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Materials and Methods

Datasets and pre-processing. Our empirical evaluations were performed on four benchmark

datasets: SIFT (31) (d = 128), GLOVE (32) (d = 300), MNIST (33) (d = 784), and GIST (31)

(d = 960). For each dataset, we selected a subset of size 10,000 inputs to efficiently perform the

all-vs-all comparison in determining true nearest neighbors. For all datasets, each input vector

was normalized to have the same mean.

Fixing the computational complexity for LSH and the fly to be the same. To perform a

fair comparison between the fly’s approach and LSH, we fixed the computational complexity

of both algorithms to be the same (Fig. 1C). That is, the two approaches were fixed to use the

same number of mathematical operations to generate a hash with length k (i.e., a vector with k

non-zero values) for each input. LSH computes m = k random projections per input, but each

projection requires 2d operations — multiplying each entry of the d-dimensional input by an

i.i.d. Gaussian random value, and then doing d summations. For the fly, each binary random

projection only requires 0.1d operations to compute — summing the roughly 10% of the input

indices sampled (6 out of 50) by each Kenyon cell. Thus, the fly can compute m = 20k ran-

dom projections, while incurring the same computational expense as LSH. The only additional

expense for the fly is the sparsification step so that only k (of the 20k) values are non-zero, as

in the LSH tag.
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Supplementary Text

Formal definition of a locality-sensitive hash function

The formal definition of a locality-sensitive hash function is as follows:

Definition 1. A hash function h : Rd → Rm is called locality-sensitive if for any two

points p, q ∈ Rd, Pr[h(p) = h(q)] = sim(p, q), where sim(p, q) ∈ [0, 1] is a similarity

function defined on two input points.

In practical applications for nearest-neighbors search, a second (traditional) hash function is

used to place each m-dimensional point into a discrete bin so that all similar images lie in the

same bin, for easy retrieval.

In this paper, we focus only on designs for the LSH function (h) and study how tags are

generated and the computational properties of the tag. How the tag is subsequently used is the

next natural question. Computationally, the binning step (placing each m-dimensional point

into a discrete bin) is important because processing a query image then involves simply finding

its bin and returning the most similar images that lie in the same bin, which takes sub-linear

time. Biologically, the tag is used in the mushroom body for learning, which occurs by iden-

tifying which Kenyon cells respond to an odor (the tag), and modifying the strength of their

synapses onto approach and avoidance circuits. How learning occurs algorithmically using this

tag remains an open problem. Even if learning does not require a similar “binning” step, both

problems require the same first step — forming the tag/hash of an input point — which is our

focus here.
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Theoretical analysis of the fly olfactory circuit

The mapping from projection neurons (PNs) to Kenyon cells (KCs) can be viewed as a bipartite

connection matrix, with d = 50 PNs on the left and the m = 2000 KCs on the right. The

nodes on the left take values x1, . . . , xd and those on the right are y1, . . . , ym. Each value yj is

equal to the sum of a small number of the xi’s; we represent this relationship by an undirected

edge connecting every such xi with yj . This bipartite graph can be summarized by an m × d

adjacency matrix M :

Mji =

{
1 if xi connects to yj
0 otherwise.

Moving to vector notation, with x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , ym) ∈ Rm, we have1:

y =Mx.

After feedback inhibition from the APL neuron, only the k highest firing KCs retain their values;

the rest are zeroed out. This winner-take-all mechanism produces a sparse vector z ∈ Rm (called

the tag) with:

zi =

{
yi if yi is one of the k largest entries in y
0 otherwise.

A simple model of M is a sparse, binary random matrix: each entry Mij is set independently

with probability p. Choosing p = 6/d, for instance, would mean that each row ofM has roughly

6 entries equal to 1 (and all of the other entries are 0), which matches experimental findings.

Below, we prove that the first two steps of the fly’s circuitry produces tags that preserve

`2 distances of input odors in expectation. The third step (winner-take-all) is then a simple

method for sparsifying the representation while preserving the largest and most discriminative

1In practice, an additional quantization step is used for discretization: y =
⌊
Mx
w

⌋
, where w is a constant, and

b·c is the floor operation.
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coefficients (34). We also prove that when m is large enough (i.e., the number of random

projections is O(d)), the variance ‖y‖2 is tightly concentrated around its expected value.

Distance-preserving properties of sparse binary projections

Here we establish that sparse binary random projections, of the type outlined above, preserve

neighborhood structure if the number of projections m is sufficiently large. A key determiner

of how well distances are preserved is the sparsity of the vectors x.

Fix any x ∈ Rd denoting the activations of the projection neurons. Let Mj denote the jth

row of matrix M , so that Yj = Mj · x is the value of the jth Kenyon cell. Let’s first compute

the first and second moments of Yj .

Lemma 1. Fix any x ∈ Rd and define Y = (Y1, . . . , Ym) =Mx. For any 1 ≤ j ≤ m,

EYj = p(1 · x)

EY 2
j = p(1− p)‖x‖2 + p2(1 · x)2

where 1 is the all-ones vector (and thus 1 · x is the sum of the entries of x). For the squared

Euclidean norm of Y , namely ‖Y ‖2 = Y 2
1 + · · ·+ Y 2

m, this implies

E‖Y ‖2 = mp
(
(1− p)‖x‖2 + p(1 · x)2

)
.

Likewise, if two inputs x, x′ ∈ Rd get projected to Y, Y ′ ∈ Rm, respectively, we have

E‖Y − Y ′‖2 = mp
(
(1− p)‖x− x′‖2 + p(1 · (x− x′))2

)
(1)

In the fly, the second (bias) term, p2(1 · (x− x′))2 ≈ 0, because x and x′ have roughly the same

total activation level. This is because all odors are represented as an exponential distribution of

firing rates with the same mean, for all odors and all odor concentrations. Thus, the bias term is
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negligible, and the random projection x 7→ Y preserves `2 distances.

The result (1) is only a statement about expected distances. The reality could be very different

if the variance of ‖Y ‖2 is high. However, we will see that when m is large enough, ‖Y ‖2 is

tightly concentrated around its expected value, in the sense that

(1− ε)E‖Y ‖2 ≤ ‖Y ‖2 ≤ (1 + ε)E‖Y ‖2,

with high probability, for small ε > 0. The required m depends on how sparse x is.

It is useful to look at two extremal cases in more detail:

1. x is very sparse.

Let’s say the only non-zero coordinate of x is x1. Then Yj = Mj · x has the following

distribution:

Yj =

{
x1 with probability p
0 otherwise

This is usually zero, and if not, then ‖x‖.

2. x is uniformly spread.

If x = (xo, xo, . . . , xo), then Yj has mean pdxo = c‖x‖/
√
d. The distribution of Yj/xo is

roughly Poisson.

Thus individual Yj can have a fairly large spread of possible values if x is sparse. How large

must m be for ‖Y ‖2 to be tightly concentrated around its expected value? It turns out that it is

always sufficient to take m = O(d), and that this upper bound is also necessary for sparse x.

For x closer to uniform, m = O(1) is sufficient.

Lemma 2. Fix any x ∈ Rd and pick 0 < δ, ε < 1. If we take

m ≥ 5

ε2δ

(
2c+

d‖x‖44
‖x‖4

)
,
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then with probability at least 1− δ, we have (1− ε)E‖Y ‖2 ≤ ‖Y ‖2 ≤ (1 + ε)E‖Y ‖2.

Here ‖x‖4 is the 4-norm of x, so

‖x‖44 =
d∑

i=1

x4i .

The ratio ‖x‖44/‖x‖4 lies in the range [1/d, 1]. It is 1 when x is very sparse and 1/d when

x is uniformly spread out. We now show that this ratio is roughly 6/d when the individual

coordinates of x are independent draws from the same exponential distribution.

Lemma 3. Suppose X = (X1, . . . , Xd), where the Xi are i.i.d. draws from an exponential

distribution (with any mean parameter).

(a)
E‖X‖44

(E‖X‖22)2
=

6

d
.

(b) Moreover, ‖X‖22 and ‖X‖44 are tightly concentrated around their expectations. In partic-

ular, for any positive integer c, and any 0 < δ < 1, we have that with probability at least

1− δ,

‖X‖cc = E(‖X‖cc)
(
1± 2c√

dδ

)
.
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Proof of Lemma 1

Fix any x ∈ Rd and 1 ≤ j ≤ m. For any i 6= i′ we have

EMji = p

E(MjiMji′) = p2

The expressions for EYj and EY 2
j then follow immediately, using linearity of expectation:

EYj = E

(∑
i

Mjixi

)
= p

∑
i

xi

EY 2
j = E

(∑
i

Mjixi

)2

=
∑
i,i′

E(MjiMji′)xixi′

= p
∑
i

x2i + p2
∑
i 6=i′

xixi′ = p‖x‖2 + p2((1 · x)2 − ‖x‖2)

Proof of Lemma 2

Applying Chebyshev’s bound, we have that for any t > 0,

Pr
(∣∣‖Y ‖2 − E‖Y ‖2

∣∣ ≥ t
)
≤ var(‖Y ‖2)

t2

=
var(Y 2

1 + · · ·+ Y 2
m)

t2
=

m · var(Y 2
1 )

t2
.

Using t = εE‖Y ‖2 = εmEY 2
1 then gives

Pr
(∣∣‖Y ‖2 − E‖Y ‖2

∣∣ ≥ εE‖Y ‖2
)
≤ 1

ε2m
· var(Y 2

1 )

(EY 2
1 )

2
(2)
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It remains to bound the last ratio. We already have EY 2
1 from Lemma 1. To compute var(Y 2

1 ),

we begin with EY 4
1 :

EY 4
1 = E(M11x1 + · · ·+M1dxd)

4

=
∑
i

E[M4
1ix

4
i ] + 4

∑
i 6=j

E[M1ixiM
3
1jx

3
j ] + 3

∑
i 6=j

E[M2
1ix

2
iM

2
1jx

2
j ]

+ 6
∑
i 6=j 6=k

E[M2
1ix

2
iM1jxjM1kxk] +

∑
i 6=j 6=k 6=`

E[M1ixiM1jxjM1kxkM1`x`]

= p
∑
i

x4i + 4p2
∑
i 6=j

xix
3
j + 3p2

∑
i 6=j

x2ix
2
j + 6p3

∑
i 6=j 6=k

x2ixjxk + p4
∑

i 6=j 6=k 6=`

xixjxkx`.

This is maximized when all the xi are positive, so

EY 4
1 ≤ p

∑
i

x4i + 4p2
∑
i,j

xix
3
j + 3p2

∑
i,j

x2ix
2
j + 6p3

∑
i,j,k

x2ixjxk + p4
∑
i,j,k,`

xixjxkx`

= p‖x‖44 + 4p2
∑
i,j

xix
3
j + 3p2‖x‖4 + 6p3‖x‖2(1 · x)2 + p4(1 · x)4

≤ p‖x‖44 + 4p2d‖x‖44 + 3p2‖x‖4 + 6p3‖x‖2(1 · x)2 + p4(1 · x)4

≤ p(1 + 4c)‖x‖44 + 3p2(1 + 2c)‖x‖4 + p4(1 · x)4,

where we have twice invoked the inequality 2ab ≤ a2 + b2 to get∑
i,j

xix
3
j =

1

2

∑
i,j

(xix
3
j+xjx

3
i ) =

1

2

∑
i,j

xixj(x
2
i+x

2
j) ≤

1

2

∑
i,j

1

2
(x2i+x

2
j)

2 ≤ 1

2

∑
i,j

(x4i+x
4
j) = d

∑
i

x4i .

and used the Cauchy-Schwarz inequality to get (1 · x)2 ≤ d‖x‖2. Continuing,

var(Y 2
1 ) = EY 4

1 − (EY 2
1 )

2 ≤ 5cp‖x‖44 + 9cp2‖x‖4.

Plugging this into (2) then gives the bound.

Proof of Lemma 3

Suppose X1, . . . , Xd are i.i.d. draws from an exponential distribution with parameter λ. It is

well-known that for any positive integer k,

EXk
1 =

k!

λk
.
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Thus:

E‖X‖22 = E(X2
1 + · · ·+X2

d) = dEX2
1 =

2d

λ2

E‖X‖44 = E(X4
1 + · · ·+X4

d) = dEX4
1 =

24d

λ4

Part (a) of the lemma follows immediately.

Pick any positive integer c. To show that ‖X‖cc = Xc
1 + · · ·+Xc

d is concentrated around its

expected value, we use Chebyshev’s inequality. First, we compute the variance of Xc
1,

var(Xc
1) = EX2c

1 − (EXc
1)

2 =
(2c)!

λ2c
−
(
c!

λc

)2

=
(2c)!− (c!)2

λ2c
,

so that var(‖X‖cc) = var(Xc
1 + · · · + Xc

d) = d var(Xc
1) is exactly d times this. Thus, for any

ε > 0,

Pr (|‖X‖cc − E‖X‖cc| ≥ εE‖X‖cc) ≤
var(‖X‖cc)
ε2(E‖X‖cc)2

=
d var(Xc

1)

ε2(dEXc
1)

2

=
d((2c)!− (c!)2)

λ2c
· λ2c

ε2d2(c!)2
≤ 22c

ε2d
.

Part (b) of the lemma follows by choosing a value of ε that makes this expression ≤ δ.
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Varying the density of the binary random projection

We varied the number of projection neurons (PNs) each Kenyon cell (KC) samples from and

evaluated its effect on nearest-neighbors retrieval performance (Fig. S1). In the fly, each KC

samples from roughly 10% of the PNs (6 out of 50). We tried setting this value to 1% and

to 50%. For some datasets, 1% sufficed, though this is likely more sensitive to noise. Across

all datasets, the most consistent performance was obtained when sampling 10%, with no im-

provement in performance at 50%. Sampling 10% thus achieved the best trade-off between

computational efficiency and performance.

See Litwin-Kumar et al. (35) for a perspective of how sampling affects associative learning.

Empirical analysis on the GIST dataset

We tested the fly algorithm in even higher dimensions (d = 960, GIST image dataset (31))

and found a similar trend in performance (Fig. S2). Thus, although designed biologically for

d = 50, the fly algorithm is scalable.

Binary locality-sensitive hashing

We used the fly algorithm to implement binary locality-sensitive hashing (36), where the LSH

function h : Rd → Zm. In other words, instead of using the values of the top k Kenyon cells as

the tag, we used their indices, setting those indices to 1 and the remaining to 0. For LSH, binary

hashes are typically computed by: y = sgn(Mx), where M is a dense, i.i.d. Gaussian random

matrix, and x is the input. If the (i, j)th element of Mx is greater than 0, yij is set to 1, and 0

otherwise. In other words, each Kenyon cell is binarized to 0 or 1 based on whether its value is

≤ 0 or > 0, respectively.

For binary hashing, the fly algorithm performed better than traditional binary LSH across

all four datasets (Fig. S3).
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Discussion

Why not use the projection neurons (PNs) as the tag, as opposed to the sparse Kenyon cells

(KCs)? Biologically, the answer is that the point of the mushroom body (where the Kenyon

cells lie) is to learn odors, and the only synapses whose strength can be modified are the ones

that are active. Because most PNs fire in response to most odors, if the PN signal were used

for learning, each odor would modify the synaptic strength associated with most other odors

and so a specific odor could not be discriminated. The only solution is to have non-overlapping

KC tags so that just the synapses associated with one odor can be modified without modifying

synapses associated with other odors.

Algorithmically, one could similarly ask, why not use the input data itself as the hash tag?

The answer is that random projections provide better theoretical guarantees and better bounds.

Moreover, in LSH applications, it is often necessary to build multiple hash tables to boost recall.

Some randomization is thus critical because it allows construction of multiple independent hash

functions.

Additional related work in theoretical computer science. The theoretical computer science

community has studied sparse random projections in some related contexts. For example, Kane

and Nelson (18) study matrices whose entries are both positive and negative, with mean zero.

The resulting statistics are different from those we encounter; for instance, their estimators are

unbiased. Shi et al. (37) study a process similar to the one here, in the context of speeding up

computations relating to kernel support vector machines. They also use a sparse binary matrix,

with the additional condition that in each consecutive block of 1/p rows, there is exactly one

non-zero entry per column. Their goal is to bound the effect of this projection on dot products

(rather than distances), and they obtain error bounds that are qualitatively different from ours:

additive rather than multiplicative, for instance, and not tuned to the sparsity of the input signal.
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Andoni et al. (27) use sparse random linear maps as a preprocessing step to reduce the di-

mensionality of sparse data; this contrasts with the fly’s use of these maps, which has the effect

of producing a sparse, high-dimensional representation. To our knowledge, LSH families them-

selves have not been based on sparse binary projections.

When does the fly’s algorithm perform best? Empirically, we found that the fly’s algorithm

works best when the distribution of feature values for each input has a high-firing rate tail (e.g.,

a Gaussian or exponential). Kenyon cells that sample PNs at the tail of the distribution are least

probable to fire at the same rate for a different input, and these KCs end up constituting the

tag following the winner-take-all step. Thus, using these KCs as the tag serves as a strong dis-

criminator between different inputs, and a strong indicator for similarity if the inputs are indeed

very similar. Interestingly, such a distribution is exactly what the PNs in the brain produce: an

exponential distribution of firing rates with a high-firing rate tail.

How are winner-take-all (WTA) networks implemented in the brain? In the fly olfactory

circuit, the WTA network requires just one neuron (APL), which receives feed-forward excita-

tion from Kenyon cells, and provides proportional feed-back inhibition to silence the slowest-

firing neurons. This method of sparsification (using inhibition) appears to be more robust than

an alternative where KCs apply a threshold to PN input (4). In the mouse olfactory circuit, the

analogs of the Kenyon cells (called semilunar cells) also form a sparse tag, but there are at least

five classes of inhibitory neurons that help generate this sparse tag (38); it remains unclear com-

putationally how this is accomplished. More generally, generating biologically-plausible WTA

networks is an active area of research, with many proposals (39,40) though there is debate about

how well these models match with actual neural anatomy and cell types.
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Learning and data-dependent hashing. Following the fly, we focused on data-independent

hashing; that is, hash functions that do not learn from prior data nor use prior data in any

way when deriving the tag. Recently, many classes of data-dependent LSH families have

been proposed, including principal components analysis hashing (PCA hashing (41)), spec-

tral hashing (42), semantic hashing (43), deep hashing (44), and others (45) (reviewed by Wang

et al (46)). Biologically, learning also plays an important role, especially in the mammalian ol-

factory circuit, where plasticity and neurogenesis both occur in early processing stages (47,48).

In the fly, learning occurs primarily in the mushroom body at Kenyon cell synapses onto mush-

room body output neurons (2), though there is some evidence that learning can also occur in

the glomeruli (49). Understanding the different contributions to learning made by each of these

regions remains an open biological problem. Computationally, understanding how hash func-

tions can be learned and modified over time based on online experience, as opposed to using a

fixed offline database as is often the assumption made by data-dependent hashing algorithms,

remains an important question.
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SIFT (d=128) MNIST (d=784)GLOVE (d=300)

Figure S1: Comparison of different sampling levels in the sparse, binary random projection.

A B C

Figure S2: Analysis of the GIST dataset. (A) Similar performance of sparse, binary compared to
dense, Gaussian random projections. (B) Performance gains using winner-take-all compared to random
tag selection. (C) Further performance gains for the fly algorithm with a 10d expansion compared to a
20k expansion in (B).
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D) GIST (d=960)

B
A) SIFT (d=128)

C) MNIST (d=784)

B) GLOVE (d=300)

Figure S3: The fly versus LSH using binary locality-sensitive hashing.
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