
COMPUTER SCIENCE

A neural algorithm for a fundamental
computing problem
Sanjoy Dasgupta,1 Charles F. Stevens,2,3 Saket Navlakha4*

Similarity search—for example, identifying similar images in a database or similar documents
on the web—is a fundamental computing problem faced by large-scale information retrieval
systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant
of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns
similar neural activity patterns to similar odors, so that behaviors learned from one odor can
be applied when a similar odor is experienced. The fly algorithm, however, uses three
computational strategies that depart from traditional approaches. These strategies can be
translated to improve the performance of computational similarity searches. This
perspective helps illuminate the logic supporting an important sensory function and
provides a conceptually new algorithm for solving a fundamental computational problem.

A
n essential task of many neural circuits
is to generate neural activity patterns in
response to input stimuli, so that differ-
ent inputs can be specifically identified.
We studied the circuit used to process odors

in the fruit fly olfactory system and uncovered
computational strategies for solving a fundamen-
tal machine learning problem: approximate sim-
ilarity (or nearest-neighbors) search.
The fly olfactory circuit generates a “tag” for

each odor, which is a set of neurons that fire when
that odor is presented (1). This tag is critical for
learning behavioral responses to different odors
(2). For example, if a reward (e.g., sugar water) or
a punishment (e.g., electric shock) is associated
with an odor, that odor becomes attractive (a fly
will approach the odor) or repulsive (a fly will
avoid the odor), respectively. The tags assigned
to odors are sparse—only a small fraction of the
neurons that receive odor information respond
to each odor (3–5)—and nonoverlapping: Tags for
two randomly selected odors share few, if any,
active neurons, so that different odors can be
easily distinguished (1).
The tag for an odor is computed by a three-

step procedure (Fig. 1A). The first step involves
feedforward connections from odorant receptor
neurons (ORNs) in the fly’s nose to projection neu-
rons (PNs) in structures called glomeruli. There
are 50 ORN types, each with a different sensi-
tivity and selectivity for different odors. Thus, each
input odor has a location in a 50-dimensional
space determined by the 50 ORN firing rates.
For each odor, the distribution ofORN firing rates
across the 50 ORN types is exponential, with a
mean that depends on the concentration of the
odor (6, 7). For the PNs, this concentration de-

pendence is removed (7, 8); that is, the distri-
bution of firing rates across the 50 PN types is
exponential, with close to the samemean for all
odors and all odor concentrations (1 ). Thus, the
first step in the circuit essentially “centers the
mean”—a standard preprocessing step in many
computational pipelines—using a technique called
divisive normalization (8). This step is important
so that the fly does notmix up odor intensity with
odor type.
The second step, where the main algorithmic

insight begins, involves a 40-fold expansion in
the number of neurons: Fifty PNs project to 2000
Kenyon cells (KCs), connected by a sparse, binary
random connection matrix (9). Each KC receives
and sums the firing rates from about six randomly
selected PNs (9). The third step involves a winner-
take-all (WTA) circuit in which strong inhibitory
feedback comes from a single inhibitory neuron,
called APL (anterior paired lateral neuron). As a
result, all but the highest-firing 5% of KCs are
silenced (1, 3, 4). The firing rates of these remain-
ing 5% correspond to the tag assigned to the
input odor.
From a computer science perspective, we view

the fly’s circuit as a hash function, whose input is
an odor and whose output is a tag (called a hash)
for that odor. Although tags should discriminate
odors, it is also to the fly’s advantage to associate
very similar odors with similar tags (Fig. 1B), so
that conditioned responses learned for one odor
can be applied when a very similar odor, or a
noisy version of the learned odor, is experienced.
This led us to conjecture that the fly’s circuit
produces tags that are locality-sensitive; that is,
the more similar a pair of odors (as defined by
the 50 ORN firing rates for that odor), the more
similar their assigned tags. Locality-sensitive hash
[LSH (10, 11)] functions serve as the foundation
for solving numerous similarity search problems
in computer science. We translated insights from
the fly’s circuit to develop a class of LSH algo-
rithms for efficiently finding approximate nearest
neighbors of high-dimensional points.
Imagine that you are provided an image of

an elephant and seek to find the 100 images—

out of the billions of images on the web—that
look most similar to your elephant image. This
is called the nearest-neighbors search problem,
which is of fundamental importance in infor-
mation retrieval, data compression, and machine
learning (10). Each image is typically represented
as a d-dimensional vector of feature values. (Each
odor that a fly processes is a 50-dimensional fea-
ture vector of firing rates.) A distance metric is
used to compute the similarity between two images
(feature vectors), and the goal is to efficiently find
the nearest neighbors of any query image. If the
web contained only a few images, then brute force
linear search could easily be used to find the exact
nearest neighbors. If the web contained many
images, but each image was represented by a low-
dimensional vector (e.g., 10 or 20 features), then
space-partitioning methods (12) would similarly
suffice. However, for large databases with high-
dimensional data, neither approach scales (11).
Inmany applications, returning anapproximate

set of nearest neighbors that are “close enough” to
the query is adequate, so long as they can be found
quickly. This has motivated an approach for find-
ing approximate nearest neighbors by LSH (10).
For the fly, as noted, the locality-sensitive property
states that two odors that generate similar ORN
responses will be represented by two tags that are
themselves similar (Fig. 1B). Likewise, for image
search, the tag of an elephant image will be more
similar to the tag of another elephant image than
to the tag of a skyscraper image.
Unlike a traditional (non-LSH) hash function,

where the input points are scattered randomly
and uniformly over the range, a LSH function pro-
vides a distance-preserving embedding of points
from d-dimensional space into m-dimensional
space (the latter corresponds to the tag). Thus,
points that are closer to one another in input
space have a higher probability of being assigned
the same or a similar tag than points that are far
apart. [A formal definition is given in (13).]
To design a LSH function, one common trick

is to compute random projections of the input
data (10, 11)—that is, to multiply the input fea-
ture vector by a random matrix. The Johnson-
Lindenstrauss lemma (14, 15) and its many variants
(16–18) provide strong theoretical bounds on how
well locality is preserved when embedding data
from d intom dimensions by using various types
of random projections.
The fly also assigns tags to odors through ran-

dom projections (step 2 in Fig. 1A; 50 PNs →
2000 KCs), which provides a key clue to the
function of this part of the circuit. There are, how-
ever, three differences between the fly algorithm
and conventional LSH algorithms. First, the
fly uses sparse, binary random projections,
whereas LSH functions typically use dense,
Gaussian random projections that require many
more mathematical operations to compute. Sec-
ond, the fly expands the dimensionality of the
input after projection (d « m), whereas LSH re-
duces the dimensionality (d » m). Third, the fly
sparsifies the higher-dimensionality representa-
tion by a WTA mechanism, whereas LSH pre-
serves a dense representation.
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In the supplementary materials (13), we show
analytically that sparse, binary random pro-
jections of the type in the fly olfactory circuit
generate tags that preserve the neighborhood
structure of input points. This proves that the
fly’s circuit represents a previously unknown
LSH family.
We then empirically evaluated the fly algorithm

versus traditional LSH (10, 11) on the basis of how
precisely each algorithm could identify nearest
neighbors of a given query point. To perform a
fair comparison, we fixed the computational com-
plexity of both algorithms to be the same (Fig. 1C).
That is, the two approaches were fixed to use the
same number of mathematical operations to gen-
erate a hash of length k (i.e., a vector with k non-
zero values) for each input (13).
We compared the two algorithms for finding

nearest neighbors in three benchmark data sets:
SIFT (d = 128), GLOVE (d = 300), and MNIST (d =
784) (13). SIFT and MNIST both contain vector
representations of images used for image simi-

larity search, whereas GLOVE contains vector
representations of words used for semantic simi-
larity search. We used a subset of each data set
with 10,000 inputs each, in which each input was
represented as a feature vector in d-dimensional
space. To test performance, we selected 1000 ran-
dom query inputs from the 10,000 and compared
true versus predicted nearest neighbors. That is,
for each query, we found the top 2% (200) of its
true nearest neighbors in input space, deter-
mined on the basis of Euclidean distance be-
tween feature vectors. We then found the top 2%
of predicted nearest neighbors in m-dimensional
hash space, determined on the basis of the Eu-
clidean distance between tags (hashes). We varied
the length of the hash (k) and computed the
overlap between the ranked lists of true and
predicted nearest neighbors by using the mean
average precision (19). We averaged the mean
average precision over 50 trials, in which, for
each trial, the random projection matrices and
the queries changed. We isolated each of the three

differences between the fly algorithm and LSH
to test their individual effect on nearest-neighbors
retrieval performance.
Replacing the dense Gaussian random pro-

jection of LSH with a sparse binary random
projection did not hurt how precisely nearest
neighbors could be identified (Fig. 2A). These
results support our theoretical calculations that
the fly’s random projection is locality-sensitive.
Moreover, the sparse, binary random projection
achieved a computational savings of a factor
of 20 relative to the dense, Gaussian random
projection (fig. S1) (13).
When expanding the dimensionality, sparsify-

ing the tag using WTA resulted in better per-
formance than using random tag selection (Fig. 2B).
WTA selected the top k firing KCs as the tag,
unlike random tag selection, which selected k
random KCs. For both, we used 20k random
projections for the fly to equate the number of
mathematical operations used by the fly and
LSH (13). For example, for the SIFT data set with
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Fig. 1. Mapping between the fly olfactory circuit and locality-sensitive
hashing (LSH). (A) Schematic of the fly olfactory circuit. In step 1,
50 ORNs in the fly’s nose send axons to 50 PNs in the glomeruli; as a
result of this projection, each odor is represented by an exponential
distribution of firing rates, with the same mean for all odors and all
odor concentrations. In step 2, the PNs expand the dimensionality,
projecting to 2000 KCs connected by a sparse, binary random
projection matrix. In step 3, the KCs receive feedback inhibition from the
anterior paired lateral (APL) neuron, which leaves only the top 5% of
KCs to remain firing spikes for the odor. This 5% corresponds to the tag

(hash) for the odor. (B) Illustrative odor responses. Similar pairs of odors
(e.g., methanol and ethanol) are assigned more similar tags than are
dissimilar odors. Darker shading denotes higher activity. (C) Differences
between conventional LSH and the fly algorithm. In the example, the
computational complexity for LSH and the fly are the same. The input
dimensionality d = 5. LSH computesm = 3 random projections, each of which
requires 10 operations (five multiplications plus five additions). The fly
computes m = 15 random projections, each of which requires two addition
operations. Thus, both require 30 total operations. x, input feature vector; r,
Gaussian random variable; w, bin width constant for discretization.
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hash length k = 4, random selection yielded a
17.7% mean average precision, versus roughly
double that (32.4%) using WTA. Thus, selecting
the top firing neurons best preserves relative
distances between inputs; the increased dimen-
sionality also makes it easier to segregate dis-
similar inputs. For random tag selection, we
selected k random (but fixed for all inputs) KCs for
the tag; hence, its performance is effectively the
same as doing k random projections, as in LSH.
With further expansion of the dimensionality

(from 20k to 10d KCs, closer to the actual fly’s cir-

cuitry), we obtained further gains relative to LSH
in identifying nearest neighbors across all data sets
and hash lengths (Fig. 3). The gains were highest
for very short hash lengths, where there was an
almost threefold improvement in mean average
precision (e.g., for MNIST with k = 4, 16.0% for
LSH, versus 44.8% for the fly algorithm).
We also found similar gains in performance

when testing the fly algorithm in higher dimen-
sions and for binary LSH (20) (figs. S2 to S3).
Thus, the fly algorithm is scalable and may be
useful across other LSH families.

Our work identified a synergy between strat-
egies for similarity matching in the brain (21)
and hashing algorithms for nearest-neighbors
search in large-scale information retrieval sys-
tems. It may also have applications in duplicate
detection, clustering, and energy-efficient deep
learning (22). There are numerous extensions
to LSH (23), including the use of multiple hash
tables (11) to boost precision (we used one for
both algorithms), the use of multiprobe (24) so
that similar tags can be grouped together (which
may be easier to implement for the fly algorithm
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Fig. 2. Empirical comparison of different random projection types and tag-selection methods. In all plots, the x axis is the length of the hash, and
the y axis is the mean average precision denoting how accurately the true nearest neighbors are found (higher is better). (A) Sparse, binary random
projections offer near-identical performance to that of dense, Gaussian random projections, but the former provide a large savings in computation.
(B) The expanded-dimension (from k to 20k) plus winner-take-all (WTA) sparsification further boosts performance relative to non-expansion. Results are
consistent across all three benchmark data sets. Error bars indicate standard deviation over 50 trials.

Fig. 3. Overall comparison between the fly algorithm and LSH. In all plots, the x axis is the length of the hash, and the y axis is the mean average
precision (higher is better). A 10d expansion was used for the fly. Across all three data sets, the fly’s method outperforms LSH, most prominently for
short hash lengths. Error bars indicate standard deviation over 50 trials.
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because tags are sparse), various quantization
tricks for discretizing hashes (25 ), and learn-
ing [called data-dependent hashing (13)]. There
are also methods to speed up the random projec-
tion multiplication, both for LSH schemes by
fast Johnson-Lindenstrauss transforms (26, 27)
and for the fly by fast sparse matrix multiplication.
Our goal was to fairly compare two conceptually
different approaches for the nearest-neighbors
search problem; in practical applications, all of
these extensions will need to be ported to the fly
algorithm.
Some of the fly algorithm’s strategies have been

used before. For example, MinHash (28) and
winner-take-all hash (29) both use WTA-like
components, though neither propose expanding
the dimensionality; similarly, randomprojections
are used in many LSH families, but none, to our
knowledge, use sparse, binary projections. The fly
olfactory circuit appears to have evolved to use a
distinctive combination of these computational
ingredients. The three hallmarks of the fly’s cir-
cuit motif may also appear in other brain regions
and species (Table 1). Thus, locality-sensitive hash-
ing may be a general principle of computation
used in the brain (30).
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Table 1. The generality of locality-sensitive hashing in the brain. Shown are the steps used in the fly olfactory circuit and their potential analogs in

vertebrate brain regions.

Step 1 Random projection Step 2 (expansion) Step 3 (WTA)

Fly olfaction Antennae lobe; 50 glomeruli Sparse, binary; samples six glomeruli Mushroom body; 2000 Kenyon cells
APL neuron;

top 5%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Mouse olfaction Olfactory bulb; 1000 glomeruli Dense, weak; samples all glomeruli Piriform cortex; 100,000 semi-lunar cells
Layer 2A;

top 10%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Rat cerebellum Precerebellar nuclei
Sparse, binary; samples four

precerebellar nuceli
Granule cell layer; 250 million granule cells

Golgi cells;

top 10 to 20%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...

Rat hippocampus Entorhinal cortex; 30,000 grid cells Unknown Dentate gyrus; 1.2 million granule cells
Hilar cells;

top 2%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ...
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