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Spiking neurons

While neurons in the brain communicate using spikes, most artificial neural networks are trained
using neurons that communicate real values. This discrepancy has sometimes been viewed as a
stumbling block for linking backprop with learning in the brain1–3. However, recent work in machine
learning suggests this apparent issue may not present a significant impediment to understanding how
cortex approximates backprop4–6. In a spiking neuron, the spike train is often a noisy realization
of the underlying firing rate. In this case, if errors are represented as activity differences, the post-
synaptic term in the learning rule needs to measure changes in this underlying rate. It can do this
by applying a derivative filter to the post-synaptic spike train. The derivative filter compares the
firing rate just before a pre-synaptic spike with the firing rate just after a pre-synaptic spike. This
looks exactly like spike-time dependent plasticity7,8. Naturally, the output of the derivative filter
will be a very noisy estimate of the change in the underlying firing rate, but stochastic gradient
descent is extremely robust to noise, provided the noise is unbiased. Indeed, adding random noise to
neural activities during training has been shown to greatly improve the ability of neural networks
to generalize well to novel data6, so rather than viewing spikes as a clumsy way to convey an
underlying firing rate, we can view them as a very effective regularizer that allows us to fit large
neural nets to relatively small amounts of data.

Connections with unsupervised learning

A distinction is often made between backprop and unsupervised algorithms9. However, this is a
false dichotomy that likely arose from the fact that backprop was first developed in a supervised
setting10. Unsupervised algorithms are characterized by the lack of output labels for targets, but
there is no issue with employing backprop in these algorithms. Without output labels, learning
may occur within a modality by trying to predict one part of an input from the remainder of the
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input11–13. Unsupervised learning can also occur across modalities14 or across time15–17: i.e., where
the future activity of a network is the target for the prediction. Not only is backprop compatible
with unsupervised learning, it underlies the most powerful unsupervised algorithms developed to
date13,18,19. In short, the issue of effective learning across multiple layers exists in the case of
unsupervised learning as well and backpropagation is well suited to the task.

Backpropagation-through-time

In this review we address the question of how the brain might learn across networks with multiple
layers. We have not addressed the difficult issue of how the brain might optimize recurrent networks
that process time-varying inputs. To learn from temporal data, artificial neural networks make ex-
tensive use of backpropagation-through-time20–22 (BPTT). It is much harder to see how BPTT
could be implemented in cortex because each neuron must remember its activity value at many
different time steps during the forward pass and then use these remembered activities to compute
weight updates during the subsequent backward pass. Rather than using BPTT, we suspect the
cortex may rely on approximations such as eligibility traces23–25, or approaches wherein fast tem-
porary changes in synaptic weights are used to store recent hidden activity vectors26. In the latter
case, the cortex could do associative retrieval of relevant recent activity vectors in order to learn
long-term dependencies without having to explicitly go back through the intermediate time-steps.
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Supplementary Figure 1: The two last layers of a simple feedforward network. The total
input to unit i is xi and its output is yi = f(xi) where f is a smooth non-linear function.
After an initial forward pass, the network’s initial output vector (yj , yk) is compared with the
target and is moved towards the target by a small amount, (∆yj ,∆yk), that is proportional
to the difference. For linear output units with a quadratic loss or for logistic output units
with a cross-entropy loss, this ensures that ∆yj ,∆yk represent the derivatives of the loss
with respect to the total inputs, xj and xk to the output units. To compute the derivatives
in earlier layers, we can now make use of the following curious fact: If the perturbation in the
input to a unit represents the derivative of the loss w.r.t. the output of the unit, the resulting
perturbation of its output represents the derivative w.r.t. its input. The modified output
vector is used to reconstruct the activity in the previous layer via backwards connections
that have the same weights as the forward connections (i.e. Wij = Wji and Wik = Wki)).
We assume that these weights have already been trained to be a perfect autoencoder, so if
the output vector had not been perturbed, the top-down input of Wijyj + Wikyk to unit
i would produce the same output, yi, as was computed on the forward pass. The small
additional input Wij∆yj + Wik∆yk will be converted into a small additional output which
will be the additional input times the gradient of the non-linear function f . So, to first
order, ∆yi = dyi/dxi(Wij∆yj + Wik∆yk). This is exactly the derivative prescribed by
backpropagation, so a perturbation in the output layer that represents the derivatives of the
loss with respect to the inputs to that layer, causes a perturbation in the previous layer that
represents the same quantity for the previous layer. This can be repeated for as many earlier
layers as required. The learning rule is then to modify each incoming weight in proportion
to the product of the pre-synaptic activity and the change in the post-synaptic activity.
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16. Mikolov, T., Karafiát, M., Burget, L., Černocky, J. & Khudanpur, S. Recurrent neural network
based language model in Eleventh Annual Conference of the International Speech Communi-
cation Association (2010).

17. Gemici, M. et al. Generative Temporal Models with Memory. arXiv preprint arXiv:1702.04649
(2017).

18. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
(2013).

19. Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. & Wierstra, D. DRAW: A recurrent
neural network for image generation. arXiv preprint arXiv:1502.04623 (2015).

20. Rumelhart, D. E., McClelland, J. L., Group, P. R., et al. Parallel distributed processing (IEEE,
1988).

21. Werbos, P. J. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE 78, 1550–1560 (1990).

4



22. Lillicrap, T. P. & Santoro, A. Backpropagation through time and the brain. Current opinion
in neurobiology 55, 82–89 (2019).

23. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural
networks. Neuron 63, 544–557 (2009).

24. Miconi, T. Biologically plausible learning in recurrent neural networks reproduces neural dy-
namics observed during cognitive tasks. Elife 6 (2017).

25. Bellec, G. et al. Biologically inspired alternatives to backpropagation through time for learning
in recurrent neural nets. arXiv preprint arXiv:1901.09049 (2019).

26. Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z. & Ionescu, C. Using fast weights to attend to the
recent past in Advances in Neural Information Processing Systems (2016), 4331–4339.

5


	Backpropagation and the brain




