
in the distant Universe, and provide fuel for  
observations using the future James Webb 
Space Telescope. ■
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Deep learning is an approach to artificial 
intelligence that is inspired by the 
brain’s neural networks. The technique 

is contributing to a plethora of technologies, 
from automated video analysis to language 
translation. One page 429, Banino et al.1 use 
this framework to gain insights into real-life 
neuronal networks — in particular, how  
geometrically regular representations of space 
can facilitate flexible navigation strategies.

Deep-learning networks can be taught 
how to process inputs to achieve a particular 
output — for instance, learning to pick out a 
particular face in many photos of different 
people. The networks are ‘deep’ in that they 
are made up of sequential layers of repeated 
computational units. Each unit receives inputs 
from similar units in the previous layer and 
sends outputs to those in the next. Math-
ematically, such a network can be viewed as 
a high-dimensional function, which can be 
modulated by altering how the outputs of one 
layer are weighted in the next. 

The network tunes the function during 
a training phase, which typically relies on a 
set of input–output examples. For instance, a 
deep-learning system might be shown a series 
of photos, and told which ones contain the face 
it aims to identify. Its weights are automati-
cally tuned by optimization algorithms until 
it learns to make a correct identification. The 
network’s deep organization gives it a prodi-
gious ability to spot and take advantage of the 
most useful features and patterns that recur 
across the examples, and distinguish differ-
ent faces. But one downside is that the final 
network tends to be a black box — the com-
putational solutions derived during training 
often cannot be deciphered from the myriad  

weights assigned throughout the layers.
Deep-learning networks can successfully 

perform perceptual tasks2, but there have 
been fewer studies of complex behavioural 
tasks such as navigation. A key aspect of real-
life navigation is estimating one’s position 
following each step, by calculating the dis-
placement per step on the basis of orientation 
and distance travelled. This process is called 

path integration and is thought by neuro-
scientists, cognitive scientists and roboticists 
to be crucial for generating a cognitive map 
of the environment3–5. There are several kinds 
of neuron associated with the brain’s cognitive 
maps, including place cells, which fire when 
the organism occupies a particular position 
in the environment, and head-direction cells, 
which signal head orientation.

A third type of neuron, the grid cell, fires 
when the animal is at any of a set of points 
that form a hexagonal grid pattern across 
the environment. Grid cells are thought to 
endow the cognitive map with geometric 
properties that help in planning and following  
trajectories. These cells are found in the brain’s  
hippocampal formation, a region that, in 
humans, is involved in spatial learning, auto-
biographical memories and knowledge of 
general facts about the world. 

Banino and colleagues set out to gener-
ate path integration in a deep-learning net-
work. Because path integration involves 

C O M P U TAT I O N A L  N E U R O S C I E N C E

AI mimics brain codes 
for navigation 
An artificial-intelligence technique called deep learning has now been used to 
model spatial navigation. The system develops a representation of space similar 
to that of the grid cells found in the mammalian brain. See Letter p.429

Figure 1 | An AI system learns to take shortcuts. In the mammalian brain, place cells fire when an 
animal is at a particular position within an environment, head-direction cells fire when the head is in a 
particular orientation, and grid cells fire when the animal is at points that form a hexagonal grid across 
the environment. Banino and colleagues1 trained an artificial-intelligence system called a deep-learning 
network to navigate, by providing it with simulations of rodent foraging patterns, including about the 
activity of place and head-direction cells. Some computational units in the network developed grid-cell-like 
firing patterns (not shown). a, While learning to navigate towards a goal, similar paths were taken by both 
a system using grid cells (red line indicates a sample path) and a system that used place and head-direction 
cells instead (blue line). b, But when shortcuts were introduced, for example by opening previously closed 
doors, only the system that used grid cells found the shorter routes, highlighting the ability of grid-cell-like 
activity to promote flexible navigation strategies. (Figure adapted from Extended Data Fig. 10 in ref. 1.)
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remembering the output from the previous 
processing step and using it as input for the 
next, the authors used a network involving 
feedback loops. They trained the network 
using simulations of pathways taken by  
foraging rodents. The system received infor-
mation about the simulated rodent’s linear and  
angular velocity, and about the simulated 
activity of place and head-direction cells — the 
latter two acting as an ‘oracle’ for the current 
location and head direction of the rodent. 

The authors found that patterns of activity 
resembling grid cells spontaneously emerged 
in computational units in an intermediate layer 
of the network during training, even though 
nothing in the network or the training proto-
col explicitly imposed this type of pattern. The 
emergence of grid-like units is an impressive 
example of deep learning doing what it does 
best: inventing an original, often unpredicted 
internal representation to help solve a task. 

Grid-like units allow the network to keep 
track of position on the basis of path integra-
tion. Can they also help the system to learn to 
navigate efficiently from its current position 
to a goal location? To address this question, 
Banino et al. added a reinforcement-learning 
component, in which the network learned to 
assign values to specific actions taken at spe-
cific locations. Higher values were assigned 
to actions that brought the simulated rodent 
closer to the goal, acting as a reward. The grid-
like representation markedly improved the 
ability of the network to solve goal-directed 
tasks, compared to control simulations in 
which the start and goal locations were 
encoded instead by place and head-direction 
cells. The trained network found smarter 
shortcuts when obstacles such as closed doors 
were removed (Fig. 1), and even extrapolated 
paths towards goals in a previously unexplored 
annex of a familiar environment. These results 
support the idea that grid cells enable the brain 
to perform vector calculations (calculations 
about the length and direction of a path) to 
assist path planning through compartmental-
ized6 or previously unexplored7 environments.

In the future, the authors’ network could 
be used to explore the consequences of inter-
actions between grid and place cells. In the 
current network, the simulated place layer does 
not change during training. However, in the 
brain, grid and place cells influence each other 
in ways that are not well understood. Although 
real-life place cells can remain spatially selec-
tive in the absence of grid-cell inputs8, these 
inputs seem important when an animal is far 
from external landmarks that can be used to 
define locations9–11. Under these conditions, 
place cells presumably rely on path integration 
and grid cells to maintain an accurate estimate 
of position. By developing the network such 
that the place-cell layer can be modulated by 
grid-like inputs, we could begin to unpack this 
relationship.

From a broader perspective, it is interesting 
that the network, starting from very general 

computational assumptions that do not take 
into account specific biological mechanisms, 
found a solution to path integration that seems 
similar to the brain’s. That the network con-
verged on such a solution is compelling evi-
dence that there is something special about 
grid cells’ activity patterns that supports path 
integration. The black-box character of deep-
learning systems, however, means that it might 
be hard to determine what that something is.

Likewise, the fact that the grid representa-
tion enhanced goal-directed performance is a 
compelling proof-of-concept of the role of grid 
cells in the brain. But the authors had to use 
correlational analyses, guided by qualitative 
intuitions, to indirectly infer that the network 
was making vector calculations. The inability 
to directly manipulate these calculations in the 
model makes it difficult to examine the com-
putational principles, algorithms and encoding 
strategies that make grid-cell representations 
of space such an efficient solution for naviga-
tion. As such, the theoretician ends up in the 
same quandary as the experimentalist: trying 
to tease apart a poorly understood complex 
system to understand it. Making deep-learning 
systems more intelligible to human reasoning 
is an exciting challenge for the future. ■
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L A U R E  R E S P L A N D Y

Global warming has reduced the amount 
of dissolved oxygen in the ocean by 2% 
since 1960 (ref. 1). A major concern is 

that the rate of loss of dissolved oxygen has 
already increased by up to 20% in tropical 
waters, expanding the volume of regions called 
oxygen minimum zones (OMZs), where lev-
els of dissolved oxygen are already very low2,3. 
The expansion of tropical OMZs threatens the 
survival of marine organisms that rely on dis-
solved oxygen for respiration, and affects the 
biogeochemical cycling of carbon and nitro-
gen, potentially amplifying global warming4. 
Writing in Global Biogeochemical Cycles, Fu 
et al.5 suggest that, in the long term, tropical 
OMZs might shrink after their initial expan-
sion, reversing their impact on warming.

Although, overall, tropical oceans have lost 
dissolved oxygen in the past 50 years, obser-
vations indicate strong regional and temporal 
variations. For example, OMZs have clearly 

expanded since the 1970s in the equatorial 
Pacific and Atlantic oceans3,6, but a long-term 
reconstruction7 of the OMZ close to the Cali-
fornian and Mexican coasts suggests that it had 
been shrinking for a century before it started 
to expand in the 1990s. In the Indian Ocean, 
the northern part of the OMZ is shrinking, 
whereas the southern part is expanding8. 

Three competing processes control the levels 
of dissolved oxygen in the ocean. The first 
is the transfer of atmospheric oxygen to the 
surface ocean (which, in turn, is tied to oxy-
gen solubility, the capacity of the water to 
hold on to dissolved oxygen). The second is 
ocean circu lation (ventilation), which carries 
the oxygen-rich surface waters to the ocean 
interior. And, finally, there is the biological 
respiration of dissolved oxygen, the process 
by which microorganisms consume organic 
matter produced at the surface as it sinks 
to the deep ocean. OMZs develop in tropi-
cal intermediate waters (those at depths of 
200−1,000 metres) because the physical supply 

O C E A N O G R A P H Y

Climate change and 
oxygen in the ocean 
Computer simulations show that areas of the ocean that have low levels of 
dissolved oxygen will expand, but then shrink, in response to global warming — 
adding to an emerging picture of the finely balanced processes involved.
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