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Reverse replay of behavioural sequences in
hippocampal place cells during the awake state

David J. Foster! & Matthew A. Wilson'

The hippocampus has long been known to be involved in spatial
navigational learning in rodents'?, and in memory for events in
rodents>*, primates® and humans®. A unifying property of both
navigation and event memory is a requirement for dealing with
temporally sequenced information. Reactivation of temporally
sequenced memories for previous behavioural experiences has
been reported in sleep in rats”®. Here we report that sequential
replay occurs in the rat hippocampus during awake periods
immediately after spatial experience. This replay has a unique
form, in which recent episodes of spatial experience are replayed
in a temporally reversed order. This replay is suggestive of a role in
the evaluation of event sequences in the manner of reinforcement
learning models. We propose that such replay might constitute a
general mechanism of learning and memory.

We used multiple single-unit recording techniques’ to measure
hippocampal neural activity during periods of running and stopping
in four rats. Two sessions were recorded per animal, one on a familiar
track and one on a new track. During each session, the animal ran
several laps, with each lap consisting of running from one end of the
track to the other and back again. Within a given lap, the animal
stopped at each end to consume food from a food well. After
consuming the food, the animal would wait of its own accord in
the same position for a short period of time that varied from lap to
lap (Fig. 1a). The behaviour of the animal during this time varied
between grooming, whisking or being still. The animal would then
turn around and immediately begin running again.

For each recording session, we first characterized the activity of
neurons in terms of their place fields'® during locomotion, as
measured using the spikes from all laps (with each running direction
considered separately; Fig. 1a). Neurons satisfying minimum firing
rate and waveform criteria were selected (see Methods), and their
place fields were ordered according to the position of the field peaks
(Fig. 1c) in order to generate a probe sequence. This probe sequence
was then used to examine patterns of activity in cells during
individual laps (Fig. 2a, b). While an animal was running, cells
fired in order with respect to position, as expected from their place
fields. However, during the stopping periods immediately after
running, regularly occurring instances of coincident spiking were
evident, involving many of the cells in the probe sequence. Notably,
within each coincident event, the sequence of cell activation was in
reverse order with respect to the probe sequence, and spanned
the equivalent of the entire track, on a timescale of hundreds of
milliseconds (Fig. 2¢).

To quantify the effect for each recording session, we first identified
coincident spiking events during stopping periods that involved a
large proportion of the cells in the probe sequence for that recording
session (see Methods). For each event, the rank-order correlation
between cell number and time was calculated, together with a
probability''. Examples of significant (P < 0.05) events are shown

in Fig. 3 (Supplementary Figs S2—-S5 show example events for all four
animals). For each of the eight sessions, over both directions, the
distribution of correlation values of all events (regardless of P value)
was found to be significantly different from (that is, significantly
negative with respect to) the distribution of correlation values of all
events with the cell-order parameter shuffled randomly (Fig. 4;
P values in figure legend). Hence, the occurrence of reverse replay
events was significantly greater than would be expected by chance.
The correlation distribution of all events across all four new sessions
was significantly different from (that is, more negative than) the
distribution of all events across all four familiar sessions (two-tailed
Kolmogorov-Smirnov test, P = 1.13 X 10~ '%), indicating that the
phenomenon is more readily observable in a new environment. A
number of cells were bidirectional, in that they did not have a peak
firing rate in a preferred direction that was at least double that in the
opposite direction (52% bidirectional neurons in the new sessions;
35% in the familiar sessions), raising the possibility that apparently
reverse replay events merely reflected forward replay of neurons in
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Figure 1| A sequence of place fields. a, The position of a rat during one
recording session is shown in grey as a function of time. Stopping periods at
each end could exceed one minute. Spikes emitted by a single hippocampal
place cell while the animal faced rightwards are shown in red. b, The place
field of the single cell shown in Fig. 2a. ¢, Simultaneous recording of 128
cells, of which 26 cells had place fields on the track. Nineteen cells with fields
in the rightward direction were ordered by peak to generate a probe
sequence.
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Figure 2 | Reverse replay events during a single a ' ' ' ' '
lap. a, The position of the rat as function of time. 5
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the opposite direction. Each of 486 reverse replay events was assessed
with the bidirectional cells removed, of which 117 remained signifi-
cant (P < 10~ under a binomial distribution). Only 8 of the 486
corresponding simultaneous events in the other direction remained
significant with the bidirectional cells removed (P = 1). Hence,
unidirectional cells from the probe sequences for the preferred
direction showed significant reverse replay, whereas unidirectional
cells for the opposite direction did not show significant forward
replay.

Most stopping periods with reverse replay showed multiple reverse
replay events (Fig. 4b). Reverse replay occurred even after the first lap
on a new track (Fig. 3). Reverse replay events were coincident with
ripples in the hippocampal electroencephalogram (EEG; Fig. 4c¢),
which are characteristic of hippocampal activity during both awake,
non-running periods and sleep''*. The question remained as to
whether reverse replay reflected immediate experience, and so
memory for the experiential sequence, or whether the replay could
occur in the absence of immediate experience, reflecting some pre-
existing expectation of sequential order. In six sessions, we recorded
cell activity after the animal had been placed on the track but before
running, during which time the animal was still and facing away from
the track, hence in a similar physical state to that occupied during
subsequent stopping periods in that location. None of these periods
showed reverse replay, although the periods ranged between 42.3s
and 424.3s in duration. A possible model for the generation of
reverse replay sequences that encompasses these data is presented in
Supplementary Fig. S6.

The hippocampus has long been known to be necessary for
learning in sequential decision problems such as navigation'”.

Sequential decision problems suffer from the well-known temporal
credit assignment problem—that of relating reward information that
might occur only at the end of a sequence of events to the individual
events within that sequence. A classic solution to this problem is to
propagate value information from the rewarded location backwards
along incoming trajectories'> . In the brain, reverse replay could be
paired with a fast-onset, slowly decaying dopamine signal to learn a
representation of value, thus providing a value gradient that the
animal could follow during subsequent goal-finding behaviour
(Supplementary Fig. S7). Hence, reverse replay in the hippocampus
might have a critical role in support of learning in hippocampus-
dependent tasks. The finding that reverse replay is more readily
observable in a new environment than a familiar one is consistent
with such a role.

Reverse replay during the awake state can be contrasted with replay
in sharp waves during slow-wave sleep, in which episodes of spatial
experience are replayed in the same temporal order as that in which
they were experienced®. This re-expression of events while the animal
occupies an entirely different physical and temporal context, as well
as a different behavioural state, may have a role in memory con-
solidation during sleep**. When awake, reverse replay occurs in situ,
allowing immediately preceding events to be evaluated in precise
temporal relation to a current, anchoring event, and so may be an
integral mechanism for learning about recent events. Moreover, by
converting single experiences into multiple reverse events, even after
the first encounter in a new environment, awake replay represents
efficient use of hard-won experience. Understanding this replay is
likely to be critical to understanding how animals learn from
experience.
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METHODS

Electrophysiology and behavioural apparatus. In each of four rats, a multiple
electrode microdrive array’ consisting of either 18 (rats 1 and 4) or 17 (rats 2 and 3)
independently adjustable tetrodes was implanted above the right dorsal hippo-
campus (4 mm posterior, 2.2 mm lateral with respect to bregma), and the tetrodes
were lowered over the course of several days until they rested in the CA1 pyramidal
cell layer. The remaining details of the procedure were as previously described®.
Direction was measured by the relative position of two tracker diodes mounted to
the front and rear of the tetrode drive. Linear tracks (162 cm long) were used for
both new and familiar sessions for rats 1-3, and a U-shaped track (205 cm long,
45 cm wide) was used for both new and familiar sessions for rat 4.

Place-field analysis. Position was linearized for each session to yield a scalar
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value of distance along the track. A histogram of spikes from each cell was
calculated over position bins and was normalized by the time spent by the animal
in each bin, to yield a place field. Fields were velocity-filtered to exclude times
when the speed of the animal was below 5.4 cms™'. In order to assign a peak
value, the histogram was smoothed (as shown by the black line in Fig. 2b). Cells
with a peak firing rate of at least 5 Hz were included in the probe sequence, with
the exception of putative inhibitory interneurons, which were identified as cells
with a mean peak-to-trough spike width of less than 0.35 ms.

Spike-train analysis. A spike train was constituted from all spikes (from all cells
in the probe sequence) that occurred during stopping periods while the animal
faced in the direction in which it had just run. This spike train was then broken
between every pair of successive spikes separated by more than 50 ms, to form a
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Figure 4 | Analysis of reverse replay across all recording sessions. a, For
each session, a histogram of the rank-order correlation values of all events is
shown in red, and a histogram of shuffled correlation values is shown in blue
(see Methods). The two distributions were statistically different. P values for
each session were as follows, where 7 is the total number of events. New:
Rat1,n = 1,425,P = 3.04 X 10 *'; Rat 2, n = 202, P = 4.00 X 10" °%; Rat 3,
n=91, P=6.52 X 10" '% Rat4, n = 160, P = 4.88 X 10~ . Familiar:
Rat1,n =178, P=6.69 X 10" % Rat2, n = 33, P = 4.05 X 10~ % Rat 3,

n =275, P = 0.0067; Rat4, n = 88; P = 1.32 X 10 %. The percentage of
events with significant reverse correlations was as follows, by session: New,
Rat 1, 13%; Rat 2, 72%; Rat 3, 31%; Rat 4, 29%; Familiar, Rat 1, 19%; Rat 2,
30%; Rat 3, 6%; Rat 4, 16%. b, Histogram of the number of significant
reverse events per stopping period, for those stopping periods with at least
one significant event. ¢, Cross-correlogram of significant reverse replay
events with hippocampal sharp waves, for an example session in which there
were 94 coincident events out of a total of 146 replay events.

large set of proto-events. Those proto-events in which at least one-third of the
cells in the probe sequence fired at least one spike were then selected as events.
The few events longer than 500 ms in duration were rejected as a potential source
of spurious correlations. For each event, 100 shuffled events were created by
randomly permuting the cell-order parameter. The histograms in Fig. 4a were
normalized (by dividing by 100) to allow visual comparison with the original
distributions. A non-parametric, two-sample Kolmogorov—Smirnov test was
used to determine whether the distributions were significantly different.
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Ripple identification. Sharp waves reverse at about the electrode depth corre-
sponding to maximum cell yield in the hippocampus, making it difficult to
measure sharp waves directly. However, they co-occur with transient, high-
frequency events called ripples (100—400 Hz). Ripples were identified as reported
previously®. A single time of occurrence for each ripple was calculated as the
mean of the start and end times of the ripple. A single time was similarly
calculated for each replay event. These times were used to generate a cross-
correlogram, which was not normalized, so that the y axis of Fig. 4c is in numbers
of coincident events. Values for total numbers of coincident events cited in the
text were found by summing the values of bins between —50 ms and 50 ms.
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