemonic demand flexibly. Such

activity could represent the default mode of reactivated output

during SWRs when unshaped by experience or sensory inputs.

This would form a part of the generalized network processes

that endow the hippocampus with the flexibility necessary to

provide the support for more demanding cognitive tasks.

The capacity of the hippocampus to generate unconstrained

propagation of activity through neural representations of space

could underpin a number of potential cognitive functions of

SWRs, including prospective novel route planning (van de Ven

et al., 2016) and replaying alternative routes at spatial decision

points (Johnson and Redish, 2007; Papale et al., 2016). It could

also serve to facilitate the assimilation of new maps into existing

related representations or integrate previously unexplored path

segment combinations within a familiar environment (Gupta

et al., 2010). However, the replay of memory episodes could

arise from a mechanism that biases the spontaneous propaga-

tion of map trajectories toward salient or stereotyped behav-

ioral episodes. Stereotypical trajectories may be stored within

hippocampal circuits through a process that makes the reactiva-

tion of behaviorally relevant events more probable than other

random trajectories. A prior replay of stereotyped trajectories

during SWRs and theta oscillation in waking exploration (David-

son et al., 2009; Foster and Wilson, 2006; Gupta et al., 2010;

Zheng et al., 2016) may reinforce this biasing process, as well

as activity-dependent strengthening between adjacent spatial

assemblies during exploration (Ekstrom et al., 2001; Mehta

et al., 2000). A central feature of episodic experience is that it

can cover various time and spatial scales. Replay events with

different reactivation speeds can construct representations on

multiple scales, providing the degree of signal compression to

convey complex neural representations efficiently.

Not only was the expression of ongoing assembly patterns

controlled by diffusion dynamics and the reactivation speed

range of the event, but the orthogonality of the expressed as-

semblies was also regulated during the course of a SWR event.

That is, assemblies expressed further apart within a SWR were

more orthogonal (i.e., had larger PADs) than those in the vicinity

(Figure 7A). Such an increase in the PAD (i.e., increase in orthog-

onality) is shown by the positive correlation between the reacti-

vation time (i.e., encoding window distance during a SWR) and

PAD, even when the PAD versus encoded distance correlation

was taken into account. Such a relationship can provide the

means to encode reactivation time. Our data show that different
10 Neuron 102, 1–12, April 17, 2019
assemblies can represent the same reactivated place, with vary-

ing degrees of orthogonality. In this way, orthogonality between

assemblies can independently represent the relative time

elapsed between each encoded location and can even signal

the duration of staying at a similar place. Over longer periods,

such as days or weeks, a subpopulation of assemblies encoding

places may be altered suggesting that the change of spatial as-

semblies can code for time (Mankin et al., 2012; Ziv et al., 2013).

Moreover, sequential activation of place cells can signal the time

elapsed during a task (MacDonald et al., 2011). However, the in-

crease of orthogonality with reactivation time may additionally

relate to the functional limitation of hippocampal circuit compu-

tations. Here, multiple orthogonal assemblies that represent

overlapping locations would also allow similar places repre-

sented throughout the SWR, without the same pyramidal cells

firing together for long durations.

Considering that assembly orthogonality (i.e., PAD) and reac-

tivation speed are correlated with different bands of network

oscillations, multiple mechanismsmay work in parallel during re-

activation. In particular, the PADwas correlated with ripple-band

power. The putative interneuron rate was also correlated with the

PAD, suggesting that interneurons play a role in assembly turn-

over during replay. Although CA2/CA3a region activity triggers

sharp waves and SWR emission (Csicsvari et al., 2000; Oliva

et al., 2016), the ripple oscillation itself is generated by local

CA1 pyramidal cell-interneuron interactions (Gan et al., 2017;

Schlingloff et al., 2014; Stark et al., 2015). Therefore, it seems

possible that changes in assembly orthogonality are modulated

partially within the CA1 area through the control of local inhibitory

interneurons. The local emergence of CA1 sequences is sup-

ported by the observation that the CA1 network is capable of

autonomously generating sequences (Stark et al., 2015). When

ripples were artificially generated with optogenetic stimulation

of CA1 pyramidal cells, this gave rise to sequences that were

similar to that observed during spontaneous SWR emission

(Stark et al., 2015). Moreover, the consistency between waking

sequential coding and SWR activity, artificial or spontaneous,

was dependent on interneuron firing.

While the power of ripple oscillationswas associatedwith PADs

andwas not related to reactivation speed, fast gamma power was

related only to reactivation speed and not to PADs. Interestingly,

waking gamma oscillation power is correlated with the actual

speed of the animal (Ahmed andMehta, 2012). Fast gammaoscil-

lations have been associated with interactions between CA1 and

neighboring regions such as the dentate gyrus and the entorhinal

cortex (Colgin et al., 2009; Sullivan et al., 2011). This suggests that

reactivation dynamics regulated by reactivation speed is corre-

lated with interregional interactions and not with local activity

modulation mechanisms like inhibitory activity or ripple power.

Therefore, some of the regulatory mechanisms determining reac-

tivated trajectories might originate from nonlocal mechanisms

such as the medial entorhinal cortex inputs, including those that

encode speed (Yamamoto and Tonegawa, 2017; Ye et al.,

2018). At the same time, however, slow gamma band oscillations

show a complementary behavior, relating to both reactivation

speed and PADs. In agreement with this finding large jumps in

reactivation places have been suggested to occur in different

slow gamma packets (Pfeiffer and Foster, 2015), and even
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theta sequences representmore stretched trajectorieswhen slow

gamma oscillations were nested on theta oscillations (Zheng

et al., 2016). In our case, larger-amplitude, slow gamma events

predicted larger jump sizes, but they also predicted larger PAD

distance. Our results point to a complex system of information

routing at work during the unfolding of SWR events. Understand-

ing the mechanism of information routing and the underlying

system interactions will require a more detailed description of

the activity state not only of CA1, but also of neighboring areas

(Ólafsdóttir et al., 2016; O’Neill et al., 2017).

The ability of the hippocampal network to spontaneously reac-

tivate random trajectories of the previously active map provides

not only a scaffold on which to build declarative memory traces,

but also ameans to generate potential future behavioral choices.

Attractor networks are able to optimize cost functions to solve

complex problems (Hopfield and Tank, 1985). Such random

replay may reflect such an optimization ability of the hippocam-

pal attractor network representing space (Samsonovich and

McNaughton, 1997). The ability of hippocampal circuits to replay

random trajectories of a recently experienced environment may

provide better behavioral solutions and help behavioral adapta-

tion through initiating optimization processes during sleep.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures involving experimental animals were carried out in accordance with Austrian animal law (Austrian federal Law for ex-

periments with live animals) under a project license approved by the Austrian Federal Science Ministry. A total of four adult male

Long-Evans rats (Janvier, St-Isle, France) were used for the experiments. Rats were housed individually in standard rodent cages

(56 3 40 3 26 cm) in a temperature and humidity controlled animal room. All rats were maintained on a 12 hr light/dark cycle and

all testing performed during the light phase. Food and water were available ad libitum prior to the recording procedures and body

weight at the time of surgery was 300-375 g.

METHODS DETAILS

Animals and Surgery
Animals were implanted with microdrives housing 32 (2x16) independently movable tetrodes targeting the dorsal CA1 region of the

hippocampus bilaterally. Each tetrode was fabricated out of four 10 um tungsten wires (H-Formvar insulation with Butyral bond coat

California FineWire Company, Grover Beach, CA) that were twisted and then heated to bind them into a single bundle. The tips of the

tetrodes were then gold-plated to reduce the impedance to 200-400 kU. During surgery, the animal was under deep anesthesia using

isoflurane (0.5%–3% MAC), oxygen (1-2l/min), and an initial injection of buprenorphine (0.1mg/kg). Two rectangular craniotomies

were drilled at relative to bregma (centered at AP = �3.2; ML = ±1.6), the dura mater removed and the electrode bundles implanted

into the superficial layers of the neocortex, after which both the exposed cortex and the electrode shanks were sealed with paraffin

wax. Five to six anchoring screws were fixed on to the skull and two ground screws (M1.4) were positioned above the cerebellum.

After removal of the dura, the tetrodes were initially implanted at a depth of 1-1.5 mm relative to the brain surface. Finally, the micro-

drive was anchored to the skull and screws with dental cement (Refobacin Bone Cement R, Biomet, IN, USA). Two hours before the

end of the surgery the animal was given the analgesic Metacam (5mg/kg). After a one-week recovery period, tetrodes were gradually

moved into the dorsal CA1 cell layer (stratum pyramidale). After completion of the experiments, the rats were deeply anesthetized and

perfused through the heart with 0.9% saline solution followed by a 4% buffered formalin phosphate solution for the histological veri-

fication of the electrode tracks.

Data Acquisition and Behavior
The animals were housed individually in a separate room under a 12h light/12h dark cycle. Following the postoperative recovery

period, rats were reduced to and maintained at 85% of their age-matched preoperative weight. Water was available ad libitum.

Each animal was handled and familiarized with the recording room and with the general procedures of data acquisition. Four to

five days before the start of recording, animals were familiarized at least 30 min with a circular open-field environment (diameter =

120 cm). On each recording day (1 or 2 recording days were performed per animal), the animal underwent a behavioral protocol

in the following order: exploration of the familiar circular open-field environment (40 mins), sleep/rest in rest box (diameter =

26cm, 50 mins). Directly after this rest session the animals also explored a novel environment for an additional 40 min and rested
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after for 50 mins. The novel environment recordings were performed in the same recording room but in an enclosure of a different

geometric shape but similar size (e.g., a square environment of 100cm width). The wall of both the familiar and novel environment

enclosures was 30cm in height, which limited the ability of the animal to access distal room cues. In addition, in two animals a

50 mins sleep/rest session was performed before the familiar exploration. During open-field exploration sessions, food pellets

(MLab rodent tablet 12mg, TestDiet) were scattered on the floor to encourage foraging and therefore good coverage of the

environment.

A headstage with 128 channels (43 32 channels, Axona Ltd, St. Albans, UK) was used to preamplify the extracellular electric sig-

nals from the tetrodes. Wide-band (0.4 Hz–5 kHz) recordings were taken and the amplified local field potential and multiple-unit ac-

tivity were continuously digitized at 24 kHz using a 128-channel data acquisition system (Axona Ltd St. Albans, UK). A small array of

three light-emitting diode clusters mounted on the preamplifier headstage was used to track the location of the animal via an over-

head video camera. The animal’s location was constantly monitored throughout the daily experiment. The data were analyzed offline.

Only one recording day with the best unit yield was included in the subsequent spike clustering and data analysis procedures.

Spike Sorting
The spike detection and sorting procedures were performed as previously described (O’Neill et al., 2006). Action potentials were ex-

tracted by first computing power in the 800-9000 Hz range within a sliding window (12.8 ms). Action potentials with a power of > 5 SD

from the baselinemeanwere selected and spike features were then extracted by using principal components analyses. The detected

action potentials were segregated into putative multiple single units by using automatic clustering software (http://klustakwik.

sourceforge.net/). These clusters were manually refined by a graphical cluster cutting program. Only units with clear refractory pe-

riods in their autocorrelation and well-defined cluster boundaries were used for further analysis. We further confirmed the quality of

cluster separation by calculating the Mahalanobis distance between each pair of clusters (Harris et al., 2000). Periods of waking

spatial exploration, immobility, and sleep were clustered together and the stability of the isolated clusters was examined by visual

inspection of the extracted features of the clusters over time. Putative pyramidal cells and putative interneurons in the CA1 region

were discriminated by their autocorrelations, firing rate, and waveforms, as previously described (Csicsvari et al., 1999a). In this

way, we were able to identify the activity of 933 CA1 putative pyramidal units and 103 putative interneurons in 4 recording sessions

performed in four different animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

Rate Map Generation
As described in previous work (Dunn et al., 2015) we used a maximum entropy model inference paradigm to reconstruct the two-

dimensional spatial distribution of each cell’s firing probability. As a statistical model, we considered the maximum entropy model

known as kinetic Ising model. We first separated running periods from periods of quiescence by applying a 5 cm/s speed filter.

The activity of the cells was binned in 12.8 ms bins, and a binary variable Si(t) was assigned to each neuron for each bin. Si(t)

has +1/�1 values, denoting the presence/absence of spikes emitted by neuron i within time bin t. Letting the state of each neuron

at time t depend on the state of the population in the previous time step t� 1, the maximum entropy distribution over the state Si(t) of

neuron i at time t is

pðSiðtÞÞ= exp½SiðtÞHðt � 1Þ�
2 cosh½Hðt � 1Þ� (1)

where H(t) would be identified as the time-varying covariate having the role of the external field in statistical physics. Equation 1

defines a GLM (Generalized Linear Model), where, in each time bin, mostly only one or zero spikes per bin are observed and the

interaction kernel extends one time step in the past.

To find what values of H(t) are the most likely to generate the observed data given Equation 1, we maximized the log-likelihood

function

L½S;H�=
X
ij

½SiðtÞHiðt � 1Þ � logð2 cosh Hiðt � 1ÞÞ� (2)

with respect to H(t).

The log-likelihood measures how well the model explains the statistics in the observed data. In our analysis, we have used the

natural logarithm. Since the external field, H(t), can explain the variations in the firing rate as the rat navigates in space, it becomes

important to model it appropriately.

Here we assumed that the spatial input arises as the sum of two-dimensional Gaussian basis functions centered on an evenly

spaced M 3 M square lattice covering the recording environment. The spatial field of cell i at time t is then

HiðtÞ=
X
jk

aijkexp
h
�
�
ðxðtÞ � xjkÞ2 +

�
yðtÞ � yjk

�2�.
r2
i
+ hi (3)
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where hi is a unit-specific spatially and temporally constant baseline, and ðxjk ; yjkÞ and r are the vertices of the regular lattice and

the widths of the basis functions, respectively. An accurate representation of the cell activity in space can be found by inferring

the parameters aijkof the linear combination of the Gaussian basis function. We first optimized the values of M (the number of

Gaussian basis functions in the lattice) and r (their widths). We maximized the likelihood over a range of values of M (from 12

to 20) and r (from 6 to 30 cm) and chose the values of the parameters that gave the highest Akaike-adjusted likelihood value.

In all of the models, the parameters (a’s and hi), were found by maximizing the likelihood function given in (1.2) by gradient

ascent. When comparing themodels, we first Akaike-corrected the log-likelihood. The Akaike information criterion (AIC) is ameasure

to compensate for overfitting by models with more parameters, where the preferred model is that with the minimum AIC value,

defined as

AIC= 2 ln
�
L
�
S;H; ðM; rÞML

��
+ 2k (4)

where L is the likelihood at the maximum likelihood (ML) estimates of the parameters (a’s and hi) for a given value of M and r. k is the

number of parameters (here r does not affect this number as it is a scale factor for Gaussian basis functions, while larger values of

M result in more parameters a included in the model). The procedure was performed over all available sessions at once so that the

resulting optimal parameters (M = 15 and r = 20 cm) were applied to all of them.

Firing rate maps can then be expressed for an arbitrary choice of spatial bin size as

HiðtÞ=
X
jk

~aijk exp
h
�
�
ðxðtÞ � xjkÞ2 +

�
yðtÞ � yjk

�2�.
r2
i
+ ~hi (5)

where ~aand ~hare the optimized parameters and (x,y) is any position in the environment. In the following, we consider a partition of the

environment in bins of 4cm.

Place Cell Classification
To classify putative pyramidal cells as place cells, we applied a criterion based on sparsity. For each cell, we computed the quantity

a=
P

iðrioiÞ2=
P

i r
2
i oi where ri is the cell firing rate in bin i and oi is the normalized amount of time spent by the animal in the same spatial

bin. The sum runs over all spatial bins. To establish a significance threshold, we compared the sparsity score for each cell with the

distribution obtained from shuffling the spike times. Namely, we produced 10000 surrogates by wrapping the spike times list of a

random time comprised between [20 s END-20 s]. Cells whose sparsity score exceeded the 95th percentile of the surrogate

distribution were label as place cells.

SWR Detection
SWR detection was performed in the following way. We first excluded rapid eye movement periods (REM). REM periods were de-

tected based on the theta/delta ratio as described in Csicsvari et al. (1999b). To identify periods of theta activity, the theta/delta power

ratio was measured in 1600 ms segments (800 ms steps in between measurement windows), using Thomson’s multi-taper method.

In the remaining periods of sleep, we computed a wavelet transform (Morlet wavelet) of the local field potential. We used wavelet

scales spanning a 5Hz – 500Hz range. We then calculated the power (root mean square) for each electrode in the 150Hz – 250Hz

range, z-scored it and took the maximum across the set of electrodes identified as being in CA1. Ripple events were then classified

by taking peaks in the score passing 5 SD and extending the event window until the score dropped below 2 SD.

The power spectrum for each identified SWR event was then obtained by taking the average power over electrodes for different

frequency bands covering the 5Hz – 500Hz range.

Time-Binning of the Data
Our subdivision of temporal spike trains was performed according to two criteria. We either used (1) a traditional subdivision of time in

windows of equal duration, or we used (2) windows of adaptive size to constraint the number of spikes (from any putative pyramidal

cell in the population) falling in each of them to be constant. Results are shown for windows of size 15 spikes and 8ms respectively.

Reconstruction of Position (Bayesian Decoding)
We used Bayesian place prediction (Zhang et al., 1998) first to establish whether our population of CA1 units would provide sufficient

spatial information to reconstruct position during exploration.

PðxjnÞ=PðnjxÞPðxÞ=PðnÞ: (6)

P(x) represents the probability that the animal is at a given location. It was set to a uniform distribution not to bias our analysis by any

place preference of the animal. P(njx) represents the conditional probability that a given spike count occurs at a location. This was

estimated using the firing probability obtained from the place-rate maps, and adjusted to the assuming that the number of spikes

follows a Poisson distribution. P(n), the normalizing constant, was used to ensure that P(xjn) summed up to 1. The location with

the maximum probability was selected as the reconstructed position. Error measurements represented the absolute distance

between the middle of the reconstructed bin to the real position of the animal. We compared the quality of our reconstruction across
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different window-sizes. The mean error obtained from decoding using fixed-time windows or fixed-spike windows was found to be

comparable and to have a similar dependency on the size of the window used.

Analysis of Reactivation Events
SWR detection produced candidate events from which to detect reactivation. To reconstruct the content of the SWR-associated

activity, we used a Bayesian reconstruction procedure equivalent to the one described above and the rate maps obtained from

the environment exploration session. For each SWR-detected event, we generated a series of population vectors by subdividing

the period into sub-windows. The sub-widows did not overlap with each other and covered the entire SWR duration. Depending

on the window-type in use, windows had either a fixed number of spikes (n = 15) or the duration of each window was fixed (8ms).

Events containing less than five windows were removed from further analysis.

Shuffling Procedures
If not otherwise stated, shuffling procedures are always applied to the sub-set of SWR reactivation events that were selected after the

application of the quality criteria.

Spike Jittering

Within each reactivation event, the decoding procedure was performed after each spike’s occurrence time was randomly and inde-

pendently reassigned by drawing it from a uniform distribution within the event window. The new occurrence times were chosen with

a resolution of 0.05ms and the samples drawing was performed with replacement.

Spike Identity Reassignment

Decoding of position is performed after each spike was randomly and independently reassigned to another CA1 putative pyramidal

cell in the simultaneously recorded population while keeping the spike occurrence times constant.

Place Field Rotation

To apply a randomizing procedure equivalent to the one-dimensional place field rotation (Grosmark and Buzsáki, 2016), we pro-

ceeded in the following way. For each unit, we projected (Lambert azimuthal equal-area projection) the associated rate map to

the bottom-half of a sphere. The top half of the sphere was completed with a copy of the bottom-half, symmetric with respect to

the center of the sphere. We then applied a random rotation F to this spherical map by randomly selecting 3 Euler angles. We

used a zyz convention so that F = qz 3 qy 3 qz˛½0;2p�3 ½0;p�3 ½0; 2p�. After the rotation we transformed back the bottom half of

the rotated spherical map by projecting it onto a plane, to finally obtain our new firing rate map for the environment. The procedure

provided us with a new set of firing rate maps. In turn, these maps were used to perform position decoding.

Encoded Positions Shuffling

For each detected reactivation event we generated a new decoded trajectory by using the same set of encoded positions but rear-

ranging the order of occurrence. The shuffling procedure is equivalent to generate random paths through a constant set of given lo-

cations in space. These paths visit all locations within the decoded trajectory and each location once.

Reactivation Speed Shuffling

This shuffling procedure works on the statistics of the average reactivation speed of different SWRs across the dataset. We first

generated a reactivation speed pool by gathering the values of the distance between subsequent encoded locations across all re-

constructed events in the session. We then reassigned to each event its original number of reactivation speeds by redrawing them

(without replacement) from this pool and the new average reactivation speed was calculated for the shuffled event.

Simulated Brownian Motion

To directly compare the propagation dynamics of our reconstructed spatial trajectories with the expected results obtainable from a

diffusive randomwalk of the same duration, we produced artificial sequences of points using the same number of events in our data-

set and their respective lengths. For each event selected from our analysis we took its duration in time-steps d and its average step

length v. Then starting from an arbitrary location d-1 points were generated sequentially by iteratively picking random steps of length

L in the direction Q, with L drawn from a normal distribution Nðv;v=4Þand Q drawn from a uniform distribution [0 2p].

Reactivated Trajectory Classification
To ensure that we were considering sleeping activity with space-related content, we applied an encoding quality criterion to select

only those SWR reactivation events in which place encoding was reliable. First, we computed the average likelihood of the encoded

position (the maximum of the posterior probability) over the prediction windows comprised in the SWR period. To do so, we normal-

ized the Bayesian posterior probability so that its sum over all spatial bins at any time was equal to 1. Then, for every prediction win-

dow, we took the maximum value of the normalized probability. If the average maximum value over the windows of a SWR event

exceeded a threshold of 0.1, the SWR event was admitted for subsequent analysis. Furthermore, within the admitted events, we

considered only windows whose associated likelihood value individually passed the same threshold.

When analyzing the effects on the reactivation statistics of different quality thresholds, the same procedure was applied while vary-

ing the value of the threshold in the range between 0 and 0.12. After the thresholding, either the events passing the criterion or those

failing it were selected for further analysis. Selection criteria were generally applied to original data only, with the exception of the data

in Figure S5E where selection criteria were applied separately to original data and all types of shuffled surrogate data.
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We then classified each SWR event that passed the encoding quality criterion by computing the average step size occurring

between positions encoded from pairs of neighboring, non-overlapping windows. If the number of available pairs had fallen below

three, we removed the SWR event from the analysis.

To compare original results with the shuffling ones obtained from spike jittering, identity shuffling, and place field rotation, we

considered the shuffled versions of the original SWR quality-filtered events and computed the average step-size without applying

an encoding quality threshold on the shuffled results.

As described above, decoding confidence for each SWR event was obtained as the average over time of the normalized likelihood.

To compare the consistency of the trajectory traveling speed within each SWR reactivation event, we computed its coefficient of

variation (CV). By calculating the mean mi and the standard deviation si of all step-sizes within an event we could then obtain the ratio

CVi = si=mi that defines the coefficient of variation associated with event i.

Novel Environment Analysis
In our experimental paradigm, the exploratory session of the novel environment was both directly preceded and directly followed by a

quiet rest periods. The two sleep periods took place in the same rest box and had similar duration (see above). Therefore we analyzed

reactivation events coming from these two periods separately.

Brownian Diffusion Analysis
We tested to what extent the trajectory reactivation dynamics could be approximated by a diffusion process described by a power

law equation of the type:

D
dðtÞ2

E1=2

=Gta (7)

where d represents the distance between two encoded points and t is the interval between the two associated decoding windows.

(Note that in the case of fixed-time windows t corresponds to an actual time interval, while in the case of fixed-spike windows this

interval should be measured as the number of spikes intervening between the two windows.). G is a constant tuning the average

speed of the trajectory propagation. To be able to compare the behavior of events sharing a similar average propagation speed,

we separated the set of selected reactivation events by subdividing them into sub-groups of homogeneous average speed. More-

over, since we wished to avoid the boundary effects given by the finite dimensions of the environment used for the recording, we

limited the speed range of our dataset to those reactivation events having a mean step size below 20cm/step. This threshold was

set to ensure that reactivation trajectories could be approximately considered as events propagating freely without boundary limi-

tations for a consistent number of steps. Thus, the speed groups were defined by chunking the events according to their average

speed in evenly spaced intervals between 0 and 20cm/s. For each session, the number of speed groups was varied from aminimum

of 3 to the maximum number of subdivisions that granted at least 20 events for each of them.

For each speed group, we then built a time-distance relationship. We considered all window pairs that occurred at a distance equal

to an increasing multiple of the window size, therefore, only considering population vectors originating from non-overlapping groups

of spikes. For each window-distance (i.e., time) group we generated all the squared distances traveled by the set of reconstructed

trajectories in that segment. We then computed the mean fd2
t ðtÞ, estimating mean squared traveled distance by trajectories in each

speed group (s) after a time interval t. From Equation (7) it follows that the logarithm of the average traveled distance has a linear de-

pendency on the logarithm of the time interval elapsed, where G is the y axis intercept and a is the slope of the line. Therefore, to

extract the parameters of the power law fit to our data, we perform a linear regression over the ðlogð ~d2

i ðtÞÞ; logðtÞÞpairs of points.

The case of a= 1=2 is of special interest since it corresponds to the mathematical description of the so-called Brownian diffusive

process. We thus tested the consistency of the regression slopes obtained from our data with the Brownian diffusion hypothesis.

First, we looked at the distribution of the values obtained from individual sessions and for the different speed groups (see above)

(Figures 5A and 5D). For each session, this distribution did not significantly differ from a normal distribution centered in 0.5 (all p >

0.6 t test for fixed-spikes windows all p > 0.2 t test for fixed-time windows).

Then we considered each regression slope individually. For each slope, we compared the difference of the associated avalue

from 0.5 to the size of the fit 95% confidence interval (Figures 5B and 5E). A positive relationship between the two quantities was

found (r = 0.64 p < 10e-4 for fixed-spikes windows, r = 0.59 p < 10e-3 for fixed-time windows).

To further test whether the data follow Brownian diffusion dynamics, we examined whether to edi ðtÞ follow a Rayleigh distribution,

which is the theoretical limit of diffusion processes of this type in two dimensions. Therefore, for each speed group and time-interval,

we fitted a Rayleigh distribution. The goodness of fit was then computed as a Chi-square distance by subdividing distance traveled

into 12 bins of equal size. Chi-square scores were then averaged for each session with each possible time interval and speed group

(Figures 5C and 5F) and compared to encoded positions shuffling results.

Behavioral Data
To compare the statistical properties of the reactivated ensembles with those expected from the animal’s behavior, we applied the

same power law analysis to the paths followed by the animal during exploration. To do so, we took trajectory segments continuously

above a speed threshold (5 cm/s) and we sampled the animal’s position at regular intervals with different temporal resolutions (time
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intervals between 0.12 s and 1.1 s). For each temporal resolution, we then performed an equivalent analysis to the one described

above, by treating trajectory segments as separate reactivation events (Figures 4 and 5). avalues were found to center around 0.7

and to be significantly different from a normal distribution centered in 0.5 (t test p < 10e-4) (Figures 5G and 5H). Chi-square distance

from the Rayleigh distribution best-fit was significantly higher than that observed from reactivation events (Figure 5I) (t test p < 10e-3).

We then used the same set of periods in which the animal was running to perform the power law analysis on the locations encoded

by neural activity recorded during active behavior. We proceeded similarly to the case of sleep reactivation data, by again treating

trajectory segments as separate reactivation events and using as spatial locations the positions obtained by the Bayesian decoding

of the associated neural activity. The only difference with the sleep case was the size of the time windows used for binning the spike

data. To compensate for the change in the temporal scale between sleep reactivation and running-associated activity we increased

the size of both spike-fixed and time-fixedwindows taking it to 100 spikes and 200ms respectively. Consistently with the results of the

animal behavioral trajectories and as expected from a neural activity mostly encoding the actual animal position during navigation,

the values of awere found to be again close to 0.7 (Figure 5G). This result suggests that the obtained values of the power law expo-

nents are not a product of the analysis method we used but that they instead vary reflecting changes in the cognitive state.

Measures of Spatial Distribution Randomness
To quantify the degree of uniformity of spatial distributions, either those for encoded point density or behavioral occupation time, we

used a measure of entropy. Spatial density distributions were normalized to one and the associated Entropy was calculated as

HMax = �P
iPi logðPiÞ where the sum runs over all the Nb bins of the map and Pi is the value of the distribution in the bin i. We

also computed the theoretical maximum of the Entropy given the number of bins as HMax = � log ð1=NbÞ= log ðNbÞ obtained in

the case of a perfectly uniform distribution. The entropy score reported in the figures is then defined as HMax=HMaxand it runs

from 0 to 1 (where 1 correspond to complete randomness).

We then measured the angular distribution of the direction taken during the first step of a set of reactivation events originating in

different portions of the environment. To do so, we defined a grid of 5x5 macro square bins tiling the entire environment. We then

divided our entire sample of selected reactivation events according to the macro-bin containing the position encoded by the spikes

the first decoding window. The central set of 3x3 macro-bins were considered to be core bins as they were not in contact with the

environment border and therefore presented no geometrical constrain to the directional evolution of the encoded trajectory. The

remaining frame of 16 macro-bins was instead labeled as peripheral bins as they overlapped with the environmental border.

Measures of Reactivation Variability
To investigate the dynamics of neuronal activity within each SWR event and their relationship to network oscillations we computed

two scores for each SWR event: encoded distance score, measured as the spatial distance between pairs of encoded locations, and

population activity distance (PAD), calculated by the cosine distance between spike-count vectors (where any value > 0was replaced

by a 1) from decoding window pairs. Given A and B (where A and B are any two vectors of 1’s and 0’s). the cosine similarity is

computed using a dot product SAB = cosðqÞ = P
iAiBi=

P
iA

2
i

P
iB

2
i . The PAD is obtained by dAB = 1� SAB, so that identical vectors

have a score of 0, uncorrelated vectors a score of 1 and completely anticorrelated vectors a score of 2.

Both scores were separately computed for increasing interval between decoding windows (Dt from 1 to 4). For each interval size,

we examined the relationship between encoded distance andPADby computing the average PAD associatedwith average encoding

distance in different ranges.

We further computed the overall correlation between the two measures over all pairs of windows, increasing Dt-s and calculated

the correlation between the average PAD and the Dt interval size.

PAD Embedding Analysis
We analyzed the time-propagation properties of an ensemble based on the PAD, as opposed to the one obtained from encoded

positions. The PAD was obtained from cosine distance and similarly to the Bayesian decoding allows us to compute the relative dis-

tances between pairs of time-windows. To be able to compare the propagation dynamics of this ensemble with that of the encoded

locations, we run a non-linear dimensionality reduction algorithm to embed the PAD values in a 2-dimensional space with Euclidean

metric. We transformed the original distance matrix of all PAD pairs using the ‘‘Sammon’’ mapping (Sammon, 1969), a variant of

non-classical multi-dimensional scaling (MDS), but we also ran the same analysis with two different non-classical MDS criteria

(stress and squared stress) and additionally with the ISOMAP algorithm (Tenenbaum et al., 2000), obtaining equivalent results.

The embedded distance matrix was then used to compute the time-distance relationships shown in Figure S7A.

To further test the relationship between PAD and encoded position distance, we ran the dimensionality reduction procedure sepa-

rately on the different reactivation speed-subgroups that were defined for the original analysis. No difference was found between the

obtained time-distance curves from different groups (all p > 0.05 Wilcoxon test), confirming the observed independence between

these two measures of neural variability.

We quantified the properties of the curves obtained from embedding by using either a power law fit (of the kind matching the

encoded position data) or an exponential fit f = að1� e�1ðb=aÞÞwhere a corresponds to the saturation y-value of the curve and b is

its initial slope, close to t = 0. Exponential fits were found to be largely better in describing PAD data as compared to linear fits, consid-

ering any goodness of fit measure.
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Interneuron Activity
For each putative interneuron, we computed its firing rate expressed during every selected SWR event. From this set of vectors, we

also calculated a population activity measure for each SWR event, by averaging over all putative interneuron rates for that event. We

then correlated both the individual rate vectors and the cumulative one to PAD and speed scores associated with the SWR events.

Network Oscillations
The power component of each SWR was assessed in the range of frequency intervals within the 5-500Hz band using the Morlet

wavelet analysis (see above). This analysis provided us with a reconstruction of the SWR signal in terms of a set of 60 wavelet

components associated with different frequency ranges. For each frequency range, we computed the correlation between the

oscillatory power provided by the corresponding wavelet component and (i) average encoded distance, (ii) average PAD, (iii) putative

interneuron population activity (i.e., an average of activity of all putative interneurons).

DATA AND SOFTWARE AVAILABILITY

Data used in this studywill bemade available upon request by contacting the lead contact, Jozsef Csicsvari (jozsef.csicsvari@ist.ac.at).
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Figure	S1.	Set	of	simultaneously	recorded	CA1	place	cells,	Related	to	Figure	1	
	
Reconstructed	firing	rate	maps	for	a	set	of	simultaneously	recorded	active	place	cells	(n=299)	from	an	
example	session.	Cells	were	classified	as	place	cells	according	to	a	spatial	sparsity	criterion	(see	Star	
Methods).	Only	cells	with	minimum	average	firing	rate	of	0.1Hz	were	displayed.	Numbers	represent	the	
peak	rate	of	the	cells	(cells	were	sorted	by	their	peak	firing	rate).	
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Figure	S2.	Validation	of	Bayesian	decoding	accuracy	during	exploration,	Related	to	Figure	1	
	
Using	previously	established	firing	rate	maps,	we	used	a	Bayesian	approach	to	reconstruct	the	position	of	
the	animal	from	instantaneous	firing	patterns	during	active	exploration.	Results	are	displayed	from	the	
representative	session	with	rate	maps	displayed	in	(Supplementary	Fig	S1).		
A)	Mean	reconstruction	error	for	fixed-spike	windows	of	different	size.	
B)	Mean	reconstruction	error	for	fixed-time	windows	of	different	size.	
Error	bars:	±SEM.	
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Figure	S3.	Additional	examples	of	reconstructed	trajectories,	Related	to	Figure	1	
	
Examples	of	trajectories	reconstructed	from	probability	maps	of	SWR.	Each	red	line	joins	the	most	likely	
position	obtained	from	the	Bayesian	decoding	of	non-overlapping	fixed-spike	(n=15)	prediction	windows.	
Grey	dot:	starting	position;	black	dot:	last	position.	For	each	reconstructed	trajectory,	we	also	report	the	
duration	of	the	replay	events	(top	number),	the	number	of	trajectory	point	steps	(middle	number)	and	the	
distribution	of	step	sizes	(histogram).	Histograms	range	from	probability	0	to	1	on	the	y	axis	and	from	0	
cm/step	to	40	cm/step	on	the	x-axis	with	bin	sizes	of	4	cm/step.					
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Figure	S4.	Comparison	of	shuffled	and	original	trajectories	for	additional	animals	using	the	using	fixed-
spike	decoding	and	for	fixed-time	decoding,	Related	to	Figure	2	
	
Each	row	corresponds	to	a	separate	session	obtained	from	different	animals.	Rows	from	1	to	3:	further	
sessions	from	the	remaining	three	animals	using	fixed-spike	windows	for	the	predictions.	Rows	from	4	to	7:	
Results	using	fixed-time	window	prediction	displaying	results	from	all	four	animals.		
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Figure S5. Distribution of reactivation event properties for different quality thresholds, Related to 
Figure 2 
 
(A) Session-averaged mean of the average reactivation speed distributions when they were measured across 
different prediction step intervals. Spike jittered data (red) were significantly different from the original 
(blue) distribution in all sessions for ranges ∆t<4 p<10e-4  and  ∆t>5, p<10e-3 KS, while the place field 
rotation data distributions (green) were significantly different from the original data’s distribution at all 
tested time steps (all p<10e-5 KS);  
(B) Session-averaged mean of the average reactivation speed distribution for events falling above different 
quality thresholds. Events from rest sessions following familiar environment exploration are shown. 



Decoding quality computed using the familiar environment map. Shuffled distributions were significantly 
different from the original data. Red: spike jittered data (all sessions and thresholds, p<10e-4 KS); Green: 
place field rotation data (all p<10e-6 KS); Dashed line: Quality threshold of 0.1, used in reactivation 
analysis.   
(C) Same as (B) for events from rest sessions following novel environment exploration. Decoding quality 
computed using the novel environment map. Shuffled distributions were significantly different from original 
data: spike jittered data (all p<0.01 KS), place field rotation data (all p<10e-6 KS). 
(D) Same as (B) for events falling below different quality thresholds. Events from rest sessions following 
familiar environment exploration. Decoding quality computed using the familiar environment map. Shuffled 
distributions were significantly different form that of the original data: spike jittered data (all p<0.04 KS); 
place field rotation data (all p<10e-5 KS).    
(E) Proportion of events passing our selection criteria of 0.1 used in the reactivation analysis. Grey bars on 
the left represent the percentage of events passing quality threshold without restriction on minimal length of 
the number of trajectory point steps. Familiar (F) novel (N) post-rest data are shown. Blue: percentage of 
original events passing length and quality criteria for different sleep rest sessions; Red: same for spike 
jittered data; Green: same for place field rotation data. (Color code here and in the other panels as in Main 
Figure 2). (*: p<10e-3 and n.s. p>0.6, Binomial test).  
(F) Same as (B) but SWR events from the rest session preceding the novel environment exploration were 
tested using the novel environment map. Therefore, the preplay of novel environment trajectories were tested 
here. Spike jittered data distributions were not significantly different from the original ones (all, p>0.1 KS) 
whereas place field rotation data distributions were significantly different (all p<10e-4 KS). 
  
 



 

Figure S6. Network oscillations and putative interneuron activity associated with reactivation events, 
Related to Figure 7 
 
Results of Figure 6 analysis for further recording sessions of different animals. Each session shown, labeled 
from (A) to (C), corresponds to a different animal. Results are reported similarly to Figure 6.  
Top rows left: Correlation of summed putative interneuron rate and the average PAD (all p<10e-7) or 
reactivation speed (all p>0.07). For each SWR, putative interneuron rate and PAD and reactivation speed 
was measured in ∆t=1.    
Top Rows center: Same as above but correlations were calculated for single putative interneurons and 
distribution of correlations is shown. 
Top Rows right: linear regression slopes of Decoded Distance vs. PAD data, obtained from subsets of data of 
encoded distance intervals. Different lines correspond to different time intervals. (*: p<0.01, rest:  p>0.25) 
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Bottom rows:  Correlation of average PAD (magenta) (≈30Hz all p<0.005; 150-200Hz, all p<10e-12), 
average reactivation speed (green) (≈30Hz all p<0.0004; ≈80Hz, all p<10e-5) and summed putative 
interneuron rate (black) (≈30Hz all p<10e-8; 150-200Hz, all p<10e-13) with the different bands of the 
associated SWR power spectrum. Correlation was calculated across different SWR events.  
  



 

 

Figure S7. PAD Embedding and relation to activity sparsity, Related to Figures 3, 4 and 7 

(A)	Log-log	plot	of	the	time	interval	and	the	2-D	non-linear	PAD	embedding.	Light	blue:	different	mean	
reactivation	speed	groups	(n=59,	287,	87,	33,	32	respectively	for	each);	blue:	mean	of	the	speed	groups.	
Maroon	dashed	curve:	linear	fit.	(summed	square	of	residuals=2.25,	p=0.85	Pearson	Chi-Square).	Inset:	
exponential	fit	for	the	across-groups	mean	of	the	PAD	embedding	(left,	orange	dashed,	summed	square	of	
residuals=0.24,	p=0.99	Pearson	Chi-Square	formula	in	the	figure)	and	parameters	obtained	from	the	
exponential	fit	for	all	sessions	(right).	
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(B) Relationship of mean reactivation speed (green) and mean PAD (magenta) with measures of activity 
sparsity: number of putative pyramidal cells active and their combined firing rate during SWR reactivation 
events. Left: results for one example session (Probability of correlation significance: top row p=0.48 and 
p=0.44; bottom row p=10e-11 and p=10e-5), all error bars ±SD. Right: summary of results for all sessions. 
Bars: average correlation coefficient; dots: single session correlation coefficients. (Reactivation Speed p>0.2 
PAD p<10e-4)  
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