
I got to know Alan Hodgkin before World War II
when we were both living in Trinity College,
Cambridge. He finished as an undergraduate in
1935 and was a research scholar and, from 1936, 
a Junior Research Fellow; I came up as an
undergraduate in 1935. In the summer of 1939, he
went to the marine laboratory at Plymouth to do
experiments on the giant nerve fibres of squid. He
invited me to join him, which I did at the beginning
of August; we left on 30 August because war was
obviously imminent.

Finding the overshoot

We had been brought up on the theory of Bernstein [1],
according to which the action potential is due to the
membrane suddenly becoming permeable to all ions,
so that the potential difference across the membrane
would fall from its resting value to near zero. This
permeability increase had been confirmed
experimentally by Kacy Cole and Howard Curtis [2]
(Fig. 1). Hodgkin had a hint, from experiments on
single nerve fibres of crabs and lobsters, that the
action potential might be larger than the resting
potential, so that the membrane potential would
actually reverse. However, this was uncertain
(because it was based on recordings with external
electrodes) and was not published until later [3]. At
Plymouth, we pushed an electrode down inside squid
fibres and found that this was true: at rest the interior
was ~−45 mV but at the peak of the action potential it
was ~+40 mV. We published this result in a short letter
to Nature [4], with no explanation for this ‘overshoot’.
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A complex route from ‘overshoot’ to the

Hodgkin–Huxley model

The 40 mV overshoot of membrane potential 
that appeared in the first intracellular recording of
the nervous impulse in the squid giant axon,
published by Alan Hodgkin (1914-1998) and
Andrew Huxley in 1939 [1], marked both the 
decline of Bernstein’s hypothesis and the emergence
of modern membrane electrophysiology.
Subsequently, Hodgkin and Huxley (partially in
collaboration with Bernard Katz) carried out an
impressive series of studies. These led, in 1952, 
to a model for nerve impulse generation and
propagation that is still a reference scheme for
membrane physiology. This model was successful 
on both phenomenological and mechanistic
grounds, in that it explained nervous excitation 
and conduction (including its non-linear
characteristics and non-decremental signal
progression) on the basis of mechanisms that have
been largely supported by subsequent research. 
As we all know, the Hodgkin–Huxley model
accounts for electric membrane events by the
passive flow of ions along specific membrane
structures, later identified as ionic channels that
are opened by changes in membrane voltage. The
model was formulated in a series of equations that
50 years ago were an elegant and sophisticated
instance of mathematical modelling in biology, and
that still maintain a strong impact on modern

membrane biophysics. Claude Meunier and
Idan Segev accurately discuss the model in this
issue of Trends in Neurosciences.

Also in this issue is an article by Huxley,
co-protagonist with Hodgkin in the extraordinary
phase of research through which we have learned the
nature of the basic units of the ‘electric storm’ that
flows in our brain circuits, allowing us to hear a
sound or music, see a landscape or the visage of a
friend, and give the commands to move our hands, to
speak and even to think (Fig. 1). Requested to
commemorate these studies, Huxley, instead of
writing a pompous celebration of the events, has
provided a report of some apparently unsuccessful
efforts as he and Hodgkin tried to account for
generation of nervous impulses, before they finally
set out on the path of discovery that led them to their
1952 papers.

Among the things that one can learn from this
precious document, which reveals part of the story
that has remained until now behind the scenes, is
that even great science is not immune from
difficulties and errors in its progression, which is
much less linear than it appears from published
papers. This is particularly true for highly creative
research, as undoubtedly was the extraordinary
Hodgkin–Huxley performance with the squid giant
axon, which makes scientific endeavour both much
more interesting and, moreover, rich in what Cajal
called humano aroma.
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From overshoot to voltage clamp

Andrew Huxley

In 1939, A.L. Hodgkin and I found that the nerve action potential shows an

‘overshoot’ – that is, the interior of the fibre becomes electrically positive

during an action potential. In 1948, we did our first experiments with a voltage

clamp to investigate the current–voltage relations of the nerve membrane.

Between those dates, we spent much time speculating about the mechanism

by which ions cross the membrane and how the action potential is generated.

This article summarizes these speculations, none of which has been

previously published.

Andrew Huxley

Trinity College,
Cambridge, UK  CB3 9NG.



We met occasionally during the war and published a
full paper in 1945 [3] with four possible explanations,
all of which were wrong. We began discussing how ions
might cross cell membranes in early 1945.

The Na++ idea

Hodgkin and I joined forces again in Cambridge in
January 1946. We had already begun to discuss the
possibility that Bernstein’s increase in permeability
during the action potential might be specific for Na+,
so that the membrane potential would approach the
equilibrium potential for Na+, perhaps +60 mV inside.
It was known that excitable tissues lose K+ when
active [5] and in 1946 Hodgkin and I used an indirect
method to estimate the amount of K+ lost per impulse
by a nerve fibre. We found that the charge carried
outwards by K+ was enough to restore the resting
potential after a spike, and in our paper we suggested
that the rising phase might be due to entry of Na+ [6].
This was shown to be correct by Hodgkin together
with Bernard Katz in 1947 using squid fibres [7]; it
had been impossible to do so earlier because the
laboratory at Plymouth had been severely damaged
by bombing during the war.

Although we were also engaged in experimental
work, we spent a lot of time in 1946, 1947 and the
firsthalf of 1948 in speculative discussions about the
mechanism by which ions cross membranes, and how an
action potential might be generated by the currents
carried by ions under the influence of membrane
potential changes. I computed (by hand) several action
potentials on the basis of these ideas. These speculations
will form the substance of this article as nothing has
been published previously about them, although
Hodgkin drafted a full-length paper in early 1948.

The voltage clamp

Hodgkin realized that measuring the current–voltage
properties of the membrane would require a ‘voltage

clamp’– that is, a feed-back system to control the
potential difference across the membrane. Without
such a device, the instability that causes the
explosive character of the action potential would
make such measurements impossible. Cole had also
realized this, and in 1947 he used an apparatus of
this kind on squid fibres [8]. He showed that there
was no discontinuity in the current–voltage
relationship, although there was a region of
instability in which raising the internal potential
increased the inward current.

It was in the summer of 1948 that Hodgkin, Katz
and I did our first experiments with the voltage
clamp. Hodgkin and I continued these experiments in
1949, altering the external Na+ concentration so as to
divide the recorded current into components carried
by Na+ and by K+. We fitted equations to the time- and
voltage-dependence of these components, and these
were the basis of the reconstruction of the action
potential that we published in 1952 [9] and that led to
our receiving shares of the Nobel prize for physiology
or medicine in 1963. Several of the features that we
found experimentally confirmed ideas that we had
reached in our speculations, but the actual
mechanism by which ions cross the membrane 
was of a kind that we had not contemplated.

Penetration as free ions

At first, we made calculations on the assumption that
free K+ and Na+ would enter the lipid phase of the
membrane from one side and dissociate from the
other. It was of course known that inorganic ions are
insoluble in the bulk phase of lipids but it seemed
possible that an appreciable number might cross the
bimolecular lipid layer that forms the cell membrane.
However, we did not see any prospect of finding a
basis for a major effect of membrane potential on the
rate of penetration, or of selectivity between Na+ and
K+. Cole had made similar calculations, starting
before the war, but these were not published until
1965 and later [10,11].

Penetration in combination with a carrier anion

We therefore switched to considering the possibility
that ions (e.g. Na+) cross the membrane in
combination with a lipid-soluble molecule that has a
large dipole moment. In the resting state, the
membrane potential would hold its negative charge
at the outer surface of the membrane but, if the
internal potential was raised by a stimulus or by an
approaching action potential, it would become free
to turn round. Na+ is more concentrated in the
external fluid than inside the fibre so the rate of
combination with the negative group will be higher
at the outer surface of the membrane than at the
inner one. The proportion of journeys across the
membrane in combination with Na+ will, therefore,
be higher for inward journeys than for outward and
there will be net inward flux of Na+ down its
concentration gradient. In our computations we
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Fig. 1. The area below the solid line is the out-of-balance signal from a
high-frequency bridge, representing increase in conductance during
the action potential of a squid fibre. Reproduced, with permission, from
Ref. [2],  (1939) The Rockefeller University Press. The superimposed
dotted line shows the time course of membrane-potential change.
Reproduced, with permission, from Ref. [9].



assumed that the molecule carried two negative unit
charges at one end and one positive at the other,
when not combined with Na+. Equation 1 gives the
resulting formula for the instantaneous Na+ current
in runs 1–11; for the later runs it is given by
analogous equations.

INa/ mA cm−2 = (10 exp−0.02E – exp 0.02E)/
(cosh 0.06E (11 exp−0.06E – 2 exp 0.04E)) [Eqn 1]

where E is the internal potential in millivolts. 
We disregarded the current carried by
re-orientation of the dipoles when the membrane
potential changed.

We developed the theory further by assuming that
the negative group could also combine reversibly
with other ions. Combination with H+ (more
concentrated inside than out) with a moderate rate
constant, when the internal potential was raised
would reduce the Na+ current (‘inactivation’). 
Rapid combination with Ca2+ at the outer surface
would provide a store of the carrier that would
become available when the internal potential was
raised (‘buffering’). We published a version of this
theory in 1949 [12].

We had shown that the falling phase of the action
potential is due to exit of K+ [6]. To explain the speed
of the falling phase, it was necessary to assume that
the outward flux of K+ increased steeply when the
internal potential was raised (‘outward
rectification’). A lag in this rectification would help
by accelerating the falling phase without interfering
with the rising phase; it would also reduce the
amounts of K+ lost and Na+ gained in an action
potential. A further reason for assuming a delay was
that it would explain the inductive characteristic of
the resting membrane described by Cole and 
Baker [13]. Cole [14] drew attention to the inductive
characteristic of carbon-filament light bulbs and
thermistors. Their electrical resistance falls with
rise of temperature so, when a constant voltage is
applied, current flows, temperature rises, 
resistance falls and the current rises – just as it 
does when a constant voltage is applied to an
inductance in series with a resistance. Provided 
that there is a net outward flux of K+, the same 
effect would be produced by a lag in the increase of
K+ current when the internal potential is raised 
and in the decrease when the internal potential 
is lowered.

For the first group of action potentials that we
computed (runs 1 to 11), we arbitrarily assumed a
linear conductance to K+ that increased with a lag
when the internal potential was raised, the
steady-state current being given by:

IK = a.sinh b(E−EK) [Eqn 2]

where E is the membrane potential (internal minus
external) and EK is the value of E at which K+ ions are

in equilibrium. The value of b determines the
steepness of the rectification.

For runs 12 to 36 we assumed that K+ crossed the
membrane in combination with a lipid-soluble
univalent anion, leading to a formula for the
K+ current with analogous to that given in Eqn 1 for
the Na+ current. For the final group of runs (37–61),
we assumed that K+ crossed the membrane in an
aqueous channel with uniform electrical field 
through the membrane, according to the theory 
of Goldman [15].

Computing the action potential

The computations include eleven ‘membrane action
potentials’ – that is, action potentials in which the
whole of the membrane area undergoes the same
potential changes simultaneously – and three
propagated action potentials. The equations for a
membrane action potential are ordinary differential
equations and I solved them using a hand-operated
calculating machine, first by Adams’ method [16] and
later by the method of Hartree [17]. The main
equation for a propagated action potential is a
partial differential equation with both distance
along the fibre (x) and time (t) as independent
variables, and it would have been impracticable to
solve this by hand. We therefore assumed uniform
propagation at velocity u, so that E was a function of
(x – u.t) and δΕ/δt = −u.δE/δx. The equation
therefore became an ordinary differential equation
that could be solved in the same way as a membrane
action potential, although the solution went towards
plus infinity if the velocity was higher than the true
value and towards minus infinity if it was lower. 
The next run was computed with an adjusted
conduction velocity, and the true value was
approached by successive approximation.

In all cases, we assumed a membrane capacity of
1 µF cm−2 and a resting potential of –70 mV – about
the value in squid fibres in vivo, although the resting
potential of isolated fibres is usually –45 to –50 mV.
For runs 1 to 36, we assumed that there was an
Na+ pump that brought the total Na+ flux to zero at
the resting potential, and the equilibrium potential
for K+ ions was also assumed to be –70 mV. For the
final runs (37–61) we did not include an Na+ pump, 
so the Na+ influx at the resting potential had to be
cancelled by an equal efflux of K+ and the equilibrium
potential for K+ had to be given the value –84 mV. The
ratio of external to internal Na+ concentration was
taken as 10 for the first group of action potentials
(runs 1 to 11) and as 100 in all later runs.

Results

Table 1 summarizes the membrane properties
assumed for each run and the outcome of the
computations. In the first group of action potentials
(runs 1 to 4), the membrane potential did not recover
to its resting value unless we assumed both
inactivation of the Na+ current and a lag in the rise

TRENDS in Neurosciences Vol.25 No.11  November 2002

http://tins.trends.com

555Review



of the K+ current (run 4). I then computed a
propagated action potential (runs 5 to 11) using the
same parameters as in run 4. I did not carry the
computation further than about half-way down the
falling phase but it is clear that full recovery to the
resting potential was in progress. There was an
overshoot but it was only 11 mV and there would
have no underswing because the K+ equilibrium
potential was assumed equal to the resting
potential. In other respects, the shape of the 
action potential and the conduction velocity were
similar to those recorded from real fibres. By 
the time the peak of the action potential was
reached, the Na+ current was reduced nearly to 
half by the inactivation.

For the next run (12; a membrane action
potential), inactivation was ten times slower 
and we included a resistance in series with the
membrane capacity, with the result that the
overshoot was larger. The potential recovered 
fully to its resting value. A consequence of the
resistance in series with the membrane capacity
was that the rate of rise of potential was infinite
over part of its range.

We then computed a propagated action potential
(runs 13 to 32) with the same parameters as for
run 12. The rate of rise did not become infinite, 
and the shape of the action potential was not 
unlike that recorded from real fibres, although the
rate of rise and the conduction velocity were
unrealistically large.

With the Na+ carrier system fully buffered and
with faster inactivation, but no lag in the K+ current,
the system was very unstable until we omitted the

series resistance (run 35). Its overshoot was 83 mV,
much greater than has been recorded in actual fibres,
no doubt because the internal Na+ concentration was
given an unrealistically low value. For run 36, the
Na+ system was not buffered, and inactivation was
made faster to compensate for the effect of the lower
peak potential.

For run 37, we assumed that K+ ions crossed the
membrane through aqueous channels under the
influence of the electric field, which was assumed to
be uniform [16]. This gives strong rectification
because the K+ concentration is higher inside than
out, but it provides no lag in the K+ current. Because
the Na+ pump was omitted, the equilibrium potential
for K+ (–84 mV) was more negative than the resting
potential (–70 mV). At the end of the falling phase, 
the Na+ influx was reduced by inactivation, so the
membrane potential fell to a level between these
two values (‘underswing’), as seen in real isolated
squid fibres. We then computed a propagated action
potential with the same parameters (runs 38 to 60,
completed in April 1948). The result (Fig. 2) 
again showed an underswing but differed from real
action potentials in that the overshoot was too small
and the recovery was too slow. The velocity was also
too high.

We did one more membrane action potential
(run 61) with the same parameters, except that 
the Na+ current was buffered and the inactivation
was slower. As a result, the overshoot was much
larger but the potential did not recover to its 
resting value.

In the spring of 1948, after our first experiments
with the voltage clamp, I computed another action
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Table 1. Membrane properties assumed for the computed action potentials and their outcomes
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3 M Rate/3 No sinh 0.04 0.0 0 24 No − −   10 −70
4 M Yes No sinh 0.08 1.0 0 25 Yes 0 −   10 −70
5–11 P -------------------------All as run 4------------------------- 11 Yes 0 18.4   10 −70
12 M Rate/10 No Carrier − Yes 30 28 Yes 0 − 100 −70
13–32 P -------------------------All as run 12------------------------- 27 Yes 0 28.0 100 −70
33 M Faster Yes Carrier − No 30 ---Unstable--- − − 100 −70
34 M Faster Yes Carrier − No 10 74 ? − − 100 −70
35 M Faster Yes Carrier − No 0 83 Yes 0 − 100 −70
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aThe time constants for inactivation and for the lag in K+ current when K+ are carried by an anion are not given because they vary with the
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potential on the assumption that Na+ and K+ ions
crossed the membrane in combination with
lipid-soluble anions. We adjusted the parameters
for the ionic currents so as to match the time course
of the total current measured with the voltage
clamp at different membrane potentials. We
included a lag in the K+ current but no inactivation
of the Na+ current. The result, published in 
1949 [11], was a good imitation of a real membrane
action potential.

Discussion

The action potentials computed before our voltage-
clamp experiments showed that we could obtain an
action potential with roughly the right characteristics
by assuming that the Na+ current underwent
inactivation, with or without a delay in the K+ current
– although when we did not include a delay the falling
phase was much too slow. These conclusions certainly
helped us in interpreting our voltage-clamp records.
The action potential computed after our first
voltage-clamp experiments showed that a delay in the
K+ current could be sufficient without inactivation of
the Na+ current, although without inactivation the
loss of K+ and the gain of Na+ would be very much
greater than with it. Our experiments in the following
year showed that inactivation does occur, as well as a
lag in the K+ current.

By contrast, our final results with the voltage
clamp showed clearly that the ions did not cross the
membrane in combination with a lipid-soluble anion.

We did not see the currents that would have been
carried by movement of the uncombined anions, and
the instantaneous current–voltage relations were
linear both for Na+ and for K+ ions. We interpreted
our results on the assumption that the ions crossed
through channels that were opened or closed by
alterations in the membrane potential. This has
been amply confirmed, both by identifying the
channel proteins through their genes [18] and by
recording the currents through single aqueous
channels [19,20]. But I do not believe that we
considered this possibility at any time during our
speculations in 1946–1948. There is no mention of it
in Hodgkin’s unpublished draft for a paper, written
in early 1948.

Several of our systems, including the final ones,
did not include a lag in the current–voltage
relationship for K+ ions. We ought to have 
realized that a substantial delay was clearly 
shown by the records of impedance change 
during the action potential published by Cole and
Curtis in 1939 (Fig. 1). I do not remember discussing
this point.

There are two morals that can be drawn from this
story. First, showing by mathematical simulation
that a theory leads to plausible results is not
evidence that the theory is correct. Second, it is easy
to fail to think of an idea that with hindsight seems
very obvious. We felt stupid not to have considered
that ions might pass through channels that are
opened and closed by membrane-potential changes,
just as we did for failing to think of the Na+ theory
until six years after finding the overshoot. 
Likewise, my grandfather T.H. Huxley, known as
‘Darwin’s bulldog’, recorded that his response on
making himself master of the central idea of the
Origin of Species was: ‘How stupid not to have
thought of that!’.
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Playing the Devil’s advocate: is the

Hodgkin–Huxley model useful?

Claude Meunier and Idan Segev

It has taken three centuries to clarify the nature of
the nervous impulse, from the questioning of
Descartes [1] and Newton on ‘animal spirits’and the
discovery of ‘animal electricity’by Galvani [2] to the
final answer provided by the Hodgkin–Huxley (H–H)
model [3]. Hodgkin and Huxley cleverly combined the
voltage-clamp technique [4], manipulations of ionic
concentrations and quantitative modeling [5] (Box 1)
to demonstrate that spike generation is a nonlinear
phenomenon arising from voltage-dependent
membrane conductances. In this new conceptual

framework, action potentials naturally appear as
nonlinear solitary waves that travel at constant
shape and velocity in a uniform axon.

Proving that the neuronal membrane behaved
nonlinearly constituted a major breakthrough in
science that is best appreciated in the historical
perspectives presented by Hodgkin and Huxley
themselves [5,6]. In 1952, the importance of
nonlinearities was well recognized in chemical
kinetics, reaction-diffusion equations and populations
dynamics (e.g. the Lotka–Volterra equations).
Nonlinear waves had also been known for a long time
in hydrodynamics [7], but their nature was only
understood in the 1960s. It was at that time too that
nonlinear optics developed, with the discovery of
harmonics generation in laser-illuminated materials,
and that physics ceased to focus on the linear
properties of materials.

Physics accounts for a wealth of experimental
phenomena by establishing fundamental equations
that govern the evolution in time of the relevant
observable factors. An example is the Navier–Stokes
equation that governs the flow of fluids and is
successfully used in a range of contexts, from
laboratory studies of convection to turbulence around
the wings of airplanes. Are the H–H equations (Box 1)
more than a good model of the action potential? And
do they provide us with a ‘natural law’of neuronal
excitability that is useful extensively?

Hodgkin and Huxley (H–H) model for action potential generation has held firm

for half a century because this relatively simple and experimentally testable

model embodies the major features of membrane nonlinearity: namely,

voltage-dependent ionic currents that activate and inactivate in time. However,

experimental and theoretical developments of the past 20 years force one to

re-evaluate its usefulness. First, the H–H model is, in its original form, limited to

the two voltage-dependent currents found in the squid giant axon and it must

be extended significantly if it is to deal with the excitable soma and dendrites of

neurons. Second, the macroscopic and deterministic H–H model does not

capture correctly the kinetics of the Na++ channel and it cannot account for the

stochastic response to current injection that arises from the discrete nature of

ion channels. Third, much simpler integrate-and-fire-type models seem to be

more useful for exploring collective phenomena in neuronal networks. Is the

H–H model threatened, or will it continue to set the fundamental framework for

exploring neuronal excitability?
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