
This means that the necessary extrapolation
of the known lower rotational J transitions to
the unknown higher j transitions will fail
with the traditional perturbation Hamiltoni-
an. Some progress can be made if the diver-
gent series is resumed with the use of Pad&
approximants (22) and other more sophisti-
cated schemes (23). The assignment of the
hot water vapor spectrum is therefore a dif-
ficult task (24). The water spectrum is of
fundamental importance and presents such a
theoretical challenge that new techniques
(18, 25) for the calculation of spectra are
often tested with it.

REFERENCES AND NOTES

1 J. Liebert, in Molecules in the Stellar Environment, U.
G. Jorgensen, Ed. (Springer-Verlag, Berlin, 1994),
figure 1, p. 62; F. Allard, P. H. Hauschildt, S. Miller, J.
Tennyson, Astrophys. J. 426, L39 (1994).

2. K. H. Hinkle and T. G. Barnes, Astrophys. J. 227, 923
(1979).

3. H. Spinrad and R. F. Wing, Annu. Rev. Astron. As-
trophys. 7, 249 (1969).

4. T. Tsuji and K. Ohnaka, in Elementary Processes in
Dense Plasmas, S. lchimaru and S. Ogata, Eds. (Ad-
dison-Wesley, Reading, MA, in press).

5. A. C. Cheung et al., Nature 221, 626 (1969).
6. J. C. Pearson, T. Anderson, E. Herbst, F. C. Delucia,

P. Helminger, Astrophys. J. 379, L41 (1991); T.
Amano and F. Scappini, Chem. Phys. Lett. 182, 93
(1991), and references therein.

7. R. J. Bray and R. E. Loughead, Sunspots (Dover,
New York, 1979), p. 107.

8. K. Sinha, Proc. Astron. Soc. Aust. 9, 32 (1991).
9. M. Geller, A High-Resolution Atlas of the Infrared

Spectrum of the Sun and the Earth Atmosphere
from Space, volume Ill, Key to Identification ofSolar
Features (NASA Ref. Publ. 1224, National Aero-
nautics and Space Administration, Washington,
DC, 1992).

10. D. N. B. Hall, thesis, Harvard University (1970).
11. L. Wallace and W. Livingston, An Atlas of a Dark

Sunspot Umbral Spectrum from 1970 to 8640 cm- 1

(1.16 to 5.1 plm) (Natl. Solar Observ. Tech. Rep.
92-001, National Optical Astronomy Observatories,
Tucson, AZ, 1992).

12. S. G. Kleinman and D. N. B. Hall, Astrophys. J.
Suppl. Ser. 62, 501 (1986).

13. D. N. B. Hall and R. W. Noyes, Astrophys. J. 175,
L95 (1972).

14. R. B. LeBlanc, J. B. White, P. F. Bernath, J. Mol.
Spectrosc. 164, 574 (1994).

15. J. M. Flaud, C. Camy-Peyret, J. P. Maillard, Mol.
Phys. 32, 499 (1976).

16. C. Camy-Peyret et al., ibid. 33, 1641 (1977).
17. R. A. Toth, Appl. Opt. 33,4851 (1994), and referenc-

es therein.
18. 0. L. Polyansky, P. Jensen, J. Tennyson, J. Chem.

Phys. 101, 7651 (1994), and references therein.
19. L. Wallace, W. Livingston, P. Bernath, An Atlas of the

Sunspot Spectrum from 470 to 1233 cm- 1 (8.1 to
21 plm) and the Photospheric Spectrum from 460 to
630 cm- 1 (16 to 22 Wn) (Natl. Solar Observ. Tech.
Rep. 1994-01, National Optical Astronomy Observa-
tories, Tucson, AZ, 1994).

20. D. A. Glenar, A. R. Hill, D. E. Jennings, J. W. Brault,
J. Mol. Spectrosc. 111, 403 (1985).

21. J. M. Campbell, D. Klapstein, M. Dulick, P. F. Ber-
nath, L. Wallace, in preparation.

22. 0. L. Polyansky, J. Mol. Spectrosc. 112, 79 (1985).
23. V. G. Tyuterev, ibid. 151, 97 (1992).
24. 0. L. Polyansky, J. Busier, B. Guo, K. Zhang, P.

Bernath, in preparation.
25. U. G. Jorgensen and P. Jensen, J. Mol. Spectrosc.

161, 219 (1993).
26. W. Livingston, Nature 350, 45 (1991).
27. The National Optical Astronomy Observatories are

operated by the Association of Universities for Re-
search in Astronomy under cooperative agreement

1158

with the National Science Foundation. We thank T.
Tsuji for a copy of (4) in advance of publication. This
work was supported by the Natural Sciences and
Engineering Research Council of Canada. This
work was supported in part by the Petroleum Re-

search Fund. Some support was also provided by
the National Aeronautics and Space Administration
Laboratory Astrophysics Program.

3 February 1995; accepted 17 March 1995

The "Wake-Sleep" Algorithm for
Unsupervised Neural Networks

Geoffrey E. Hinton,* Peter Dayan, Brendan J. Frey,
Radford M. Neal

An unsupervised learning algorithm for a multilayer network of stochastic neurons is
described. Bottom-up "recognition" connections convert the input into representations
in successive hidden layers, and top-down "generative" connections reconstruct the
representation in one layer from the representation in the layer above. In the "wake"
phase, neurons are driven by recognition connections, and generative connections are

adapted to increase the probability that they would reconstruct the correct activity vector
in the layer below. In the "sleep" phase, neurons are driven by generative connections,
and recognition connections are adapted to increase the probability that they would
produce the correct activity vector in the layer above.

Supervised learning algorithms for multi-
layer neural networks face two problems:
They require a teacher to specify the desired
output of the network, and they require
some method of communicating error infor-
mation to all of the connections. The wake-
sleep algorithm avoids both of these prob-
lems. When there is no external teaching
signal to be matched, some other goal is
required to force the hidden units to extract
underlying structure. In the wake-sleep al-
gorithm, the goal is to learn representations
that are economical to describe but allow
the input to be reconstructed accurately.
We can quantify this goal by imagining a
communication game in which each vector
of raw sensory inputs is communicated to a
receiver by first sending its hidden repre-
sentation and then sending the difference
between the input vector and its top-down
reconstruction from the hidden representa-
tion. The aim of learning is to minimize the
"description length," which is the total
number of bits that would be required to
communicate the input vectors in this way
(1). No communication actually takes
place, but minimizing the description
length that would be required forces the
network to learn economical representa-
tions that capture the underlying regulari-
ties in the data (2).

The neural network has two quite differ-
ent sets of connections. The bottom-up
"recognition" connections are used to con-
vert the input vector into a representation
in one or more layers of hidden units. The
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top-down "generative" connections are
then used to reconstruct an approximation
of the input vector from its underlying rep-
resentation. The training algorithm for
these two sets of connections can be used
with many different types of stochastic neu-
rons, but for simplicity, we use only stochas-
tic binary units that have states of 1 or 0.
The state of unit v is so, and the probability
that it is on is

Prob(s, = 1) =
1

1 + exp( b,- suWUV)
(1)

where b, is the bias of the unit and wUV is
the weight on a connection from unit u.
Sometimes the units are driven by the
generative weights, and at other times
they are driven by the recognition
weights, but the same equation is used in
both cases (Fig. 1).

In the "wake" phase, the units are driven
bottom-up with the recognition weights; this
produces a representation of the input vector
in the first hidden layer, a representation of
this representation in the second hidden lay-
er, and so on. All of these layers of represen-
tation combined are called the "total repre-
sentation" of the input, and the binary state
of each hidden unit j in the total represen-
tation ot is so . This total representation could
be used to communicate the input vector d
to a receiver. According to Shannon's cod-
ing theorem, it requires -log r bits to com-
municate an event that has probability r
under a distribution agreed upon by the
sender and receiver. We assume that the
receiver knows the top-down generative
weights (3), so that these can be used to
create the agreed probability distributions
required for communication. First, the activ-

---1. 00~ewe l:i.:i:li-imi am WAIM FK~

on M
ay 15, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/


-4-ma
ity of each unit k in the top hidden layer is
communicated using the distribution (p', 1
- pk), which is obtained by applying Eq. 1 to
the single generative bias weight of unit k.
Then the activities of the units in each lower
layer are communicated using the distribu-
tion (pra, 1 -P'j) obtained by applying Eq. 1
to the already communicated activities in
the layer above, Sk, and to the generative
weights, Wk1. The description length of the
binary state of unit j is

C(sj7) = -s logp7 - (1 - s7)log(1 - p7)
(2)

The description length for input vector d
using the total representation at is simply the
cost of describing all the hidden states in all
the hidden layers plus the cost of describing
the input vector given the hidden states

C(otd) = C(a) + C(dlot)

= > IC(s,) + IC(Sd'c) (3)
tEL jet

where f is an index over the L layers of
hidden units and i is an index over the
input units that have states s .

Because the hidden units are stochastic,
an input vector will not always be represent-
ed in the same way. In the wake phase, the
recognition weights determine a conditional
probability distribution Q( Id) over total
representations. Nevertheless, if the recogni-
tion weights are fixed, there is a very simple,
on-line method of modifying the genera-
tive weights to minimize the expected cost

1.P(oL d)C(ox,d) of describing the input
vector with a stochastically chosen total
representation. After the recognition
weights are used to choose a total represen-
tation, each generative weight is adjusted in
proportion to the derivative of Eq. 3 by use
of the purely local delta rule

AWkj = ESk'(S - pj') (4)

where e is a learning rate. Although the
units are driven by the recognition weights,
it is only the generative weights that learn
in the wake phase. The learning makes each
layer of the total representation better at
reconstructing the activities in the layer
below.

It seems obvious that the recognition
weights should be adjusted to maximize the
probability of picking the a that minimizes
C(ot,d). But this is incorrect. When there
are many alternative ways of describing an
input vector, it is possible to design a sto-
chastic coding scheme that takes advantage
of the entropy across alternative descrip-
tions (1). The cost is then

C(d) = YQ(otid)C(ot,d)

[ -IQ(ot d)logQ(ot d)
at

Layer - model of the world. Having produced a fan-
K tasy, we then adjust the recognition weights

to maximize the logarithm of the probability
of recovering the hidden activities that ac-
tually caused the fantasy

Fig. 1. A three-layer Helmholtz machine. The
tom layer represents the raw sensory inputs. L
in layers 1, J, and K are completely interconne
with recognition (solid lines) and generative (
ted lines) connections. The binary activity of i
in layer J is sj. The quantity qj is determined bS
recognition weights, and p, is determined by
generative weights. When the units are driven
tom-up, the probability that s, = 1 is q,; when
are driven top-down, the probability is pj.

The second term on the right is the enti
of the distribution that the recognil
weights assign to the various alternative
resentations. If, for example, there are
alternative representations, each of wi
costs 4 bits, the combined cost is only 3
provided we use the two alternatives ^
equal probability (4). It is precisely an
gous to the way in which the energies of
alternative states of a physical system
combined to yield the Helmholtz free ena
of the system. As in physics, C(d) is rm
mized when the probabilities of the altei
tives are exponentially related to their c
by the Boltzmann distribution (at a tem.
ature of 1)

P(a Id) = exp[-C(ot,d)]

So, rather than adjusting the recognil
weights to focus all of the probability on
lowest cost representation, we should tr
make the recognition distribution Q(Q Id
similar as possible to the Boltzmann
tribution P( Id), which is the posterior
tribution over representations given the
and given the network's generative mods
is exponentially expensive to compute P(
exactly (5), but there is a simple wa
getting approximately correct target st
for the hidden units in order to train
distribution Q( Id) produced by the bott
up recognition weights.
We turn off the recognition weights

drive all of the units in the network with
generative weights, starting at the topr
hidden layer and working down all the
to the input units. Because the units
stochastic, repeating this process typi(
produces many different "fantasy" vector
the input units. These fantasies provide
unbiased sample of the network's gener2

SCIENCE * VOL. 268 * 26 MAY 1995

where y specifies the states of both the
hidden units and the input units for a par-
ticular fantasy and qy is the probability that
unit k would be turned on by the recogni-
tion weights operating on the binary activ-

bot- ities sf in the layer below (6). We call this
nitd the "sleep" phase of the algorithm. Like the
dot- wake phase, it uses only locally available
nitj information. A potential drawback of the
the sleep phase is that we would like the recog-
the nition weights to be good at recovering the
bot- true causes for the training data but the
they sleep phase optimizes the recognition

weights for fantasy data. Early in the learn-
ing, fantasies will have a quite different
distribution than the training data.

opy The distribution Q(Q Id) produced by the
Lion recognition weights is a factorial distribution
rep- in each hidden layer because the recognition
two weights produce stochastic states of units
iich within a hidden layer that are conditionally
bits independent, given the states in the layer
vith below. It is natural to use factorial distribu-
alo- tions in a neural net because it allows the
the probability distribution over the 2n alterna-
are tive hidden representations to be specified
rgy with n numbers instead of 2n - 1. This
ini- simplification, however, will typically
ma- make it impossible for the distribution
osts Q( d) to exactly match the posterior dis-
per- tribution P( d) in Eq. 6. It makes it im-

possible, for example, to capture "explain-
ing away" effects where the activity vector

(6) in one layer can be economically ex-
plained by activating either unit a or unit
b in the layer above but not by activating

tion both of them.
the The restriction of Q(- d) to a factorial
y to distribution is a potentially very serious
1) as limitation. The reason it is not a fatal flaw
dis- is that the wake phase of the algorithm
dis- adapts the generative weights so as to
data make P(1 d) close to Q(1 d), thus limiting
4. It the loss caused by the inability of Q( Id)
i d) to model nonfactorial distributions. To see
y of why this effect occurs, it is helpful to
:ates rewrite Eq. 5 in a different form
the
tom- C(d) P(cxl d)C(a,d)-OM~~~~~

( P1xd)log P(ao d))
a

+ E Q(t Id) log d)

The first two terms on the right in Eq. 8 are

exactly -log P(d) under the current gener-
ative model. The last term, which cannot be
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AWjk = ES( -qk ) (7)

(8)
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Fig. 2. (A) A generative model for 4 x 4 images. The top level decides whether to use vertical (V) or

horizontal (H) bars. The next level decides whether each possible bar of the chosen orientation should be
present in the image. (B) A sample of the images produced by the model in (A) with the ambiguous all-white
images removed. A neural net with 16 input units, 8 units in the first hidden layer, and 1 hidden unit in the
second hidden layer was trained on 2 x 106 random examples produced by the generative model. After
training (17), the probability distribution produced in the sleep phase was almost exactly correct. (C) The
generative weights to and from the 8 units in the first hidden layer. Positive weights are white, negative
weights are black, and the area is proportional to the magnitude. The largest weight shown is 14.1. The
generative bias of the unit is shown on the top right of each block, and its generative weight from the single
unit in the layer above is shown on the top left. The right-most block shows the generative biases of the input
units. To encourage an easily interpretable solution, the generative weights to the input units were con-
strained to be positive. If they are allowed to go negative, the algorithm finds solutions that produce the
correct distribution but in a much more complicated way, and it requires more units in the second hidden
layer.

negative, is the Kullback-Leibler divergence
between Q( 1d) and PQ Id), which is the
amount by which the description length
with Q(. d) exceeds -log P(d). Thus, for
two generative models that assign equal
probability to d, minimizing Eq. 8 with re-

spect to the generative weights will tend to
favor the model whose posterior distribution
is most similar to Q(. Id). Within the avail-
able space of generative models, the wake
phase seeks out those models that give rise to
posterior distributions that are approximate-
ly factorial.

Because we are making several approxi-
mations, the algorithm must be evaluated
by its performance. Figure 2 shows that it
can learn the correct multilayer generative
model for a simple toy problem. Moreover,
after learning, the Kullback-Leibler diver-
gence in Eq. 8 is only 0.08 bit, which indi-
cates that this term has forced a solution in
which the generative model has an almost
perfectly factorial posterior.
We also tested the algorithm on two

quantitative aspects of its capacity to build
models of images of highly variable hand-
written digits (Fig. 3A). Learning 10 differ-
ent models, one for each digit, we were able
to recognize new digits accurately by seeing

1160

which models gave the most economical de-
scriptions of them. Figure 3B shows that after
the algorithm has learned a digit model, the
fantasies generated by the network are very

similar to the real data. We also trained a

single large network on all the digits and
confirmed that it compressed new digits al-
most as well as did these 10 digit-specific
networks, and nearly twice as well as a naive
code (7).

Two of the most widely used unsuper-

vised training algorithms for neural net-
works are principal components analysis
and competitive learning (sometimes
called vector quantization or clustering).
Both can be viewed as special cases of the
minimum description length approach, in
which there is only one hidden layer and
it is unnecessary to distinguish between
the recognition and generative weights
because they are always the same (8). Oth-
er learning schemes have been proposed
that use separate feed-forward and feed-
back weights (9-12). By contrast with
adaptive resonance theory (9), the
counter-streams model (10), and the algo-
rithm of Kawato et al. (1 1), the wake-sleep
algorithm treats the problem of unsuper-
vised learning as statistical-one of fitting

SCIENCE * VOL. 268 * 26 MAY 1995
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Fig. 3. Handwritten digits were normalized and
quantized to produce 8 x 8 binary images. In (A)
are shown 24 examples of each digit. A separate
network was trained on each digit class, and 24
fantasies from each network are shown in (B). The
variations within each digit class are modeled
quite well. The error rate was 4.8% when new test
images were classified by choosing the network
that minimized the description length of the im-
age. On the same data, nearest neighbor classifi-
cation gave 6.7% errors, and back-propagation
training of a single supervised net with 10 output
units and one hidden layer gave a minimum of
5.6% errors even when we used the test data to
optimize the number of hidden units, the training
time, and the amount of weight decay (7).

a generative model that accurately cap-

tures the structure in the input examples.
Kawato's model is couched in terms of
forward and inverse models (13), which
constitutes an alternative way to look at
our generative and recognition models.
The wake-sleep algorithm is closest in
spirit to Barlow's ideas about invertible
factorial representations (14) and Mum-
ford's proposals (12) for mapping
Grenander's generative model approach
(15) onto the brain.

The minimum description length ap-

proach to unsupervised learning was devel-
oped to improve the pattern recognition
abilities of artificial neural networks, but
the simplicity of the wake-sleep learning
algorithm makes it biologically interesting.
For example, Hasselmo and Bower (16)
have suggested that cholinergic inputs to
the cortex may modulate the degree of feed-
forward control of ongoing activity. By a

curious coincidence, the idea that the per-
ceptual system uses generative models was

advocated by Helmholtz, so we call any
neural network that fits a generative model
to data by minimizing the free energy in Eq.
5 a "Helmholtz machine."
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Crack-Like Sources of Dislocation Nucleation
and Multiplication in Thin Films

D. E. Jesson,* K. M. Chen, S. J. Pennycook, T. Thundat,
R. J. Warmack

With the combination of the height sensitivity of atomic force microscopy and the strain

sensitivity of transmission electron microscopy, it is shown that near singular stress

concentrations can develop naturally in strained epitaxial films. These crack-like insta-

bilities are identified as the sources of dislocation nucleation and multiplication in films

of high misfit. This link between morphological instability and dislocation nucleation
provides a method for studying the basic micromechanisms that determine the strength

and mechanical properties of materials.

Dislocation nucleation in thin films is
of considerable scientific and technological
importance in research areas ranging from
the transport properties of superconducting
layers to the regulation of electrical and op-
tical properties in semiconductor devices.
The mechanism by which the first dis-
locations nucleate in a continuous thin film
has been a central and unresolved issue
of strained-layer epitaxy. It is known
that misfit stress in thin films can be
relieved by the introduction of either a
nonplanar surface morphology (1-7) or
misfit dislocations (8-10), but the con-
nection and relative importance of these
mechanisms has not been explored. Fur-
thermore, the identification of dislocation
sources and multiplication mechanisms
presents an outstanding experimental
challenge.

Here we study strain relaxation in the
technologically important Si-Ge system,
which illustrates the general physical prin-
ciples governing the growth of strained thin
films. Our approach is to combine atomic
force microscopy (AFM) with transmission
electron microscopy (TEM) to provide
complementary local height and strain in-
formation. This procedure reveals that
crack-like surface instabilities develop
spontaneously and act as the sources of
misfit dislocations in strained thin films.
These observations connect the previously
disparate fields of morphological instability
and dislocation nucleation through the nat-
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ural framework of fracture mechanics.
To examine the connection between dis-

location nucleation and morphological in-
stability at high misfits, it is necessary to
study the critical transition regime between a
coherent (highly stressed) and dislocated
(partially relaxed) film. This transition,
which occupies only a very small region of
the enormous phase space of deposition vari-
ables, was achieved in two stages. Initially, a
10-nm-thick SiO 5GeO5 alloy layer was depos-
ited on Si(O01) by molecular beam epitaxy
at 400MC to create a dislocation-free film
associated with a nominally planar surface.
The morphological instability of this surface
was demonstrated by a 1-min in situ anneal
at 560MC, during which a surface ripple mor-
phology develops, as shown in Fig. 1, A and
B. The ripple consists of island-like features
that align along the elastically soft [100] and
[0101 directions, resulting in an arrangement
of orthogonal domains. Typically, the is-
lands are 15 nm high and 100 nm in
diameter, with a strong tendency to facet
along 15011 planes. The formation of these
low-energy planes would seem to stabilize
the misfit-induced morphological instabil-
ity, resulting in a network of significantly
stressed valleys at island intersections lo-
cated -4 nm above the alloy-substrate
interface. We would emphasize that this
situation results from the instability of a
planar film surface and is appreciably dif-
ferent from the case in which the film
grows initially by means of isolated islands
(1 ) or fractures to create islands (12).

The AFM image in Fig. lA directly links
this critical point in morphological instabil-
ity with the onset of dislocation nucleation
(1 3). Although island heights range from 13
to 18 nm, the dislocations (arrowed) are
always associated with the tallest islands.
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