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PLACE CELLS

Large environments reveal the
statistical structure governing
hippocampal representations
P. Dylan Rich,1,2* Hua-Peng Liaw,1 Albert K. Lee1*

The rules governing the formation of spatialmaps in the hippocampus have not been determined.
We investigated the large-scale structure of place field activity by recording hippocampal
neurons in rats exploring a previously unencountered 48-meter-long track. Single-cell
and population activities were well described by a two-parameter stochastic model. Individual
neurons had their own characteristic propensity for forming fields randomly along the track,
with somecells expressingmany fields andmanyexhibiting fewor none.Becauseof theparticular
distribution of propensities across cells, the number of neurons with fields scaled logarithmically
with track length over a wide, ethological range.These features constrain hippocampal
memory mechanisms, may allow efficient encoding of environments and experiences of
vastly different extents and durations, and could reflect general principles of population coding.

T
he hippocampus is involved in encoding
long-term memories of items and events
from daily life in humans (1) and spatial
environments in rodents (2). Each item (3),
experience (4), or environment (5–7) is rep-

resented by a subset of active neurons among an
often much larger number of inactive neurons.
For spatial representations, the active subset
consists of place cells, each of which fires when
the animal is at specific locations in an environ-

ment (called the place fields of that cell) (8). The
inactive neurons, which fire few or no spikes
throughout the environment, are called silent
cells (5). When an animal encounters another
environment, a different subset of neurons be-
comes active, and this difference is believed to
be the basis by which spatial contexts are dis-
tinguished (7, 9). Within a given environment,
the fields of different cells together cover the
space and are thought to provide a cognitive
map enabling flexible navigation (2).
In environments typically used to study spatial

firing (total track length <5 m, or open arenas
<1 m2), ~20 to 50% of pyramidal neurons from
the dorsal CA1 subregion of the rat hippocam-
pus are recruited to be place cells (5, 6, 10), and
most have a single place field. Wild rats have
home ranges typically up to 50 m across, some-
times extending to hundreds of meters (11); in
larger laboratory environments (up to 18m long
or 3 m2), more neurons are recruited to be place
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Fig. 1. Place cells form multiple peaks in large environments. From
top to bottom, for three different neurons: firing rate on 48-m-long
track, with peak rate noted; linearized position of animal (gray) and
spikes (red); linearized firing rate. Spikes when an animal’s speed was
<5 cm/s are omitted.
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cells, many cells have multiple fields, and place
fields are wider (12–14).
However, far less is understood about the

organizing principles of hippocampal spatial

maps. Basic questions remain with implications
for the underlying mechanisms and proposed
functions of hippocampal representations.When
fields are formed, which cells do they come from?

Place fields are the units of spatial representation
in CA1, and their distribution among cells de-
termines how they code for location. Will every
cell become a place cell if the environment is
large enough? If all cells became place cells, the
specificity of active subsets would disappear,
requiring other mechanisms for retrieving the
appropriate spatial context from memory.
To investigate such questions, we used a very

large maze and quantified two key aspects of
hippocampal maps—which cells fire and where
they fire—as they were was being established in
five rats. We recorded 253 putative pyramidal
cells from dorsal CA1 (fig. S1) in the rats as they
explored a 48-m-long track (fig. S2). The track
and roomwere both entirely novel to the animal.
To test whether there was a limit to recruitment,
we challenged the representational capacities of
the hippocampus by progressively extending the
track in stages and making locations along the
track as distinct as possible. In each epoch, an
animal traversed the current total length of track
three to five times, and between epochs it was
confined to the original start location while the
trackwas extended. Total track lengths in the four
epochs were 3, 10, 22, and 48 m. Although
animals traversed the entire available track
during each epoch, we restricted analysis to
periods when the animal explored the addi-
tional novel sections of track introduced in each
epoch; this enabled us to focus on the initial re-
cruitment of cells and fields. To ensure accurate
counts of silent cells, we only analyzed neurons
that could be isolated in sleep periods flanking
behavioral periods (5, 6).
In each new section of track, existing place

cells formed additional fields and new place cells
were recruited from the pool of silent cells (12)
(Fig. 1 and figs. S3 to S5). The multiple fields of
individual cells appeared to be irregularly spaced
over the track (Fig. 2A). The simplest model of
place field formation is that the locations of the
fields of each cell follow a spatial Poisson process;
that is, the locations are random and described
only by a certain average rate. For cells with ≥6
fields (61/253), neither the spatial distributions
of fields nor interfield interval distributions dif-
fered from the Poissonmodel (Anderson-Darling
test, 0/61 cells with P < 0.05, adjusted for false
discovery rate), where they are uniform and ex-
ponential, respectively (Fig. 2; see fig. S6 for
cells with <6 fields).
We asked whether a correspondingly simple

model could describe the population as a whole
(Fig. 3A). Specifically, did each cell have the same
Poisson rate of field formation? Thismodel would
capture the qualitative behavior observed as en-
vironments increase in size, i.e., additional fields
are formed and previously silent cells are re-
cruited to be place cells. Quantitatively, this model
makes certain predictions. First, the observed
number of fields per cell would follow a Poisson
distribution. Second, the distribution of the loca-
tion of each cell’s field that is closest to the start
of the track (called the recruitment curve, as it
shows the fraction of the population that is re-
cruited to be place cells as the track lengthens)

SCIENCE sciencemag.org 15 AUGUST 2014 • VOL 345 ISSUE 6198 815

Fig. 2. Place field formation in individual cells is well described as a spatial Poisson process.
(A) All cells with ≥6 place fields from a single animal; dots denote centers of detected fields. Cumulative
distributions of field locations and interfield intervals are shown at the right (black), together with the
uniform and exponential distributions expected for a Poisson process (red). (B) Distribution of median
field location of all cells with ≥6 fields across animals (n = 61 cells from 5 rats) versus distribution
expected for cells with uniformly distributed fields (red curve). (C) Distribution of deviation from
exponential of median interfield interval (normalized by the mean interval) for all cells with ≥6 fields
versus distribution expected for cells with exponentially distributed fields (red curve).
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would follow an exponential distribution. How-
ever, the fits of both distributions to the data
were poor (Fig. 3, B and C), indicating that such a
model does not describe hippocampal popula-
tion representations in novel environments.
Instead, the observed number of fields per cell

was overdispersed relative to the equal-rate Poisson
model (Fig. 3B and fig. S7A), indicating signif-
icant differences in the spatial rate of field for-
mation between cells. That is, a few neurons had
many fields, whereas many more than expected
had few or no fields. The recruitment of neurons
into the representation reached only ~65% at 48m
(range 46 to 77%, fig. S7B), greatly undershooting
the equal-rate Poisson prediction. To see whether
the ~35% of cells that remained silent were ca-
pable of forming fields at all, we later exposed the
animal to a second novel environment and found
that some of these cells formed clear place fields
(fig. S8).
We next asked whether the differing propen-

sity of cells to form fields across the population
could be described by a particular distribution.
The number of fields per cell was well fit with a
negative binomial distribution (Fig. 3B, parame-
ters r, p = 0.57, 0.14), which can arise if each cell
is an independent Poisson process with its rate
drawn from a gamma distribution (fig. S9). More-
over, the recruitment curve under such a gamma-
Poisson model would follow a Lomax, or Pareto
type II (power law), distribution. The predicted
recruitment curve matched the observed one well
(Fig. 3C; Kolmogorov-Smirnov statistic = 0.05, P =
0.48). The curve shows logarithmic-like recruit-
ment over spatial scales spanning several orders
of magnitude, including the range of distances
traveled by wild rats (11), and its extrapolation
predicts 90% recruitment at ~500 m.
We examined additional properties of the dis-

tribution of fields. As expected from independent
Poisson processes, overall field density was uni-
form over the environment (Fig. 3D; Kolmogorov-
Smirnov statistic = 0.03, P = 0.36) and was
uninfluenced by local track features or running
speed (fig. S10), field propensities were stationary
across the track (fig. S11), and field locationswere
uncorrelated between pairs of cells (fig. S12).
Memorylessness—being invariant with re-

spect to the starting point or history—is a de-
fining property of Poisson processes. We thus
chose evenly spaced points on the track, ig-
nored whether or not cells had been recruited
before that point, and then determined the sub-
sequent recruitment curve for the remainder of
the track. These memoryless recruitment curves
had the same shape regardless of the starting
point (Fig. 3E and fig. S13).
The uniform field density at the single-cell and

population levels, exponential interfield spacing,
good match to the predicted recruitment curve,
stable propensity distribution, uncorrelated field
locations across cells, memorylessness of recruit-
ment, and uncorrelated spatial and nonspatial
field properties (fig. S14) demonstrate that the
gamma-Poisson model is a good statistical de-
scription of place field formation in a novel envi-
ronment.Different criteria for place field detection

did not change the results (fig. S15). Although the
gamma-Poisson model was sufficient to explain
the recruitment of cells and fields under our
experimental conditions, other studies have shown
increased field density around goals (15) and
changing recruitment over time (10, 16), indicating
that other factors can modulate field propensity.
Our attempt to challenge the representational

capacity of the hippocampus revealed neither a
hard limit to recruitment nor completely ran-
dom recruitment. Instead, a skewed distribution

of field propensities across the population led to
logarithmic-like recruitment over a wide range
of ethologically relevant distances. What causes
place cells to fire has been the subject of intense
investigation for decades; this finding adds an-
other dimension to that question: What causes a
cell to have a particular rate of expressing place
fields?
Two distinct mechanisms can give rise to the

observed gamma-Poisson process (17): (i) preex-
isting differences between cells (18), or (ii) a
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Fig. 3. Statistical, population-level model of the formation of hippocampal spatial representa-
tions. (A) Place field locations of all 253 recorded neurons. Lines show extent of the track every 5 cells.
Cells sorted by number of fields. (B) Number of place fields per cell. Distribution assuming each cell
has equal Poisson rate (given by the mean number of fields per cell) of forming place fields per unit
length (gray). Fit of negative binomial distribution (red), which results from gamma-distributed
Poisson rates (i.e., gamma-distributed field propensities). (C) Recruitment curve, derived from loca-
tion of field closest to start (0 m) for each cell, representing the proportion of place cells in the entire
population as function of track size. Predictions of equal-rate Poisson (gray) and gamma-Poisson
(red) models, each using parameters estimated from (B). (D) Distribution of all fields across ani-
mals (black) along track versus constant-density uniform distribution (red). Individual animals
(gray). (E) Memoryless recruitment curves constructed by starting at a point along track and then
calculating subsequent recruitment regardless of activity in previous length of track. Same curves
shifted to allow comparison of shapes (right).
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cumulative advantage mechanism during explo-
ration (e.g., Polya-Eggenberger urn). Firing rates
in slow-wave sleep (SWS) before the animal had
experienced the maze were moderately corre-
lated with the subsequent number of fields per
cell (Fig. 4A; r = 0.45, P < 10−13); this finding
provides evidence that preexisting differences
contribute to field propensities but does not rule
out possible additional cumulative advantage
mechanisms.
Preexisting differences between cells could re-

sult from differences in cellular excitability or
network inputs. Future place cells are more ex-
citable than future silent cells before exploration
(19), and artificially increasing the excitability of
silent cells can convert them to place cells (20),
thereby linking preexisting intrinsic differences
(21) with field propensity. Fixed cellular or net-
work differences likely underlie the moderate
variation in field propensity (22, 23) (fig. S16)
with anatomical location.
Place fields are ultimately derived from spatial

information originating from external sensory
or self-motion sources. Preexisting differences,
whether cellular or network-based, could act
as an additional element in existing models of
place field origin (24–26) by modifying responses
to spatial inputs (20). The gamma distribution
of field propensities we observed provides a spe-
cific constraint on mechanisms and models of
place cell firing. The link between preexisting
differences and field propensity could also ac-
count for preplay of novel environments (27),
as well as correlated firing rates (28) and cor-
related field propensities (fig. S17) across multiple
environments.
What functions might a range of field propen-

sities serve? Equal rates of random field forma-
tion would maximize the network’s ability to
uniquely encode distinct places. But with the
observed gamma-distributed propensities, the
proportion of cells with single fields would re-
main at ~5 to 10% over a wide range of environ-
ment sizes, potentially enabling a simple readout

of location (Fig. 4B). Furthermore, equal propen-
sities would lead to difficulties in distinguish-
ing environments based on their active subsets,
because large-enough environments would re-
cruit all cells. Instead, the observed distribution
of propensities allows environments with a
wider range of sizes to be distinguished based on
their active subsets, even if one assumes each
cell’s propensity to be permanently fixed (Fig. 4C
and fig. S18). These features may also operate
alongside the dorsoventrally modulated range
of CA3 field sizes (14) to efficiently encode dif-
ferently sized environments.
Loglike recruitment has been seen in motor

(29) and sensory (30) systems, which suggests
that it may be a general feature of neural pop-
ulation coding, along with other functions of
skewed distributions (28). In the hippocam-
pus, it could underlie a Weber-like perception
of space. The quantitative description of spa-
tial representations provides new insight into
how the hippocampus may handle capacity
for multiple items as well as single, extended
experiences, and may have implications for rep-
resentations and memory formation (31) in other
systems.
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Fig. 4. Origin and coding implications of the distribution of field propensities. (A) Firing rates in slow-wave sleep (SWS) before exploration were
correlated with subsequent number of fields per cell on track (jitter added for visualization). SWS firing rates separated into groups by number of fields
(inset). (B) Proportion of cells with exactly one place field as a function of environment size under equal-rate Poisson and gamma-distributed models of
field propensities. (C) Simulation of the expected proportion of neurons that are place cells in one environment and silent in another for environments of
different sizes under the two models.
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other environments yet to be visited.
However, no matter how large the environment became, some cells always remained silent, perhaps as a reserve for
experience in their brain. As novel environments became larger and larger, the rats' brains recruited new place cells. 

to investigate how rats represent a very large environment or extended−−the size of rats' ranges in the wild−−long
meters used mazes or tracks many et al.Rats use brain cells called ''place'' cells to figure out where they are. Rich 
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