
Systems/Circuits

Cortex-Wide Dynamics of Intrinsic Electrical Activities:
Propagating Waves and Their Interactions

Yuqi Liang,1,2 Chenchen Song,3 Mianxin Liu,1,8 Pulin Gong,4,5 Changsong Zhou,1,2,6,7 and Thomas Knöpfel3
1Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong
Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, People’s Republic
of China, 2The HKBU Institute of Research and Continuing Education, Shenzhen 518000, People's Republic of China, 3Laboratory for Neuronal
Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom, 4School of Physics, University of Sydney, Sydney 2006, New South
Wales, Australia, 5Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney 2001, New South
Wales, Australia, 6Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China, 7Beijing Computational Science
Research Center, Beijing 100193, People’s Republic of China, and 8School of Biomedical Engineering, Shanghai Tech University, Shanghai 201210,
People’s Republic of China

Cortical circuits generate patterned activities that reflect intrinsic brain dynamics that lay the foundation for any, including
stimuli-evoked, cognition and behavior. However, the spatiotemporal organization properties and principles of this intrinsic
activity have only been partially elucidated because of previous poor resolution of experimental data and limited analysis
methods. Here we investigated continuous wave patterns in the 0.5–4 Hz (delta band) frequency range on data from high-
spatiotemporal resolution optical voltage imaging of the upper cortical layers in anesthetized mice. Waves of population activ-
ities propagate in heterogeneous directions to coordinate neuronal activities between different brain regions. The complex
wave patterns show characteristics of both stereotypy and variety. The location and type of wave patterns determine the dy-
namical evolution when different waves interact with each other. Local wave patterns of source, sink, or saddle emerge at
preferred spatial locations. Specifically, “source” patterns are predominantly found in cortical regions with low multimodal
hierarchy such as the primary somatosensory cortex. Our findings reveal principles that govern the spatiotemporal dynamics
of spontaneous cortical activities and associate them with the structural architecture across the cortex.
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Significance Statement

Intrinsic brain activities, as opposed to external stimulus-evoked responses, have increasingly gained attention, but it remains
unclear how these intrinsic activities are spatiotemporally organized at the cortex-wide scale. By taking advantage of the high
spatiotemporal resolution of optical voltage imaging, we identified five wave pattern types, and revealed the organization
properties of different wave patterns and the dynamical mechanisms when they interact with each other. Moreover, we found
a relationship between the emergence probability of local wave patterns and the multimodal structure hierarchy across corti-
cal areas. Our findings reveal the principles of spatiotemporal wave dynamics of spontaneous activities and associate them
with the underlying hierarchical architecture across the cortex.

Introduction
During anesthesia and sleep but also in quiet wakefulness, the
brain exhibits spontaneous activities that reflect self-organized
intrinsic brain dynamics, which are independent from external
stimuli application or task performance and, at least in the case
of general anesthesia, do not relate to motor behavior. In recent
decades, spontaneous activity has received increasing attention
and has been described in various species (Xiao et al., 2017;
Smith et al., 2018). Spontaneous activities can influence evoked
responses (Azouz and Gray, 1999; Davis et al., 2020); contribute
to observable variability in cognition and behavior (Romano et
al., 2015); and play important roles in the consolidation of new
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memories, motor learning (Marshall et al., 2006), and sleep-
dependent enhancement in visuomotor performance
(Landsness et al., 2009). Studying the essential organization
properties of spontaneous activity is thus vital for under-
standing brain functions (Deco et al., 2014; Capone et al.,
2019; Chen and Gong, 2019).

The traditional way of characterizing spontaneous activity is
based on correlation analysis. For instance, based on cross-corre-
lations between a predefined seed region and other brain regions,
whole-brain spontaneous activity exhibits spatially structured,
patchy correlation patterns (Fox et al., 2005). However, increas-
ing evidence has shown that spontaneous brain activity exhibits
far richer spatial and temporal dynamics. Particularly, spontane-
ous activity is organized as propagating waves, which have been
found at different neural levels by using different recording tech-
niques, including multielectrode arrays, voltage-sensitive dye
(VSD) imaging, electroencephalography (EEG), electrocorticog-
raphy, magnetoencephalography, and functional magnetic reso-
nance imaging (Freeman and Barrie, 2000; Garaschuk et al.,
2000; Lee et al., 2005; Rubino et al., 2006; Wu et al., 2008; Huang
et al., 2010; Patten et al., 2012; Alexander et al., 2013; Zanos et
al., 2015). Several studies have described the origins, pathways, and
recruitment of various cortical areas during the propagation of
waves of activities (Nir et al., 2011; Shimaoka et al., 2017). However,
recording techniques such as intracellular recordings and extracellu-
lar multiple-unit recordings have limited spatial coverage, and EEG
has limited spatial resolution, hence the recruitment of neuronal
populations during wave patterns has been evaluated mainly on the
basis of the timing of local oscillation peaks. Thus, detailed spatio-
temporal organization properties of spontaneous activity and the
underlying mechanisms remain unexplored.

Optical voltage imaging data using genetically encoded volt-
age indicators (GEVIs) offers a high-spatiotemporal resolution
readout of population membrane voltage in superficial layers
across a large portion of the cerebral cortex of living mice
(Knöpfel, 2012). This approach hence provides an opportunity
to investigate the large-scale neural dynamics at sufficient spatio-
temporal resolution and coverage. Recent studies using a similar
VSD imaging method typically focus on specific sensory-evoked
and corresponding spontaneous activity motifs (Mohajerani et
al., 2013) or the existence of wave propagation (Muller et al.,
2014). However, details of how waves are spatiotemporally
organized are still missing. Using GEVI imaging of spontaneous
voltage activity from pyramidal neurons in mice, here we
addressed the following questions. (1) Are there any regularities
in the seemingly random occurrence of complex spatiotemporal
wave patterns at different spatial scales? (2) Can different types
of waves coexist, and how do these coincident waves interact? (3)
How does the formation of cortex-wide wave patterns relate to
the underlying brain structure?

We address these questions on delta waves (0.5–4 Hz) with
an advanced wave analysis method, which extracts both the
spatial and temporal features of continuous wave patterns
(Townsend et al., 2015). Although propagating patterns show a
large variation between individual events, principal component
analysis revealed that the top five principal modes already con-
tribute to.80% of the variance. We found that the emergence of
sources and sinks can reverse the propagating direction of large-
scale traveling waves, and their interactions can generate saddle
wave patterns. Moreover, sources, sinks, and saddles are prefer-
entially formed at specific locations, intricately related to the
cortical connectivity. These findings underpin the idea that spon-
taneous activity plays an important role in intracerebral

communications and reflect details of the underling neuronal
circuit mechanism.

Materials and Methods
Experimental design and statistical analyses. We used mesoscopic

transcranial voltage imaging datasets for the analysis. Data acquisition
was as described previously (Akemann et al., 2010, 2012; Scott et al.,
2014; Song et al., 2018). Briefly, CaMK2A-tTA;tetO-chiVSFP transgenic
animals expressed the GEVI chimeric VSFP Butterfly (Mishina et al.,
2014; Song et al., 2018) in pyramidal neurons across all cortical layers.
The epifluorescence imaging approach we used here restricts optical
access and signal detection to the superficial cortical layers (layer 2/3).
Under surgical anesthesia, animals were implanted with a transcranial
cortical window through a thinned but otherwise fully intact skull and
a head-fixation plate. Image acquisition was performed using a dual-
emission wide-field epifluorescence macroscope equipped with two
synchronized CMOS (complementary metal oxide semiconductor)
cameras, using high-power halogen lamps for fluorescence excitation
(Moritex/BrainVision) and the following optics (Semrock): mCitrine
(donor) excitation 500/24; mCitrine emission FF01-542/27; mKate2
emission BLP01-594R-25; excitation beam splitter 515LP; and detection
beam splitter 580LP. The ratio of changes of gain-equalized (Akemann et
al., 2012) fluorescence intensities acquired with the two cameras reflects
the spatiotemporal dynamics of spontaneous membrane voltage fluctua-
tions of populations of pyramidal neurons.

Datasets were acquired at a 150Hz acquisition frame rate and over a
cortex-wide two-hemisphere field of view. The original spatial resolution
of the signal we extracted from the camera is 29� 29 mm. During the
imaging session (several trials of 180 s duration), mice were under anes-
thesia/sedation (induced by a bolus injection of 30mg/kg pentobarbital
sodium). With this protocol, animals are lightly anesthetized initially,
and then recover over a state of sedation to wakefulness. This progres-
sion was monitored using the heart rate as a proxy. A brain state charac-
terized by an absolute lack of spontaneous limb and whisker movements
is referred to as “anesthesia.” We analyzed 13 experimental trials over
five mice (mice 1–4 are males and mouse 5 is female), and each mouse
provided several trials under the anesthesia condition (mouse 1, three
trials; mouse 2, two trials; mouse 3, three trials; mouse 4, three trials;
mouse 5, two trials. Different mice had different number of trials satisfy-
ing the condition of anesthesia). Each trial recorded spontaneous voltage
activity for 180 s continuously.

MATLAB is used for data processing and analysis. Data and codes
used to create all the plots are available on request.

Data preprocessing. We extracted voltage signal from raw fluores-
cence signals as previously described (Akemann et al., 2012; Shimaoka et
al., 2017; Song et al., 2018). Reliable computation of the phase velocity
fields (PVFs) was achieved after reduction of spatial noise by 2 times
coarse graining using bicubic interpolation (weighted average of pixels
in the nearest 4-by-4 neighborhood; function imresize, scale = 0.5,
MATLAB, MathWorks). The final spatial data size for the imaged field
of view was a 44� 52 matrix. The analysis method based on the phase
wave requires that signals across multiple neighboring pixels occur with
similar spectral properties. Thus, we focused on narrowband delta oscil-
lation 0.5–4Hz by bandpass temporal filtering (Chebyshev type II, func-
tion filtfilt, MATLAB, MathWorks) to improve the signal-to-noise ratio
according to the signal power of the wavelet transform. Periods with
large temporal fluctuations (amplitude,.3 SDs) of the filtered voltage
signals were identified as movement artifacts and were excluded from
further analysis. The phase velocity fields were calculated on the spatially
and temporally filtered data.

PVF. We characterized the cortex-wide spatiotemporal patterns
using phase velocity field analysis, which was adapted from physical the-
ories of turbulence and validated for data recorded with different techni-
ques and modalities (Townsend et al., 2015; Townsend and Gong, 2018).
Briefly, the method assumes that contours (isolines) of the phase of brain
waves propagate monotonically spatiotemporally. First, we used Hilbert
transform on the 0.5-4Hz bandpass-filtered voltage signal to extract in-
stantaneous phase on each pixelf x; y; tð Þ. Phase velocity fields
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vw x; y; tð Þ ¼ ðu x; y; tð Þ; v x; y; tð ÞÞ can be calculated by adapting the opti-
cal flow estimation method, which is based on the changes of phases
between two consecutive frames, with phase constancy and spatial
smoothness constraints. Both constraints are expressed together as a sin-
gle minimization problem, which is described as the Euler–Lagrange
equations (Bruhn et al., 2005). The toolbox NeuroPatt implementing the
above method can be found on the website https://github.com/rorygt/
NeuroPattToolbox.

To further validate our PVF method, we shuffled data by randomiz-
ing raw voltage signal temporally (keeping power spectrum on each pixel
but randomizing the phase of the Fourier components) and spatially
(randomly shuffling the pixels). Then we applied the same data-process-
ing procedure to the shuffled data as for the real data.

Gradients of PVF. Spatiotemporal patterns of neural activities
should be distinguishable from patterns obtained with random shuffled
data in terms of continuous spatial gradients in the PVF. We measured

the gradients rvw x; y; tð Þ ¼ @vw ðx; y; tÞ
@x

;
@vw ðx; y; tÞ

@y

� �
at each pixel

(Chebyshev type II, function gradient, MATLAB, MathWorks). The par-
tial differentiation is obtained as the difference of the x-projection (or
y-projection) of the velocity vectors at two neighboring pixels. Small gra-
dients indicate high coherence in the speed and direction, as expected
for an organized (nonrandom) activity pattern. At each time t, gradient
of PVF was defined as spatial average of pixel-wise gradients, as follows:

jrvw j tð Þ ¼ 1
N

X
x;y

rvw ðx; y; tÞj;
�� (1)

where N is the number of pixels in the analysis window.
Identification of wave patterns. We followed the method of identify-

ing wave patterns as previously described (Townsend et al., 2015) with
some modifications to detect different types of wave patterns, including
plane wave, and source and sink patterns. We detected plane waves by
using the order parameter of the PVF in the analysis window, as follows:

vw tð Þ ¼ 1
Nv0ðtÞ jXx;y vw ðx; y; tÞj; (2)

where N is the number of pixels in the analysis window, v0 is the average
magnitude of the velocity over all pixels, and vw is the phase velocity
vw ðx; y; tÞ. The order parameter vw ranges from 0 to 1, with 1 representing
the case where the velocity vectors are parallel. We set a threshold vw tð Þ �
0.85 to identify plane waves in the examined areas. Variation of the thresh-
old value between 0.8 and 0.9 did not substantially change the results.
Relaxing the threshold to smaller values allowed us to capture largely coher-
ent propagating waves within the analysis window that can coexist with
regions of heterogeneous propagation directions corresponding to complex
local wave patterns such as sources, sinks, and saddles (see below).

We defined standing waves (synchrony) as periods where there is no
apparent wave velocity (i.e., propagation) across the analysis window.
The criterion for standing waves was an average magnitude of the veloc-
ity fields 2 SDs below the mean value across the analyzed time period.

We first asked whether the PVF across the analysis window is sta-
tionary (standing wave), and only if not, applied the criteria to detect
plane and complex waves. Plane waves are detected when the wave prop-
agation directions are narrowly distributed within the analysis window.
We examined how the emergence of plane waves depends on the size of
the analysis window (see Fig. 5). In this context, we note that in a very
small analysis window most nonstationary wave pattern would be
detected as a plane wave. Our smallest analysis window has 16 regions of
interest, and the largest probability of plane wave is 81% among five
mice; hence, even with our smallest window plane waves are not
detected in all PVFs. We also like to note that if waves were all (domi-
nantly) large-scale waves, their detection probability would not increase
(or increase a little) with decreasing window size.

Local complex wave patterns are organized around the critical points,
which were identified by the intersections of two bilinearly interpolated
null clines of the phase velocity field. Eigenvalues of the Jacobian matrix at

the corners of the four pixels around the critical point were then used to
further classify the pattern types into source, sink, or saddle, as follows:

J ¼
@u
@x

@u
@y

@v
@x

@v
@y

0
BBB@

1
CCCA: (3)

Based on the trace (t ) and determinant (D) of the Jacobian matrix,
source (unstable point, t . 0), sink (stable point; t , 0) and saddle
(D, 0) patterns were determined. If both eigenvalues are real and of the
same sign, the hyperbolic equilibrium is a “node.” When eigenvalues are
complex-conjugate, the hyperbolic equilibrium is a “focus.” Different from
previous definitions (Townsend et al., 2015), we counted each unstable node
or focus as a source event, and stable node or focus as a sink event. We used
the singularity point of PVF with near-zero velocity to define the locations of
a source or sink. The patterns were detected in the analysis window by the
NeuroPatt toolbox (https://github.com/rorygt/NeuroPattToolbox).

To validate our method to detect sources, sinks, and saddles (local
waves), we compared the probability of local waves detected in real data
and shuffled data as a function of a detection threshold. This detection
threshold was defined as a pair of values (d, r), where d is the duration
(number of time steps) of the lifetime of the same local wave pattern and r
is the minimum radius (number of pixels from the singularity) of the local
wave pattern. Probability at detection threshold (d, r) is defined as the
number of local wave patterns with detection threshold (d, r), divided by
the number of local wave patterns with detection threshold (1, 1).

Singular value decomposition of wave patterns. We applied singular
value decomposition (SVD) to all phase velocity fields vw x; y; tð Þ ¼
ðu x; y; tð Þ; v x; y; tð ÞÞ to identify the principal components of the wave pat-
terns (Townsend and Gong, 2018). We first reorganized all phase velocity
fields into a standard form and combined them into matrix w: At every
time step, we had a 2D matrix A of PVF vectors [44� 52]. In step 1, we
extracted the real part of the matrix A and reshaped them into a 1D matrix
B [1� 2288]. We also extracted the imaginary part of the matrix A and
reshaped them into a 1D matrix C [1� 2288]. In step 2, we concatenated C
to the end of B to get matrixD [1� 4576]. In step 3, we repeated step 1 and
step 2 on every time step and concatenated all the matrices D for the time
length L to organize matrix w [L� 4576]. L equals the time steps of one 3
min data trial. The singular value decomposition can be defined as follows:

w ¼ T
X

Rp; (4)

where T and R are unitary matrices, p denotes the conjugate transpose,
and+ is a rectangular diagonal matrix of singular valuess . The kth spatial
mode, defined by the velocity field in the kth column of R, has a propor-
tion of the overall variance given by s 2

k=
X
i

s 2
i . The top three spatial

modes with the largest variance accounted for 70.4% of the total variance
in the data of one representative mouse shown in Results section. Across
the data from the five mice analyzed the three spatial modes with the larg-
est variance accounted for 44.56 17.9% of the total variance.

Then we projected the instantaneous representative phase velocity
fields on the principal modes, as follows:

M ¼ w
R
; (5)

where M is the weight matrix of every principal mode contributed to all
phase velocity fields. From this, we can obtain the projection variance of
themth spatial mode on thenth phase velocity fields, as follows:

M2
m;n=

X
i

M2
i;n:

Probability of local wave patterns. To investigate the spatial distribu-
tion of the emergence of local wave pattern types (source, sink, and
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saddle), we calculated the center location of every source, sink, and sad-
dle pattern and the wave duration (the number of time steps that the
same location is occupied by the same singularity). For each pixel and
wave pattern type, we calculated the probability of pattern emergence as
the cumulative time the pattern existed. After obtaining the probability
of pattern emergence, we averaged across pixels for each cortical region

as a measure of the experimental probability of pattern emergence of
that region.

Functional registration of data into Allen Mouse Brain Atlas. To
study the relationship between wave patterns and the anatomic proper-
ties of the underlying circuitries (see Fig. 9), we used the Allen Institute
Mouse Brain Atlas (www.brain-map.org) projected to our plane of

Figure 1. Spontaneous voltage activity as propagating waves characterized by the phase velocity field. A, Power spectrum of spatially averaged voltage activity amplitude. B, Time–fre-
quency spectrum of voltage signals taken from the position marked by the blue spot in C. Warmer color represents higher power. C, Imaged cortical area for mouse 1. Background is the voltage
map at the beginning of the time period shown in D. D, Example of GEVI-based voltage imaging data along a rostral–caudal line across the left hemisphere as indicated in C; the colors repre-
sent the voltage amplitude (color bar is the same as in F). E, Voltage amplitude oscillation measured at the three spots; colors are as indicated in C. The black line is the spatial averaged volt-
age amplitude. F, Example of snapshots of phase velocity fields. The arrows are oriented in the wave-propagating direction, and their length indicates propagating speed. For clarity of
visualization, only each second calculated vector is shown. The background colors represent the voltage amplitudes. G, PVF of spatiotemporally shuffled data. Background colors are the same
as in F. H, Probability distribution of gradients of PVFs obtained from real data and shuffled data. I, Probability distribution of wave directions.
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imaging. The two cortical hemispheres were registered into the atlas by
aligning the visual and whisker stimuli response centers in voltage imag-
ing data (Song et al., 2018) to the center of primary visual area and pri-
mary somatosensory area-barrel field of the atlas correspondingly
(function imregtform, imwarp, MATLAB, MathWorks).

Correlation of complex wave patterns to the mouse cortical architec-
ture. Next, we examined how the occurrence probability of the complex
wave patterns relates to the underlying cortical architecture. We first
calculated the singularity probability for each wave pattern type and for
each pixel. Then, we averaged across cortical region, pooling across the
two hemispheres to generate a regional probability map. To relate these
regional probabilities to the underlying cortical architecture, we used
the hierarchical gradients of the mouse cortex (Fulcher et al., 2019) as a
structural estimate. We calculated the Pearson’s linear correlation coef-
ficient between the average (N=13 trials; five mice) probability of each
wave type against the hierarchical gradient index of the corresponding
cortical region (a total 21 cortical regions common to both data types).
To investigate whether this correlation was by chance, we randomly
shuffled the locations of singularity probabilities of each pixel and of
each pattern type, averaged across cortical regions and pooled across the
two hemispheres to generate randomly shuffled regional probability
maps. For each randomly shuffled probability map, we calculated the
Pearson’s linear correlation coefficient with the hierarchical gradient
index. The correlation coefficient calculated with the actual data lies
clearly outside the distribution of the correlation coefficients obtained
from 1000 shuffled datasets (see Fig. 9E). This analysis strongly suggests
that the correlation between localizations of small-scale activity waves
and cortical architecture, as reflected in the hierarchical gradient index,
is not by chance.

Results
Complex spatiotemporal wave patterns revealed by phase
velocity field analysis
We recorded voltage signals across the dorsal cerebral cortex
using GEVI imaging in anesthetized mice. Consistent with previ-
ous studies, voltage power spectra indicate the presence of slow
waves with a frequency of ;2Hz (Fig. 1A,B). For subsequent
analysis, we bandpass filtered the signal from 0.5 to 4Hz to
increase the accuracy in the calculation of the phase velocity field
(Fig. 1F). The spatiotemporal patterns of these spontaneous
activities are well resolved when plotting the voltage signals from
pixels residing along a rostral–caudal line in the imaged cortical
space (Fig. 1C,D). These maps illustrate the occurrence of posi-
tion-dependent time shifts, suggesting the existence of propagat-
ing waves. These plots alone may also indicate the presence of
standing (nontraveling) waves (Volgushev et al., 2006), as sug-
gested by the voltage signals measured at three positions on the
line across the cortex (Fig. 1E). However, phase velocity field anal-
ysis reveals continuous and complex wave propagation (Fig. 1F),
even in cases where the voltage signal (Fig. 1D) appears to be
largely synchronized across distant locations. To validate our
method of PVFs, we performed spatiotemporal shuffling (see
Materials and Methods) on the raw voltage signals. Application of
the identical data-processing pipeline resulted in unstructured
PVFs (Fig. 1G). As the PVFs of shuffled data display less coher-
ence in wave directions and speeds, gradients of PVFs (see
Materials and Methods) were used to quantify the distinction of
PVFs between real data and shuffled data (Fig. 1H). Smaller gra-
dients indicate a larger coherence of local wave direction and
speed. The clear separation of the distributions of gradients of
PVFs from original and shuffled data demonstrates that the PVFs
of unshuffled data do not emerge as a result of data processing but
represent features of organized cortical activity. In the unshuffled
data, the statistics of wave directions (Fig. 1I) showed that most of
the waves propagate from rostral cortex to caudal cortex, while

shuffled data do not exhibit a preference at all. In a previous analy-
sis based on time delays in the positive peaks of LFP (Vyazovskiy
et al., 2009), traveling waves appeared most frequently in anterior-
to-posterior and posterior-to-anterior directions. Measurement by
time delays in peaks is consistent with our analysis of phase veloc-
ity fields, but it only captures the dynamics at the peak of the oscil-
lations. Phase velocity fields extend the characterization of wave
propagation temporally to the whole time course of the activity
wave and spatially to every imaged pixel and reveals far more
complex propagation dynamics of waves during spontaneous ac-
tivity (Movie 1). As the propagation path is consistent with the
spatially organized sequential activation local circuits, wave propa-
gations denote the information flow that could be validated by
Granger causality (Granger, 1969; Seth, 2010). By calculating the
pairwise Granger causalities, we found that neurons in the earlier
part of a wave would have a causal role on neurons in its later part
(Fig. 2). However, because these spontaneous wave patterns are
ever changing, they may change directions in the next few time
steps. This dynamical property makes the detection of a relatively
stable causality between different areas unrealistic.

Features of spontaneous large-scale activity waves
Although the phase velocity fields displayed very rich and vari-
able wave propagation dynamics, we wondered whether they ex-
hibit features that are nonrandom, and can be consistently
observed across many waves detected across animals. To address
this question, we performed SVD on the PVFs (see Materials and
Methods). The most frequent (principal) SVD modes reveal the
typical wave propagation pathways, while the large number of
small modes reflects the rich dynamics. The top five most domi-
nant modes accounted for ;80% of the total variance (Fig. 3A),
and variance distribution of the modes decreased sharply (Fig.
3B). Each SVD mode represents patterns with a dominant direc-
tion (most frequently observed; illustrated in Fig. 3A) and the op-
posite direction (reversed for all pixels). The variance for each
mode (both directions included) along with the relative propor-
tion for each direction is indicated in Figure 3C. The first SVD
mode accounts for nearly 50% of the variance and represents
large-scale plane waves that are symmetrical across hemispheres.
The less frequent mode 2 represents waves that, for their domi-
nant direction, spread out from the somatosensory areas toward
rostral and caudal cortices. The illustrated mode 3 waves spread

Movie 1. Complex wave dynamics during spontaneous activity. [View online]
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from one hemisphere to the other hemisphere, while mode 4
waves have opposite directions of traveling waves in the two
hemispheres. The illustrated mode 5 represents a sink (or source
for opposite direction) in the somatosensory cortex on both
hemispheres. Across different mice, modes 1 and 2 are consis-
tently found to be the most frequent, but the frequency rank of
the less frequent modes varies across animals. We used the
modes shown in Figure 3A (mouse 1, trial 2) as a reference and
aligned the top 20 modes in the other mice/trials according to
their similarity to this reference, and the average of the absolute

values of the Pearson correlation of reranked modes decreased
with mode index (Fig. 3D). The high correlation coefficients of the
top three modes indicate consistent features across animals and
trials, and the sharp decrease in correlations across modes indicat-
ing increasing individual variability of the high-order modes.

Classification and detection of wave patterns at smaller
scales
Using the SVD method, we found consistent propagation path-
ways for the cortex-wide activity waves. However, except for the

Figure 2. Granger causality of a traveling wave. A, The phase velocity fields on a traveling wave propagate from posterior to anterior. The background color denotes the voltage amplitudes.
B, Granger causalities between a seed (red dot) and other pixels during period in A. The background color denotes the value of F-Critical values in F statistic, for the 0.05 significance level,
with F � 0 referring to the absence of Granger causality, and F. 0 denoting the presence of Granger causality. Larger values can be considered as stronger causality. We set the maximum
lag of the Granger analysis as five time steps.

Figure 3. Principal modes of the phase velocity fields. A, Top five modes calculated by singular value decomposition of all phase velocity fields from mouse 1 (each vector for each second
pixel shown). B, Variance distribution of the top 20 modes. C, Proportion of the dominant and opposite directions of the top five modes. D, Similarity of the top 20 aligned modes between dif-
ferent mice/trials (N= 13 trials, five mice).

3670 • J. Neurosci., April 21, 2021 • 41(16):3665–3678 Liang et al. · Spatiotemporal Properties of Cortex-Wide Intrinsic Activities



top three SVD modes, the other modes are quite complex and
capture less frequent events. A closer inspection of these SVD
modes suggested that individual cortex-wide spatiotemporal
wave patterns likely contain many smaller-scale features. To dis-
tinguish specific smaller-scale wave patterns, we defined the fol-
lowing five wave types (Fig. 4A; see Materials and Methods):
plane wave (a traveling wave mainly in one direction); standing
wave (a nonpropagating wave, effectively synchrony); source;
sink; and saddle. If we did not detect any of these wave patterns
in a given PVF frame, we counted such patterns as unclassified.
Plane (traveling) and standing waves that occupy the whole
imaged region occurred much less frequently than (smaller-
scale) source, sink, and saddle waves (Fig. 4C). According to
our classification criteria, waves analyzed across the whole
imaged cortical area cannot be identified as plane wave and
standing wave at the same time. However, plane waves and
standing waves often occurred within smaller areas of the cortex
and, when considering those smaller areas, can coexist with other
wave patterns (sink, source, and saddle). For example, the
unclassified pattern at the cortex-wide scale in Figure 4A con-
tains a mixture of plane wave (rostral cortex) and standing wave
(caudal cortex) in the left hemisphere. Thus, the classification of
waves as plane or standing depended on the size of the cortical
area analyzed. Because the source, sink, and saddle typically
occupied small areas, we regard them as local wave patterns.
Probability comparison of local wave patterns detected in real
data and shuffled data (see Materials and Methods) indicates
that large/long-lived local wave patterns are distinguishable from
random nonorganized events. As shown in Figure 4B, with the
increase of the detection threshold (defined by radius and dura-
tion of the detected event), the detection probability of localized
waves decreased sharply when analyzing the shuffled data, while

the probability in the real data decreased less steeply. A detection
threshold of (5, 3) (Fig. 4B, red line) indicates 96.5% confidence
that detected waves are not because of randomness that is also
contained in the shuffled data. This detection threshold is used
for the analysis presented in Figure 4 (and see Figs. 6, 7, 8, 9).
Both wave pattern snapshots (Fig. 4A) and analysis of pattern ac-
tivity occurrence in time (Fig. 4C), reveal that source, sink, and
saddle wave patterns frequently coexist.

Wave propagation across spatial scales
The high spatiotemporal resolution of our recordings allows us
to test a key question, namely whether the plane waves and
standing waves occur only at the scale of our whole imaging win-
dow, or also more locally. To address this question, we divided
the imaged field of view into smaller spatial fields with 2, 4, or 16
regions of interest (ROIs; Fig. 5) and observed that the probabil-
ity of detecting plane waves and standing waves sharply
decreased with increasing size of the ROI. This indicates that
large-scale waves represent only a small portion of detectable
waves. Compared with plane waves, standing waves (including,
according to our detection algorithm, also time points with no
up-state-like activity in the detection window) are more sensitive
to the detection window size (Fig. 5B), indicating that they very
rarely occur globally. All these results are robust over the five
mice analyzed. This observation underlines the notion that com-
plex local waves contain rich information that may be missed if
the recording resolutions are not high enough.

Direction reversal of large-scale propagating waves by local
wave patterns
Previous studies and our present data show that large-scale trav-
eling waves preferentially propagate in an anteroposterior

Figure 4. Classification and detection of specific wave patterns at the cortex-wide scale. A, Examples of wave patterns: plane wave, standing wave, source, sink, and saddle. Vectors are
shown for each pixel to facilitate the identification of individual patterns. B, Probability of local wave pattern detection as a function of detection threshold [defined as a function of duration
(d) and radius (r) threshold values]. Colors represent the probability that a local wave pattern is detected. Red line in shuffled data is the 95% confidence line for unshuffled data to be because
of spatiotemporally organized activity. Red dot indicates the local wave detection threshold (5, 3) used in the following analysis. C, Time course of the wave patterns from an example trial.
Note that, when defined at the large scale, plane and standing waves occupy most of the imaged cortical space but are rare, whereas sources, sinks, and saddles may be locally restricted, but
frequently occur. Color bar shows the number of waves of a certain type existing at time of a snapshot.
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direction (Fig. 6A), but can occasionally reverse direction
(Sanchez-Vives and McCormick, 2000; Massimini et al., 2004).
However, the mechanism underlying this direction reversal is
not known. We hypothesize that local complex waves may affect
the direction of propagation of large-scale waves. As shown in
Figure 5A, global plane waves rarely happened, let alone in the
anteroposterior direction. Thus, we identified relatively large
(but not necessarily whole field of view covering) traveling waves
by setting an appropriate order parameter threshold (for details,
see Materials and Methods). By lowering the order parameter to
0.5, we identified still relatively coherent, large-scale traveling
waves, but allowing their temporal coexistence with other waves.
As a measure of the instantaneous wave propagation direction,
we calculated the spatially averaged propagation direction u
(Fig. 6B,C). This allowed us to identify waves propagating in the
anteroposterior (5p=4,u , 7p=4Þor posteroanterior (p=4 ,
u , 3p=4Þ directions. The direction measure u together with
the order parameter�vw.0:5 identify relatively coherent travel-
ing waves with either anteroposterior or posteroanterior direc-
tions. We classified other PVF patterns as disordered (Fig. 6E),
but we shall note that disorder at the larger scale does not
exclude order at a smaller scale. The time courses of u and the
order parameter �vw (see Materials and Methods) showed inter-
related fluctuations (Fig. 6C,D), as expected from a preferred
propagation direction of coherent waves. Disorder at the large
scale was found much more frequently than coherent PVFs,
while in the coherent PVFs, the anteroposterior direction is
more frequent than the reverse direction (Fig. 6F). These coher-
ent waves in the anteroposterior or posteroanterior directions
can coexist with local complex waves, while large-scale disor-
dered PVF states can involve many local waves (Fig. 6G).

Next, we analyzed the formation of sources and sinks in the
presence of coherent propagating waves. A source is defined as
the origin of a wave with an oscillation phase that leads relative
to the neighborhood. An example is shown in Figure 6H.
Initially, oscillation phase over the visual cortex (Fig. 6H, orange
triangle) is ahead, and the wave propagates from visual cortex to
prefrontal cortex. At a later time, the visual cortex falls behind in
phase along with a long period of increased activation, and a

source emerges in the somatosensory cortex (Fig. 6H, blue
square), accompanied by order reversing of the instantaneous
phases between the ROI in the somatosensory cortex and ROI in
the visual cortex. It appears that enhanced excitation in the
somatosensory cortex accelerates the slope of the local depolari-
zation (blue curve) and the emergence of a source in the PVF.
The observed activity pattern also suggests that the prolongation
of the activity in the visual cortex (Fig. 6H, middle, orange curve)
is caused by excitatory inputs originating in the somatosensory
source. These effects lead to phase order reversal and reversal of
the propagation direction in visual cortex. As shown in Figure
6I, a large-scale wave initially propagated in the posteroanterior
direction, but the activity wave in the somatosensory cortex (blue
square) slowed down relative to the frontal cortical regions
(green diamond), inducing phase order reversal and the changed
wave propagating direction in the primary cortex from poster-
oanterior to anteroposterior.

Having observed many cases like these two examples, we
hypothesized that a sufficiently strong source and sink can change
the direction of nearby ongoing traveling waves. As schematically
depicted in Figure 7A, we more specifically hypothesized that
waves of activity that propagate out from a source or toward a
sink in the direction of a traveling wave will not affect the latter;
otherwise, the direction of the traveling wave will be reversed
through interaction with local sources and sinks (Fig. 6H,I).

To test this hypothetical scheme by statistical analysis, we
considered the wave directions of two successive large-scale trav-
eling waves interlaced by a large-scale disordered state. The
directions of the large-scale wave can either remain the same
[anteroposterior followed by anteroposterior (a-a) or posteroan-
terior followed by posteroanterior (p-p)] or can change [antero-
posterior followed by posteroanterior (a-p) or posteroanterior
followed by anteroposterior (p-a)]. We counted the occurrence
of sources and sinks that occurred during the last quarter interval
of the previous disordered state or during the first quarter inter-
val of the following large-scale wave for each of the conditions a-
a, a-p, p-a, and p-p. Based on our hypothesis that the direction of
the large-scale traveling wave depends on the nature and local-
ization of preceding local waves, we combined a-a/p-a as one

Figure 5. A, B, Probabilities of detecting plane wave (A) and standing wave (B) decay with increasing ROI window size. The cortical image was divided into 16 parts (light blue), 4 parts (green),
2 parts (left and right, purple; rostral and caudal, orange and yellow), and 1 part (dark blue). The color of filled dots corresponds to coloration of the segments. The x-axis denotes the size of the
cortical segments normalized to the total imaged area. Shown are the results of the three experimental trials from mouse 1. Similar results were obtained from the data of the other mice.
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scenario and p-p/a-p as another scenario. Because it is unlikely
that sources or sinks localized in the center of the cortex would
influence the direction of the large-scale waves emerging in the
posterior or anterior portion of the cortex, we only counted the

sources and sinks in the anterior area (Fig. 7C, red box) and pos-
terior area (Fig. 7C, black box) of the cortex. As shown in Figure
7C, we plotted the average spatial distribution of sources and
sinks for each of the scenarios (five mice, 13 experimental trials).

Figure 6. Reverse of propagation direction of traveling waves through interaction with local activity sources and sinks. A, Anterior–posterior flow starts with anterior sources and ends with
posterior sinks. B, Schematic depiction of relative concordant directions (left) and disordered directions (right). Black dots on the circle represent local wave directions, the length of the blue
vector is the order parameter and the angle of the vector is the average directionu . C, D, The temporal evolution of u and�vw : We set p=4 , u, 3p=4 as posteroanterior direction
(purple) and 5p=4, u, 7p=4 (green) as the anteroposterior direction, and considered times of�vw , 0.5 as (large-scale) disordered. E, The temporal evolution of wave propagation
direction, according to the thresholding schemes in C and D. F, Probabilities of the anteroposterior, disorder, and posteroanterior states (N= 13 trials from five mice; mean 6 SD).
G, Probabilities of occurrence of local complex waves during each large-scale state. The color code indicates the number of coexisting complex waves (total across sources, sinks, and saddles).
H, I, Examples of the interaction of large-scale traveling waves and a local source (H) and sink (I). Top, Snapshots of the phase velocity fields (vectors for each second pixel are shown), at times
indicated by vertical dashed lines in the middle and bottom panels. Color codes represent the instantaneous voltage amplitude. Middle, Instantaneous voltage amplitude (average of 3� 3 pix-
els) recorded at the three ROIs are indicated on the inset. Bottom, Instantaneous phases corresponding to the 3� 3 pixel-averaged signals for the three indicated ROIs. The reversal of phase
orders is indicated by black circles.
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For statistical analysis, we first normalized the small wave counts
for the a-a/p-a scenario and the p-p/a-p scenario by the total num-
ber of anteroposterior waves and posteroanterior waves (Fig. 6F).
We also normalized the number of sources and sinks because
sources were more frequently detected than sinks (Fig. 7B). When
examining the scenario a-a/p-a, we noted that in the rostral cortex
there is a much higher probability of sources than sinks, while in
the caudal cortex there is a higher probability of sinks than sour-
ces. Furthermore, rostral sources were found more frequently in
the scenario a-a/p-a than in the scenario p-p/a-p (Fig. 7B).
Consistent with our hypothesis, these results suggest that complex
waves during initialization and early progression of the large trav-
eling waves can influence the direction of the latter.

Interaction of local wave patterns
Most PVF snapshots show only a single source, sink, or saddle
(Fig. 8A). Among all occasions where two local complex waves

coexisted, the most frequent combination was source–saddle
pairs. Coincidence of three or more local wave patterns was also
observed. To gain further insights into the spatial characteristics
of the interaction of local waves, we analyzed the representative
phase velocity fields for each combination of coinciding local
wave patterns (Fig. 8B). This analysis revealed that the saddle
pattern typically emerged from the interaction of two complex
waves regardless of wave type (source or sink). Moreover, two
sources or two sinks would produce a saddle between them (Fig.
8B, highlighted by black dot rectangle), while one source and one
sink would produce a saddle in a location away from the line seg-
ment and form a triangle (Fig. 8B, highlighted by the black dot-
ted triangles).

Is there an organization principle that governs the interac-
tions of local wave patterns? According to the Poincaré–Hopf
theorem of vector flow fields (Hopf, 1927), if the vectors along
the boundary do not change in topology, the emergence of local
wave patterns within the boundary pairwise maintain the total

Figure 7. Interaction of plane wave and local waves induces transition of the wave-propagating directions. A, Schematic illustration showing that the location and type of local waves can
strongly determine the final wave propagation direction (Fig. 6A, example for the a-a condition). The four boxes represent different situations. The colored background indicates the initial plane
wave-propagating direction (from red to blue), which is consistent with the arrow direction on the left. The arrow on the right side shows the final direction of the wave after the disordered
period. The top (bottom) panel shows that the final direction tends to be anteroposterior (posteroanterior) regardless of the initial direction, if there is a rostral source (sink) and/or a caudal
sink (source). B, Probability of local wave patterns (sources and sinks in rostral and caudal cortex) during the large-scale disorder states on different conditions, grouped to compare the antero-
posterior direction (a-a/p-a) or posteroanterior direction (p-p/a-p) in the final coherent waves following disordered interval. The legend “sourceR (sourceC)” denotes a source located in rostral
(caudal) cortex, and analogous for sink. The bars are the mean probability across five mice, and the error bar is the SD. The p values were calculated by Wilcoxon test: *p, 0.05,
**p, 0.005. C, Spatial distribution of the number of sources or sinks for different combinations of preceding and following large-scale wave directions (pooled data from five mice, 13 trails).
The color shows the average number of the sources/sinks that occurred in the corresponding condition.
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Poincaré index (11 for source or sink, �1 for saddle). An exam-
ple of the emergence and disappearance of a sink–saddle pair is
shown in Figure 8C. We used the difference of the Poincaré
index at time t1 1 and t to monitor the (balanced) emergence of
complex waves. The statistical analysis of data from 13 180 s re-
cording sessions across five mice confirmed that the total
Poincaré index remains mostly unchanged (Fig. 8D). This in
turn confirms that the appearance or disappearance of sources or
sinks is accompanied by the emergence of a saddle. The events
with nonzero changes of total Poincaré index are still consistent
with the Poincaré–Hopf theorem since the topology of the vec-
tors along the boundary change when the complex waves move
across the boundary.

Relating preferred locations of sources, sinks, and saddles to
cortical hierarchy
Finally, we investigated whether there are preferred locations for
sources, sinks, and saddles, and, if so, whether they relate to
structural features of the mouse brain. From the maps of cumu-
lative localization for each wave pattern type (Fig. 9A; N= 13 tri-
als from five mice), the probabilities of source, sink, and saddle
occurrences all show uneven spatial distribution that are similar
across individual mice (Fig. 9B). The similarity between different
datasets from a given mouse is higher than the similarity among

different mice (Fig. 9B), conferring some degree of individuality.
Despite this, the high similarity (Fig. 9B) of spatial distribution of
singularity (wave center) across mice suggests that the preferential
spatial locations of the source, sink, and saddle patterns may be
related to the underlying anatomic architecture of the brain. After
registration of the wave localization maps onto the Allen Mouse
Brain Atlas, we generated the averaged the probability values
among pixels in each brain area (Fig. 9C). When comparing these
wave pattern probability maps against the common hierarchical
gradient (as a choice of structural measure; Fulcher et al., 2019),
we observed significant negative Pearson linear correlations
between the regional probabilities of sources (correlation = �0.76,
p=1.1e-4) and the hierarchical index across the cortical areas,
while sinks (correlation =�0.31, p=0.19) and saddles (correlation
= �0.41, p=0.074) have some trends without significance (Fig.
9D). No dependencies were observed in the spatially randomized
singularity distribution (Fig. 9E).

Discussion
By taking advantage of high-resolution voltage imaging of the
mouse cortex, here our work identifies key spatiotemporal orga-
nization properties of spontaneous activity at the cortex-wide
level. These properties include the following. (1) Waves of

Figure 8. Interaction of waves. A, Coexistence of local wave patterns. We considered the following seven combinatory situations: only source; only sink; only saddle; source and sink; source
and saddle; sink and saddle; source, sink, and saddle. Shown are the probabilities of occurrence/co-occurrence in field of view with the number of detected waves indicated by the color code
(N= 13 trials from five mice, mean6 SD). B, Top row, Examples of phase velocity fields for every situation counted in A. C, Phase velocity fields with paired appearance and disappearance of
local wave patterns with Poincaré index (11 for source or sink,�1 for saddle). Background colors denote the voltage amplitude. D, The probability of changes of total Poincaré index between
successive time steps.
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activity propagate along many different pathways but a few dom-
inant principal velocity field modes account for a large propor-
tion of variance (Figs. 1, 3). (2) Global plane waves and standing
waves are rare (Fig. 4). (3) Different complex wave patterns can

occur either in isolation or in combination, as expected from the
Poincaré–Hopf theorem. The direction of waves can be reversed
as a consequence of their interactions (Figs. 6, 7), and interac-
tions of two local waves, no matter whether source or sink,

Figure 9. Spatial distributions of singularities and their relationship with cortical structural hierarchy. A, Pixel-wise distribution of the average occurrence probability for each wave pattern type
(source, sink, and saddle), total complex waves (average), and one example of the shuffled data from the source pattern (randomized). N=13 trials across five mice. B, Correlation coefficients of
the spatial distribution of local wave patterns. The x-axis and y-axis indicate the experiment index: mouse 1, 1–3; mouse 2, 4–5; mouse 3, 6–8; mouse 4, 9–11; mouse 5, 12–13. Black box shows
the correlation of trails within the same mouse. C, Left, Voltage-imaging data after functional registration into the Allen Mouse Brain Atlas. Middle, Cortical region maps (left hemisphere) of cortex-
wide average probability (pooling across the two hemispheres) of source, sink, and saddle wave patterns. Right, Cortical region maps (left hemisphere) of hierarchy index derived from the study by
Fulcher et al. (2019). Regions with black colors are not covered by the field of view of the voltage-imaging datasets used. D, Scatter plot of the correlation between regional source/sink/saddle prob-
ability and the hierarchy index of the corresponding cortical regions. E, Histogram distributions of the correlation coefficients between the hierarchy index and spatially randomized singularity data.
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generate a saddle pattern (Fig. 8). (4) The spatial distributions of
source, sink, and saddle are similar across individual mice, and
the incidence of local wave patterns correlates with features of
the underlying cortical hierarchical architecture, as characterized
by the covariation of diverse measurements including gene
expression, intracortical axonal connectivity, the ratio of T1-
weighted to T2-weighted (T1w:T2w ratio) (myelination con-
tents), and interneuron cell density (Fulcher et al., 2019). In par-
ticular, the spatial distribution of sources is highly related to the
hierarchical gradients derived from the structural variation (Fig.
9).

The SVD shows that the top two principal modes reflecting
two typical wave-propagating pathways are highly conserved
across experimental trials and animals (Fig. 3). The first domi-
nant principal SVD modes represent cortex-wide traveling waves
that propagate preferentially along an anterior–posterior (with a
smaller medial–lateral component) axis with hemispheric sym-
metry. This result is consistent with intracellular and extracellu-
lar recordings that revealed that spontaneous slow waves under
anesthesia preferentially propagate in the anterior–posterior
direction and sometimes propagate reversely (Sanchez-Vives and
McCormick, 2000). The delta band calcium signals under anes-
thesia also provided evidence of traveling waves in directions
along the anterior–posterior axis of the mouse cortex (Mitra et al.,
2018). Corresponding large-scale propagation directions were
shown using high-density EEG recordings in humans (Murphy et
al., 2009), in cats (Volgushev et al., 2006), and, in part, in rodents
(Vyazovskiy et al., 2009).

The second principal mode appears as a source localized
medially halfway along the rostral–caudal axis. The third princi-
pal mode represents sweeps of activity from one hemisphere to
the other. This contrasts to the much more frequent homeotopic
patterns and may relate to left–right asymmetry (lateralization).

The wave propagation represents sequential activation of
neural circuits along the propagation pathway; thus, it generally
denotes the information flow in the brain. In the special case of
anesthesia, the orderly propagation of neuronal activity along
typical pathways gives rise to sequence-like activity, which gives
rises to causality in the dynamics. Similar dynamical patterns
during slow-wave sleep may interplay with spike timing-depend-
ent synaptic plasticity required for memory consolidations or
synaptic downscaling (Tononi and Cirelli, 2003). At least some
of these processes are likely to occur during slow-wave sleep.
Moreover, spontaneous traveling cortical waves in the local corti-
cal region have been reported to gate perception in behaving pri-
mates (Davis et al., 2020) and to modulate neural excitability by
locking to spikes (Townsend et al., 2015). It is therefore plausible
to consider that cortex-wide waves would modulate large-scale
propagation of stimulus-induced neuronal activities, thus coordi-
nating activities at different cortical areas. Therefore, an impor-
tant issue to be addressed in future studies is to which extent
these specific wave directions/trajectories determine activities
observed in awake states.

We noted that the spontaneous activities propagate across
cortical space without being affected by the boundary of anatom-
ically and functionally defined cortical areas while sensory stim-
uli-driven activities, at least initially, are (Petersen et al., 2003; Xu
et al., 2007; Mohajerani et al., 2013; Song et al., 2018). Stimuli-
driven activities may be confined to one brain region, for
instance in sensory representations that trigger no behavioral
response. However, the predictive coding theory and simple
stimulus response models would require the involvement and
coordination of distributed brain systems (Arieli et al., 1996). In

both frameworks, spontaneous activities could serve as a cortex-
wide coordinating mechanism for performing distributed dy-
namical computation (Gong and van Leeuwen, 2009).

We observed that different types of local waves can exist alone
(Fig. 6) or in combination (Fig. 8) at any location of the imaged
cortex. Saddles typically emerge from the interaction of two local
waves, similar to observations in the middle temporal area of
marmoset cortex (Townsend et al., 2015), and such interactions
might endow neural circuits with the computational capacity of
integrating distributed events happening at different space and
time. We also indicated that the emergence and disappear-
ance of local wave patterns are in agreement with predictions
of the Poincaré–Hopf theorem. The observed small fluctua-
tions in the total Poincaré index may be explained by several
factors including the fact that (1) the imaged portion of the
mouse cortex is not perfectly flat, which complicates geomet-
rical analysis, and that (2) our spatiotemporal resolution and
the signal-to-noise ratio may not be high enough to resolve
all the local wave patterns.

At present, it is unclear whether global and local waves are
mechanistically distinct. However, their interactions described
here suggest that they, at least, share or compete for the same cel-
lular mechanisms. Indeed, large-scale waves propagate out from
sources and into sinks; a rostral source or a caudal sink or their
combination favors wave propagation in the anteroposterior
direction (Fig. 7). If the local waves are of low amplitude (i.e.,
recruiting only a small fraction of local neurons), larger global
waves may be simply sweeping through. Otherwise, if a local
complex wave is of larger amplitude (i.e., recruiting a larger frac-
tion of neurons), the complex wave will expand and eventually
dominate a larger fraction of the cortical space. Meanwhile,
global plane waves may also propagate from sources to sinks
with the sources and sinks outside our optical imaging window.
All this evidence supports the idea that local and brain-wide
waves share the same cellular and synaptic mechanisms.

The organization properties of brain waves is a long-standing
interest in neuroscience (Muller et al., 2018), and recent studies
have begun extending the classical description of brain waves in
terms of temporal synchrony (Nir et al., 2011) to the spatial and
temporal domains (Takagaki et al., 2011; Zhang et al., 2018;
Davis et al., 2020). The advance in our current work is the appli-
cation of the analysis on data of high spatial and temporal resolu-
tion as well as of large coverage (the major part of dorsal cortical
hemispheres), revealing a variety of wave organization properties
in a quantitative way. In this study, we focused on the anesthe-
tized state, and we expect that during the fully awake state, the
cortex-wide dynamics could exhibit more localized wave patterns
with complex interactions; this prediction can be tested in the
future. In this study, we mainly investigated the wave patterns of
slow oscillations. It has been widely observed that the phases of
low-frequency oscillations are coupled to the amplitudes of high-
frequency oscillations in the brain (Canolty and Knight, 2010).
Therefore, it would be interesting to investigate how this cross-
frequency coupling influences or is influenced by the underlying
wave patterns (Townsend and Gong, 2018). By revealing the or-
ganization properties of propagating waves at the cortex-wide
level, the present study lays a ground for further exploring these
key questions in future studies.
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