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Abstract

Crick and Mitchison1 have presented a hypothesis for the functional role of dream sleep in-
volving an ‘unlearning’ process. We have independently carried out mathematical and computer
modelling of learning and ‘unlearning’ in a collective neural network of 30 − 1, 000 neurones.
The model network has a content-addressable memory or ‘associative memory’ which allows it
to learn and store many memories. A particular memory can be evoked in its entirety when
the network is stimulated by any adequate-sized subpart of the information of that memory2.
But different memories of the same size are not equally easy to recall. Also, when memories are
learned, spurious memories are also created and can also be evoked. Applying an ‘unlearning’
process, similar to the learning processes but with a reversed sign and starting from a noise
input, enhances the performance of the network in accessing real memories and in minimizing
spurious ones. Although our model was not motivated by higher nervous function, our system
displays behaviours which are strikingly parallel to those those needed fro the hypothesized role
of ‘unlearning’ in rapid eye movement (REM) sleep.

In the most symmetric form of collective memory in our dynamic neural network2, each neurone,
j, has two states, and is described by a variable µj = ±1. The instantaneous state of the system
of N neurones can be thought of as an N -dimensional vector have components µi of size 1. The
neurones are interconnected by a network of synapses, with a synaptic strength Tij from neurone
j to neurone i. The instantaneous input to neurone i is

input to i =
∑
i 6=1

Tijµj (1)

where µj is the present state (±1) of neurone j. The neural state of the system changes in time
under the following algorithm. Each neurone i interrogates itself at random in time, but at a mean
rate W , and readjusts its state, setting µi = ±1 according to whether the input to i at the moment
is greater or less than zero. The neurones act asynchronously.

This algorithm defines the time evolution of the state of the system. For any symmetric con-
nection matrix, there are stable states of the network of neurones, in which each neurone is either
‘on’ and has an input ≥ 0 or ‘off’ and has an input < 0. These stable states will not change in time.
Starting from any arbitrary initial state, the system reaches a stable state and ceases to evolve in
a time of ∼ 3/W .
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The stable states of the system can be arbitrarily assigned by an appropriate choice of Tij .
Suppose n different N -dimensional state vectors

µs
i}Ni=1s = 1 to n ≤ 0.25N (2)

are able to be stable states of the system. If these state vectors are sufficiently different, and if the
synaptic connection matrix Tij is given by

Tij =
∑

s

µs
iµ

s
j ;Tii = 0; i 6= j (3)

then the states µs will be stable states of the system.
This network now functions as an associative memory. If started from an initial state which

resembles somewhat state µt and which resembles other µs(s 6= t) very little, the state will evolve
to the state µt. The state µs are evokable memories, and the system correctly reconstructs an
entire memory any initial partial information, as long as the partial information was sufficient to
identify a single memory. Detailed properties of the collective operation of this network have been
described previously2.

The form of the Tij matrix can be described as an incremental learning rule. To learn a new
memory µnew, increment Tij by

learn µnew∆Tij = µnew
i µnew

j (4)

In biology or circuits, this would be done by placing the system in state µnew—for example, driven by
external inputs—and enabling a learning process that allows all Tij to increment. The information
needed by each synapse is local—the increment for synapse ij does not depend on the global
structure of the new state or past memories, but only on µnew

i and µnew
j .

Under this algorithm, when random starting stares are chosen, some stored memories are much
more accessible than others, that is, considerably larger numbers of randomly chosen initial states
lead to some memories than to others. This is a vagary of the particular set of memories which have
been learned. It occurred to us that it would be possible to reduce this unevenness of access (which
can be intuitively described as the “50% of all stimuli remind me of sex” problem) by ‘unlearning’.

Specific unlearning was implemented by choosing starting states at random; when a final equi-
librium state µf was reached it was weakly unlearned by the incremental change

unlearn µf ∆Tij = −εµf
i u

f
j , 0 < ε� 1 (5)

Figure 1 illustrates the effect of unlearning on the accessibility of five stored memories in a
set of 32 neurones. Accessibility is quantitatively defined as the fraction of random initial states
leading to a particular final stable state or group of states. The unevenness of the lines is due
in part to statistical noise in the simulation. The accessibility of the nominal assigned memories
initially ranges over a factor of 3, but converges with unlearning to a spread of only a factor of 1.4.
Thus the accessibility is much more uniform (or in Crick-Mitchison terms, the relative stability
of the modes made more uniform) after specific unlearning, and the system will have functionally
improved recall.

In our model the storage of a set of assigned memories in Tij also produces a set of spurious
stable states which were not inserted as memory states. One of the strong effects of unremembering
is to reduce the total accessibility of spurious states, as shown by the solid line in Fig. 1.

The qualitative reason for the success of unlearning comes from the behaviour of the ‘energy’
E, defined for any state µ as

E = −
∑
i 6=j

∑
j

Tijµiµj (6)
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Figure 1: The fraction of random starting states which leads to particle memories (accessibility).
The five dashed lines are the five nominal memories. The solid line is the total accessibility of all
spurious memories. In these trials ε was set at 0.01.

The change of neural state with time according to the asynchronous algorithm monotonically de-
creases E until a final stable state is reached—either a stored memory or a spurious memory. Any
stable state µm has, for a given Tij , an energy Em. There is a strong tendency for the states having
the deepest energy valleys to collect from the largest number of random starting states, that is,
deep valleys are also broad. When a final state µf is unlearned, its energy Ef is specifically raised
and its valley of collection diminished relative to other states. While this argument indicates why
accessibility of stored memories should be made more nearly even by unlearning, only a detailed
analysis shows why the spurious states should be so sensitive to it. Too much unlearning will
ultimately destroy the stored memories.

We have identified a class of spurious states, which in their most elementary form have their
origin in triples. As an example on 16 neurones

Memory 1 + + + +−−−− |+ +−+−+−−
Memory 2 + + + +−−−− | − −+−+−+ +
Memory 3 + +−−+ +−− |+−−+ +−−+

Spurious memory + + + +−−−− |+−−+ +−−+
The stability of the spurious memory is enhanced if the first half of memory 3 is weakly corre-
lated with memories 1 and 2. Mathematical analysis of the statistical stability of such spurious
states shows that they are typically less stable than the assigned memories, and that the stability
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will also depend on correlations with other memories. The nature of these spurious states can be
described by analogy in terms of higher level function by the example

Memory 1 Walter, white
Memory 2 Walter, black
Memory 3 Harold, grey

Spurious memory Walter, grey
where grey is taken as a category equally resembling black and white. This spurious state is more
stable when ‘Harold’ and ‘Walter’ have a significant correlation—perhaps ‘Harold’ and ‘Harry’.
These particular spurious states are not simply transitive logical associations of the form A ↔ B,
B ↔ C; → A↔ C. They are truly spurious ‘illogical’ associations, but perhaps ‘plausible’ as they
come from correlations in the structure of memories.

In our simple system, unlearning improves memory function by the equalization of accessibility
and the suppression of spurious memories. We asked whether other simple algorithmic changes
such as clipping the Tij matrix or a threshold effect produce an equivalent improvement in memory
performance. These two do not, presumably because they lack the essential element of the present
scheme, that is, the feedback via the algorithm of information about the accessibility of particular
states. We believe the results found will be insensitive to whether the state component values are
taken as 0 or 1 or ±1.

The REM sleep hypothesis of Crick and Mitchison1 refers to higher level processing. Our exam-
ple illustrates that from a mathematical viewpoint the general idea could work as they described. If
the Crick-Mitchison hypothesis is correct, one might ask about correlations between the structure
of the spurious linkages in modelling and the strange associations present in dreams.
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