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Surgery and Animal Care. All use of laboratory animals was con-
sistent withGuide for the Care and Use of Laboratory Animals and
approved by The Rockefeller University’s Institutional Animal Care
and Use Committee. Adult Sprague–Dawley rats (weight 250–350
g) were anesthetized with isoflurane in an anesthetizing chamber
and secured in a stereotaxic frame with a nose cone for anesthetic
delivery by using 2-L/min flows of 100% oxygen. Eyes were pro-
tected with ophthalmic ointment. The skull was fixed to the ste-
reotaxic frame using a custom-designed head-holder device to
ensure durable head restraint. Ear bars then were withdrawn. A
craniotomy was made over the thalamus, centered on anterior–
posterior −3.6 mm and medial–lateral 1.3 mm. The dura was re-
moved and the surface of the brain irrigated with sterile saline. For
analgesia, the wound edge was infiltrated with bupivacaine 0.125%,
and flunixin 2.5 mg/kg was administered s.c. before lightening the
anesthesia.
Spontaneous ventilation was maintained throughout the ex-

periment. Respiratory and heart rates were monitored continu-
ously with electrocardiography (ECG). ECG was monitored and
streamed to disk for offline computation of heart rate and re-
spiratory rate (derived from respiratory variation in QRS am-
plitude) to allow time-locked comparisonwith neuronal recordings.
Temperature was maintained at 36 ± 0.5 °C by using a warming
blanket controlled via a rectal temperature probe. Intraperitoneal
saline injections were administered at regular intervals to maintain
adequate hydration.
The animal was taken through a slow stepwise decrease in

inhaled anesthetic concentration until awakening, defined as
onset of spontaneous purposeful limb movement. Typically, we
observed the animal attempting to escape the stereotaxic appa-
ratus. This reliably occurred in all six animals included in this
study at 0.75% isoflurane. Isoflurane was delivered using a cali-
brated isoflurane vaporizer, and the inhaled concentration was
monitored (Riken Gas Indicator FI-21; A.M. Bickford).
At the conclusion of the experiment, the rats were anesthetized

deeply and euthanized using high-dose isoflurane. Using standard
methodology, the animals were intracardially perfused with PBS
and paraformaldehyde (4%), followed by brain extraction and
postfixation for at least 12 h. The brains were cryosectioned with
a microtome (60-μm sections). Sections were stained for ace-
tylcholinesterase to better define intralaminar nuclei and visu-
alize electrode placement/scar.
Although we observed abrupt state transitions in more than 20

rats and 20 mice, here we included only rats that were maintained
at each anesthetic concentration continuously for at least 1 h, had
artifact-free recording in each of the channels of interest (see
below), and were confirmed to have the correct electrode place-
ment into the intralaminar thalamus as well as the cingulate and
retrosplenial cortices (n = 6).

Dimensionality Reduction. Power spectra for five channels of local
field potentials corresponding to the deep cingulate, superficial
cingulate, deep retrosplenial, superficial retrosplenial, and cen-
trolateral thalamus were concatenated into a 1,245-dimensional
vector (249 independent frequency estimates per channel) at each
spectral window. The spectrum in each channel was normalized
by the total power and expressed as differences from mean
spectrum determined over the entire anesthetic ramp for each
animal after log transformation. The matrices so obtained for
each of the six animals were then concatenated. Because principal
component analysis (PCA) may be strongly affected by outliers

(1), before dimensionality reduction, time points in which devi-
ations exceeded 12 dB were removed. This artifact-removed matrix
containing more than 30 h of recordings was subjected to PCA.
The first three principal components (PCs) contained ∼70% of

the variance (Fig. 3A). The distribution of the data projected
onto the first three PCs (shown in the plane PC1 vs. PC2 in Fig.
3B) clearly was multimodal.

Clustering. Data projected onto the first three PCs was clustered
via k-means with squared Euclidean distance as the dissimilarity
measure. For the clustering analysis, we minimized outlier ef-
fects by rejecting artifacts using a 10-dB threshold. To determine
the optimal number of clusters, we varied the number of clusters
from 2 to 10, starting from 100 random seeds. Clustering quality
was assessed using mean of the silhouette value. Silhouette value
was computed as Si = (bi − ai)/ max(ai,bi), where ai is the average
of the distance from ith point to all other points in the same
cluster and bi is the average of the distance from the ith point to
points in all other clusters minimized over clusters (2) and im-
plemented using the silhouette function in MATLAB. The peak
silhouette occurred with eight clusters. The results are not af-
fected strongly by the choice of the similarity measure, or by
using a more liberal artifact rejection threshold of 12 dB.
One hundred spectrogram samples closest to the centroids for

each cluster then were averaged to generate a representative
spectral profile for that cluster for visual inspection (Fig. 4A).

Cluster Validation. The probability distribution shown in Fig. 3B
of the main text shows the distribution of all data concatenated
across six animals. To rule out the possibility that the peaks in
this probability distribution reflect differences between animals
rather than fluctuations within each animal, the probability dis-
tribution computed for each animal is shown in Fig. S5A. Al-
though, as expected, there is some intersubject variability, all the
individual probability distributions show multiple peaks, suggest-
ing they are multimodal. Furthermore, inspection of the proba-
bility distributions suggests that the apparent peaks are best
separated along the second PC.
To show the existence of multiple states statistically, we tested

the null hypothesis that the data can be explained adequately by
a unimodal distribution using the Hartigan dip test (3) with 1,000
bootstrap surrogates for each experiment. As this test is suited
for univariate distributions, it was applied to the data projected
onto PC2 from each experiment individually. This distribution,
along with the p value for unimodality, is shown in Fig. S5B. The
null hypothesis of unimodality was rejected (p < 0.001) in each
experiment, which implies that in each experiment, the distri-
bution of states is multimodal, i.e., contains multiple clusters.
Determining the optimal number of clusters in the data is an ill-

posed problem, and a variety of tests and distance measures have
been proposed. Here, we used the maximum silhouette value
to partition the data into eight clusters. The results are not
strongly dependent on the choice of the outlier threshold, dis-
tance measure, or cluster quality measure. Thus, in what follows,
we assumed eight clusters.
Our method for measuring cluster consistency between experi-

ments relies on the approach and formalism proposed in ref. 4.
Given a finite dataset X = ðx1; x2 . . . ; xnÞ, a clustering algorithm

A assigns each point xi a label (cluster index) yi ∈L≔f1; . . . ; kg
(k = 8 in this case), thus producing a vector of labels Y ≔AðXÞ.
If we assume that different experiments are realizations of the
same probabilistic process, vectors Ytemp and Ytest produced by
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clustering algorithms Atemp and Atest independently derived from
subsets temp and test of the overall dataset should be similar.
To quantify the degree of similarity, we used the normalized

Hamming distance defined as dðYtemp;YtestÞ= 1
n

Pn
i=11fYtempðiÞ≠

YtestðiÞg, where 1fYtempðiÞ≠YtestðiÞg= 1 if Ytemp ðiÞ≠Ytest and 0
otherwise. This quantifies the fraction of all n points that were
assigned to different clusters using algorithms Atemp and Atest.
To determine the degree to which clustering is reproducible

between experiments, one preparation was chosen as “template”
and subjected to k-means clustering. Data from a different ex-
perimental preparation, “test,” were assigned to clusters based
on the proximity (squared Euclidian distance) to the centroids
derived based on the template (algorithm Atemp). This gives rise
to the vector Ytemp. The test experiment then was independently
subjected to the k-means algorithm, i.e., the centroids and cluster
allocations were based solely on the data from the test experi-
ment (algorithm AtestÞ. This gives rise to the vector Ytest.
Note that even in the perfect classification scheme, two label

vectors correspond up to a permutation ς∈Gk of the indices (i.e.,
naming conventions), where Gk is the set of all permutations of
the elements in cluster labels L: For example, cluster 1 in one
label vector may be labeled cluster 2 in the other label vector,
and vice versa, without any loss of consistency between classifi-
cation schemes. Thus, we computed the minimum normalized
Hamming distance between Ytemp across all permutations of
labels in Ytest as follows: dGkðYtemp;YtestÞ≔min

ς∈Gk

1
n

Pn
i=11fYtempðiÞ≠

ςðYtestðiÞÞg.
If centroids in the template and test experiments are identical,

then dGkðYi;YjÞ will be zero. If there is no correspondence be-
tween the centroids obtained in the two cases, the distance be-
tween the two vectors will be maximized (see below). Thus, this
is a useful measure to assess the consistency of clustering.
Using this algorithm, we used each subject as a template and

computed the consistency between it and the remaining five
subjects. The results shown in Fig. S5C show a 1-Hamming
distance obtained in each case (i.e., the fraction of all data al-
located to the same cluster). It can be seen that in each case,
clustering is ∼60% consistent between subjects.
Distance between two label vectors strongly depends on the

number of clusters. For instance, concordance of 50% will be
equal to chance performance if there are only two clusters but
would be highly improbable if the data were partitioned into 100
clusters. A random labeling algorithm that assigns a point x to one
of k categories (clusters) with probability 1/k will asymptotically
achieve the normalized Hamming distance of 1 − 1/k with Ytemp.
This expected performance of a random labeling algorithm is
shown by the black line in Fig. S5C. As the number of ob-
servations in each experiment was >10,000, this prediction was
followed closely in 1,000 surrogate datasets produced by random
assignments of the data to eight clusters. The highest similarity
between template and randomly assigned surrogate never ap-
proached the lowest similarity observed between experiments
shown in Fig. S5C. Thus, obtaining this degree of concordance
between experiments cannot be explained plausibly by the null
hypothesis of random cluster assignments.
One limitation of this null hypothesis, however, is that random

assignment of the data into clusters may result in two data points
with the same coordinates being assigned to different clusters.
Furthermore, the data are not expected to be partitioned equally
into eight clusters—some clusters have many more points than
others. To overcome these limitations, we tested an additional
null hypothesis that the position of the centroids obtained by
k-means clustering of each experiment is random. For each pair
of animals (i,j) where i ≠ j, we constructed a set of 10 vectors Ytest
that were assigned to eight clusters based on randomly chosen
centroids (constrained to be within the range observed in the
data for rat j) and computed the distribution of distances be-
tween the vector Ytemp and each Ytest, as described above. The

experimentally observed (based on data in Fig. S5C) cumulative
distribution of Hamming distances, along with jackknife confi-
dence intervals (red, Fig. S6), and cumulative distribution of
Hamming distances obtained using random centroids (blue, Fig.
S6) are shown.
To determine the likelihood of obtaining the experimentally

observed distribution of Hamming distances under the assump-
tion of null hypothesis, we performed a Mann–Whitney U test
(P < 0.001). Thus, although there is an overlap between the
distributions in Fig. S6, it is highly implausible that taken to-
gether, the experimentally observed Hamming distances can be
obtained under the assumption of null hypothesis.
Hamming distance reflects the fraction of all points that were

assigned inconsistently in the two label vectors. The absolute
significance of a given difference in the Hamming distance be-
tween data and the null hypothesis therefore depends on the
length of the dataset. To account for the differences in the total
number of points in different experiments, for each pair of rats
(i,j) we computed the distribution of the excess number of points
consistently assigned to the same cluster when dataset-based
centroids were used rather than when random centroids were
used. This corresponds to the rat-pair–by–rat-pair difference
between the experiment and the null hypothesis that takes into
account the differences in the length of the dataset in each an-
imal. If there were no difference between the data and the null
hypothesis, the expected value of the difference in the number of
consistently assigned points should be zero. The mean of the
observed difference in the number of consistently assigned points
was 1,012.5 (P < 0.0001, two-tail t test). Thus, the concordance
between experiments is not consistent with a null hypothesis.

Random Walk Simulation. To avoid assumptions concerning the
distribution of steps, we computed pairwise differences between
spectra. Each random walk was started from a randomly chosen,
experimentally observed spectrum. At each time step, a random
step was chosen from the distribution of pairwise differences
between spectra. To prevent the random walker from exceeding
the experimentally observed range, we imposed reflective boundary
conditions such that the position of the simulation along each
frequency (dimension) was contained in the range defined by the
minimum andmaximum of the experimentally observed data along
this dimension.
Awakening, defined as the onset of spontaneous movement,

predominantly occurred within a single cluster (red asterisk, Fig.
4). Thus, a random walker was considered awake when it was
found inside this (goal) cluster. Note that in the experimental
data, merely arriving into the cluster does not necessarily imply
awakening. Many visits into the red asterisk cluster occur before
awakening in Fig. 4, which biases the results toward success of the
simulation.
The boundaries of the goal cluster were defined as a sphere

centered at the cluster centroid with a radius equal to the 95th
percentile of the distances of all cluster members to the centroid.
The random walker was considered to be inside the cluster when
its distance to the cluster centroid was less than this distance.
If the simulation failed to converge on the cluster in 106 steps, it
was aborted.
In the preliminary analysis, none of the simulations constructed

on the basis of five concatenated channels (Dimensionality Re-
duction) converged. To further bias the results toward the sim-
ulation, we considered a single cortical channel. Furthermore, if
the simulation of a single cortical channel was started from a
point corresponding to burst suppression, it failed to converge.
Thus, we simulated only the lowest anesthetic concentration
(0.75% isoflurane), at which burst suppression rarely is observed,
and started from a randomly chosen state observed during this
concentration (assuming that it itself was not inside the goal
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cluster). Pairwise difference spectra observed at this isoflurane
concentration were used as steps.
The results obtained from 250 such simulations are shown in

Fig. 1D. Only simulations that were randomly started close to the
cluster managed to converge (note the steep increase in the
cumulative probability, followed by a plateau). The red arrows
show the experimentally observed times of awakening, defined
as the time from the switch to 0.75% isoflurane to the time
movement first was observed.
Failure of the simulations to converge despite multiple biases

favoring convergence is not surprising. If the total space occupied
by brain dynamics is considered a hyperrectangle whose size in
each dimension is given by the minimum and maximum exper-
imentally observed values and the goal cluster is considered a
multidimensional sphere whose radius is given by the cluster
boundary (defined above), then the fraction of the total space
occupied by activity patterns consistent with awakening is ∼10−18.
This simple calculation illustrates the improbability of recovery
from anesthesia by random walk alone.

Network Analysis. Visual inspection of the network formed by the
transition probabilities linking different metastable states sug-
gests that two states (marked by blue and green asterisks in Fig.
4C) form hubs, i.e., states that link otherwise disconnected no-
des. To show this quantitatively, we constructed an 8 × 8 adja-
cency matrix A such that

Aði; jÞ=
�
1; pðijjÞ≥ 0:003
0; otherwise

:

(The threshold is the same as in Fig. 4C.) Note that because
ðijjÞ≠ pðjjiÞ, the graph is directed.
We then found the shortest path (i.e., the one requiring the

smallest number of steps) starting from ith state and culmi-
nating in the awake state w (red asterisk in Fig. 4C), where i ≠ w.

Centrality of the jth node then was computed as a fraction of the
shortest paths starting from each of the seven states i ≠ w and
culminating in w that include state j. Because state i is guaran-
teed to be in all paths starting from state i, it was excluded from
the calculations. The results of this calculation are shown in Fig.
S9. Note that the centrality of the hub marked by the blue as-
terisk is less than that of the one marked by the green asterisk.
This is because we considered all states, including those closer to
the awake cluster than the hub marked by the blue asterisk. Also
note that the centrality of all other nodes is zero.

Respiratory Rate Analysis.Respiratory rate was computed from the
amplitude variation in the ECG. Briefly, R-wave peaks were
identified in the raw ECG recordings. The time series consisting
of R-wave amplitudes then was resampled by interpolation to
assure a fixed sampling rate. The spectrum of this signal then was
estimated with a standard multitaper approach using 60-s win-
dows with a window step of 1 s. The peak of the spectrum in
window centered at time t was used as the estimate of the re-
spiratory rate at time t. This analysis was performed for each
animal and each anesthetic concentration. To determine whether
a statistically significant variation in the respiratory rate was
present, we subjected these data to repeated measures ANOVA.
As we were not interested in the differences in the absolute value
of the respiratory rate observed in different experiments, the re-
spiratory rate of each animal was normalized by the mean value
observed for each anesthetic concentration for that animal, i.e., all
data were expressed as deviations from mean. One hour of re-
cording then was divided into 4 windows (∼15 min long), and the
respiratory rate was averaged within each window for each animal
at each anesthetic concentration. Data from all animals and all
concentrations then were submitted to repeated measures ANOVA
(df = 19, F = 0.672, P = 0.830). Thus, we cannot detect any sig-
nificant deviation from the mean respiratory rate observed during
fixed anesthetic exposure.

1. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):
1055–1096.

2. Kaufman L, Rouseeuw J (1990) Finding Groups in Data: An Introduction to Cluster
Analysis (Wiley, New York).

3. Hartigan PM (1985) Algorithm AS 217: Computation of the dip statistic to test for
unimodality. J R Stat Soc Ser C Appl Stat 34(3):320–325.

4. Lange T, Roth V, Braun ML, Buhmann JM (2004) Stability-based validation of clustering
solutions. Neural Comput 16(6):1299–1323.
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Fig. S1. Histology confirms correct electrode placement. All sections are from the same animal. Sections containing the scar from each of the prongs of the
array are shown. The number above each section shows the approximate distance from the bregma along the anterior–posterior axis. Each section is juxta-
posed with the corresponding diagram from the rat brain atlas. The electrode track is marked with a large arrowhead. All sections are shown on the same
scale. cc, corpus callosum; Cg, cingulate cortex; CL, centrolateral nucleus of the thalamus; CM, centromedian nucleus of the thalamus; LV, lateral ventricle; M,
motor cortex; RS, retrosplenial cortex.
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Fig. S2. Fluctuations in neuronal activity on a fast time scale are multidimensional noise. (A) Covariance matrix of fluctuations in power computed for a single
cortical channel. Although some correlations exist, they are sparse and weak. Note that because in the random walk simulation we sample the distribution of
these fluctuations at each time step, we preserve whatever weak covariance structure is present in the data. (B) Consistent with the results in A, PCA fails to
reduce the dimensionality of the fluctuations. It takes >50 dimensions to capture 70% of the total variance (contrast this with Fig. 2C). (C) The autocorrelation
function computed for fluctuations in each frequency is close to zero. Thus, randomly sampling the distribution of steps for the random walk simulation is
justified. (D–I) Distribution of the fluctuations projected onto the first seven PCs demonstrates that fluctuations, to a good approximation, are noise distributed
among many dimensions.
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Fig. S3. Examples of abrupt state transitions. All traces are from the same experimental preparation. (A) The whole hour of recording obtained at 1.75%
isoflurane. Although burst suppression is exhibited throughout much of the recording, the different modes characterizing bursts and periods of quiescence
fluctuate among several distinct states. (B) Expansion of traces in A in the range denoted by two red dots on the time scale bar in A. (C) Transition to γ-range
oscillations simultaneously observed in multiple channels at 1.0% isoflurane. (D) Switch from δ-dominant to θ-dominant activity at 1.5% isoflurane. DC, deep
cingulate; DR, deep retrosplenial; SC, superficial cingulate; SR, superficial retrosplenial; T, centrolateral thalamus.
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Fig. S4. Concatenation does not strongly influence the structure of the data from each animal. (A) Data from each animal were independently subjected to
PCA. The fraction of total variance captured in the first three PCs is represented as a box plot. In addition, data from each individual rat is shown as a red ●.
With the exception of one outlier, the dimensionality reduction obtained in each rat is similar to that obtained in the concatenated dataset (Fig. 2). (B)
Standardized Euclidean distance (each coordinate is expressed in the units of SD of the data along each dimension) was computed between all pairs of points
from each rat projected in two different ways: (i) onto the first three PCs derived solely based on data from that rat and (ii) onto the first three PCs derived
based on the concatenated dataset. The Pearson correlation coefficient between the two distance matrices was computed using 100 bootstrap replicas, each
consisting of 10,000 pairwise distance measures. The distribution of estimates is shown as a box plot for each rat. (C) Scatterplot showing that distances in prep-
based PCA are similar to those observed when the data are projected onto PCs derived on the basis of the concatenated dataset.
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in each case, multiple distinct peaks can be observed. (B) Projection of the probability distribution of the data in each experiment onto PC2 is multimodal in
every animal. Above each plot is the P value for unimodality computed using the Hartigan dip test (SI Materials and Methods). (C) Concordance between
clusters shown as the fraction of all data allocated to the same cluster when each experiment was used as a template in turn (SI Materials and Methods). Each○
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concordance. The observed degree of concordance is statistically significant (SI Materials and Methods) when tested against both random cluster assignments
and random centroid locations (distribution of Hamming distances obtained with experimentally derived and random centroids shown in Fig. S6).
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Fig. S6. Distribution of Hamming distances obtained based on the data-derived and randomly chosen centroids. For each pair of animals (i,j) where I ≠ j, we
computed the Hamming distance between cluster assignments of rat j clustered independently and using centroids derived on the basis of data from rat i
(template). This gives rise to 30 distance measures. Cumulative distribution is shown by the thick red line. Jackknife confidence intervals (0.05 and 0.95) were
computed by leaving out each of the six rats used as a template in turn and recomputing the probability distribution (thin red lines). For each pair (i,j), we then
used 10 sets of random centroids (constrained to be within range of data in rat j) and computed the Hamming distances between rat j clustered to the random
centroids and those computed on the basis of rat i (total of 300 distances). Cumulative distribution of these is shown by the thick blue line. Jackknife confidence
intervals (0.05 and 0.95) were computed as above (thin blue line). P < 0.001 (Mann–Whitney U test). Thus, the concordance between experiments is statistically
significant. As different experiments have a different number of points, we computed the distribution of the excess number of points that were allocated
consistently into clusters when data-based centroids were used for each pair of rats (i,j). We then tested this distribution against the null hypothesis that the
excess number of consistently clustered points is zero (mean 1,012.5, P < 0.0001, two-tail t test). Thus, on average, 1,012.5 more points were allocated to
clusters correctly when centroids from another experiment were used rather than randomly chosen centroids.
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Fig. S7. Cumulative dwell time distributions for each of the eight clusters and the number of distinct visits to each cluster. (A) Although some dwell times are
short, many extend for several minutes. All distributions are right skewed. Line colors are the same as those in Figs. 4 and 3C of the main text. Blue and green
asterisks correspond to the hub states; the red asterisk corresponds to the cluster in which awakening most commonly was observed. (B) Hub states (blue and
green asterisks) are visited more frequently than nonhub states.
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Fig. S8. Highly occupied states are stabilized. (Position) Distribution of data in the plane that allows for best visualization of the separation between clusters is
shown for three different anesthetic concentrations. The histogram count in each bin is normalized to the range between 0 (not occupied) and 1 (most oc-
cupied) and encoded as red in the RGB color scheme. (Velocity) Mean fluctuation amplitude as a function of position was computed as v= 1

n

Pn
i=1d

2ðxi+1, xiÞ,
where d2ð · Þ is the squared Euclidean distance between two positions separated by 1 s and i∈ f1,::,ng are indices of points that lie in a particular bin in the
position histogram. This quantity similarly was normalized to lie between 0 and 1 and encoded in green in the RGB color scheme. (Overlay) Superposition of
Position and Velocity data is shown. This image is constructed such that if both occupancy and velocity are high, the color appears yellow. Pure red indicates
locations with high occupancy and low velocity. Pure green corresponds to high velocity and low occupancy. Note the rim of green (large fluctuations) that
surrounds areas of red (large occupancy). Thus, the densely occupied locations are stabilized, whereas sparsely occupied regions between them are relatively
unstable.
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Fig. S9. Analysis of centrality confirms definition of hub states. The centrality of each state was computed as described in SI Materials and Methods. Clusters are
color coded in the same way as in Fig. 4. Green and blue asterisks indicate hubs shown in Fig. 4. Note that the centrality of all other nodes in the network is zero.
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Fig. S10. (A) Distribution of points assigned to each cluster among different animals. Each circle represents a cluster (grouped and ordered in the same fashion
as in Fig. 4). The area of the circle occupied by each segment is proportional to the percentage (shown around the perimeter) of all data allocated to that
cluster from each experiment. Seven of 8 clusters were visited by each of the six rats, whereas one cluster was visited by five of six rats. Data from all six animals
contribute to all the hubs (shown by asterisks), whereas some nonhub states appear to be dominated by data from a single animal. Note that different ex-
periments have a different number of points. This measure is not normalized to reflect this difference. (B) Transition probability matrix computed on the basis
of all animals. Note that the probability of staying in the cluster (diagonal elements) is approximately two orders of magnitude higher than the probability of
switching between clusters. Thus, a relatively small difference in the number of unique visits to a cluster may result in a larger difference in the total number of
points in the cluster. This is especially likely for the less frequently visited nonhub states.
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Movie S1. Rotation of the data shown in Fig. 3C to improve visualization of the location of the activity clusters in the space spanned by the first three PCs.

Movie S1

Movie S2. Rotation of the data shown in Fig. 4C to improve visualization of the network structure.

Movie S2
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