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A distributional code for value in dopamine-
based reinforcement learning

Will Dabney1,5*, Zeb Kurth-Nelson1,2,5, Naoshige Uchida3, Clara Kwon Starkweather3,  
Demis Hassabis1, Rémi Munos1 & Matthew Botvinick1,4,5

Since its introduction, the reward prediction error theory of dopamine has explained 
a wealth of empirical phenomena, providing a unifying framework for understanding 
the representation of reward and value in the brain1–3. According to the now canonical 
theory, reward predictions are represented as a single scalar quantity, which supports 
learning about the expectation, or mean, of stochastic outcomes. Here we propose an 
account of dopamine-based reinforcement learning inspired by recent artificial 
intelligence research on distributional reinforcement learning4–6. We hypothesized 
that the brain represents possible future rewards not as a single mean, but instead as a 
probability distribution, effectively representing multiple future outcomes 
simultaneously and in parallel. This idea implies a set of empirical predictions, which 
we tested using single-unit recordings from mouse ventral tegmental area. Our 
findings provide strong evidence for a neural realization of distributional 
reinforcement learning.

The reward prediction error (RPE) theory of dopamine derives from 
work in the artificial intelligence (AI) field of reinforcement learning 
(RL)7. Since the link to neuroscience was first made, however, RL has 
made substantial advances8,9, revealing factors that greatly enhance 
the effectiveness of RL algorithms10. In some cases, the relevant mecha-
nisms invite comparison with neural function, suggesting hypotheses 
concerning reward-based learning in the brain11–13. Here we examine a 
promising recent development in AI research and investigate its poten-
tial neural correlates. Specifically, we consider a computational frame-
work referred to as distributional reinforcement learning4–6 (Fig. 1a, b).

Similar to the traditional form of temporal-difference RL—on which 
the dopamine theory was based—distributional RL assumes that 
reward-based learning is driven by a RPE, which signals the difference 
between received and anticipated reward. (For simplicity, we introduce 
the theory in terms of a single-step transition model, but the same 
principles hold for the general multi-step (discounted return) case; 
see Supplementary Information.) The key difference in distributional 
RL lies in how ‘anticipated reward’ is defined. In traditional RL, the 
reward prediction is represented as a single quantity: the average over 
all potential reward outcomes, weighted by their respective probabili-
ties. By contrast, distributional RL uses a multiplicity of predictions. 
These predictions vary in their degree of optimism about upcoming 
reward. More optimistic predictions anticipate obtaining greater 
future rewards; less optimistic predictions anticipate more meager 
outcomes. Together, the entire range of predictions captures the full 
probability distribution over future rewards (more details in Supple-
mentary Information).

Compared with traditional RL procedures, distributional RL can 
increase performance in deep learning systems by a factor of two 
or more5,14,15, an effect that stems in part from an enhancement of 

representation learning (see Extended Data Figs. 2, 3 and Supplemen-
tary Information). This prompts the question of whether RL in the brain 
might leverage the benefits of distributional coding. This question is 
encouraged both by the fact that the brain utilizes distributional codes in 
numerous other domains16, and by the fact that the mechanism of distri-
butional RL is biologically plausible6,17. Here we tested several predictions 
of distributional RL using single-unit recordings in the ventral tegmental 
area (VTA) of mice performing tasks with probabilistic rewards.

Value predictions vary among dopamine neurons
In contrast to classical temporal-difference (TD) learning, distributional 
RL posits a diverse set of RPE channels, each of which carries a different 
value prediction, with varying degrees of optimism across channels. 
(Value is formally defined in RL as the mean of future outcomes, but here 
we relax this definition to include predictions about future outcomes 
that are not necessarily the mean.) These value predictions in turn pro-
vide the reference points for different RPE signals, causing the latter to 
also differ in terms of optimism. As a surprising consequence, a single 
reward outcome can simultaneously elicit positive RPEs (within relatively 
pessimistic channels) and negative RPEs (within more optimistic ones).

This translates immediately into a neuroscientific prediction, which 
is that dopamine neurons should display such diversity in ‘optimism’. 
Suppose an agent has learned that a cue predicts a reward whose mag-
nitude will be drawn from a probability distribution. In the standard 
RL theory, receiving a reward with magnitude below the mean of this 
distribution will elicit a negative RPE, whereas larger magnitudes 
will elicit positive RPEs. The reversal point—the magnitude at which 
prediction errors transition from negative to positive—in standard 
RL is the expectation of the magnitude’s distribution. By contrast, in 
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distributional RL, the reversal point differs across dopamine neurons 
according to their degree of optimism.

We tested for such reversal-point diversity in optogenetically verified 
dopaminergic VTA neurons, focusing on responses to receipt of liquid 
rewards, the volume of which was drawn at random on each trial from 
seven possible values (Fig. 1c). As anticipated by distributional RL, but not 
by the standard theory, we found that dopamine neurons had substan-
tially different reversal points, ranging from cells that reversed between 
the smallest two rewards to cells that reversed between the largest two 
rewards (Fig. 2a, b). This diversity was not owing to noise, as the reversal 
point estimated on a random half of the data was a robust predictor 
of the reversal point estimated on the other half of the data (R = 0.58, 
P = 1.8 × 10−5 by linear regression; Fig. 2c). In fact, in response to the 5 μl 
reward, 13 out of 40 cells had significantly above-baseline responses and 
10 out of 40 cells had significantly below-baseline responses. Note that 
while some cells appeared pessimistic and others appeared optimistic, 
there was also a population of cells with approximately neutral responses, 
as predicted by the distributional RL model (compare with Fig. 2a, right).

A stronger test of our theory is whether this diversity also exists 
within a single animal. Most animals had too few cells for analysis, but 
within the single animal with the highest number of recorded cells, 
reversal points estimated on half of the data were robustly predictive 
of reversal points estimated on the other half (P = 0.008). Furthermore, 
in response to a single reward magnitude (5 μl), 6 out of 16 cells had 
significantly above-baseline responses and 5 out of 16 cells had sig-
nificantly below-baseline responses. Finally, Fig. 2d shows rasters of 
two example cells from this animal, exhibiting consistently opposite 
responses to the same reward.

Because the diversity we observe is reliable across trials, it cannot 
be explained by adding measurement noise to non-distributional TD 
models. As detailed in section 2 of the Supplementary Information (see 
also Extended Data Fig. 4), we also analysed several more elaborate 
alternative models, and whereas some of these can give rise to the 
appearance of reversal-point diversity under some analysis methods, 
the same models are contradicted by other aspects of the experimental 
data, which we report below.

Our first prediction dealt with the relationship between dopaminergic 
signalling and reward magnitude; dopaminergic RPE signals also scale 
with reward probability2,18, and distributional RL also leads to a predic-
tion in this domain. Pursuing this, we analysed data from a second task 
in which sensory cues indicated the probability of an upcoming liquid 
reward (Fig. 1d). One cue indicated a 10% probability of reward, a differ-
ent cue indicated a 50% probability, and a third a 90% probability. The 
standard RPE theory predicts that, considering responses at the time the 
cue is presented, all dopamine neurons should have the same relative 
spacing between 10%, 50% and 90% cue responses. (Under neutral risk 

preferences, the 50% cue response should be midway between the 10% 
and 90% cues. Under different risk preferences, the 50% cue response 
might be at a different position between 10% and 90%, but it should 
be the same for all neurons). Distributional RL predicts, instead, that 
dopamine neurons should vary in their responses to the 50% cue: some 
neurons should respond optimistically, emitting a RPE nearly as large as 
to the 90% cue. Others should respond pessimistically, emitting a RPE 
closer to the 10% cue response (Fig. 3a). Labelling these two cases as 
optimistically and pessimistically biased, respectively, distributional RL 
predicts that as a population, dopamine neurons should show concur-
rent optimistic and pessimistic coding for reward probability.

To test this prediction, we analysed responses of dopaminergic VTA 
neurons in the cued probability task just described (see Methods for more 
details). As predicted by distributional RL, but not by the standard theory, 
dopamine neurons differed in their patterns of response across the three 
reward-probability cues, with both optimistic and pessimistic probability 
coding observed (Fig. 3b left, Extended Data Figs. 6, 7). Again, this diver-
sity was not due to noise, as 10 out of 31 cells were significantly optimistic 
and 9 out of 31 cells were significantly pessimistic, at a P < 0.05 threshold 
(see Methods). By comparison, at a 0.05 threshold, approximately 3 out 
of 31 cells in a non-distributional TD system are expected by chance to 
appear either significantly optimistic or pessimistic. At the group level, 
the null hypothesis of no diversity was rejected by one-way analysis of 
variance (ANOVA) (F(30, 3335) = 4.31, P = 6 × 10−14). Notably, both forms 
of probability coding were observed side by side in individual animals. 
In the animal with the largest number of recorded cells, 4 out of 17 cells 
were consistently optimistic and 5 out of 17 cells were consistently pessi-
mistic. This was also significant by ANOVA (F(15, 1652) = 4.02, P = 3 × 10−7).

Because most cells were recorded in different sessions, it was 
important to examine whether global changes in reward expecta-
tions between sessions might explain the observed diversity in opti-
mism. To this end, we analysed patterns of anticipatory licking. Here 
we found that, although within-session fluctuations in licking were 
predictive of within-session fluctuations in dopamine cell firing, there 
was no relationship between optimism and licking on a cell-by-cell 
basis (Extended Data Fig. 9). This observation makes it unlikely that 
the diverse responses we observed in dopamine neurons are explained 
by session-to-session variability in global reward expectation. That 
interpretation is further undermined by the fact that reversal-point 
diversity was observed in the one case where several cells were recorded 
simultaneously in one animal (Fig. 3c and Supplementary Information).

GABAergic neurons make diverse reward predictions
In distributional RL, diversity in RPE signalling arises because differ-
ent RPE channels listen to different reward predictions, which vary 
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difference (TD) theory of the dopamine system, all value predictors learn the 
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indicates α− > α+. An imbalance between α+ and α− causes each channel to learn a 
different value prediction. This set of value predictions collectively represents 
the distribution over possible rewards. c, We analyse data from two tasks. In the 
variable-magnitude task, there is a single cue, followed by a reward of 
unpredictable magnitude. d, In the variable-probability task, there are three 
cues, which each signal a different probability of reward, and the reward 
magnitude is fixed.
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in their degree of optimism. From a neuroscientific perspective, it 
should thus be possible to track the effects we have identified at the 
level of VTA dopamine neurons back to upstream neurons signal-
ling reward predictions. Previous work strongly suggests that VTA 
GABAergic (γ-aminobutyric acid) neurons have precisely this role, 
and that the reward prediction used to compute the RPE is reflected 
in their firing rates19. Therefore, we predicted that, in the same task 
described above, the population of VTA GABAergic neurons should 
also contain concurrent optimistic and pessimistic probability cod-
ing. As predicted, consistent differences in probability coding were 
observed across putative GABAergic neurons, again with concurrent 
optimism and pessimism (Fig. 3b, right). In the animal with the largest 
number of cells recorded, 12 out of 36 cells were consistently opti-
mistic and 11 out of 36 cells were consistently pessimistic (example 
cells shown in Fig. 3d).

Distribution coding from asymmetric RPE scaling
The results reported in the preceding sections suggest that a distri-
bution of value predictions is coded in the neural circuits underlying 
RL. How might such coding arise in the first place? Recent AI work on 
distributional RL15 has shown that distributional coding arises automati-
cally if a single change is made to the classical TD learning mechanism.

In classical TD, positive and negative errors are given equal weight. 
As a result, positive and negative errors are in equilibrium when the 
learned prediction equals the mean of the reward distribution. There-
fore, classical TD learns to predict the average over future rewards.

By contrast, in distributional TD, different RPE channels place different 
relative weights on positive versus negative RPEs (see Fig. 1b). In channels 
that overweight positive RPEs, reaching equilibrium requires these positive 
errors to become less frequent, so the learning dynamics converge on a 
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Fig. 2 | Different dopamine neurons consistently reverse from positive to 
negative responses at different reward magnitudes. Variable-magnitude 
task from ref. 30. On each trial, the animal experiences one of seven possible 
reward magnitudes (0.1, 0.3, 1.2, 2.5, 5, 10 or 20 μl), selected randomly. a, RPEs 
produced by classical and distributional TD simulations. Each horizontal bar is 
one simulated neuron. Each dot colour corresponds to a particular reward 
magnitude. The x axis is the cell’s response (change in firing rate) when reward 
is delivered. Cells are sorted by reversal point. In classical TD, all cells carried 
approximately the same RPE signal. Note that the slight differences between 
cells arose from Gaussian noise added to the simulation; the differences 
between cells in the classical TD simulation were not statistically reliable. 
Conversely, in distributional TD, cells had reliably different degrees of 
optimism. Some responded positively to almost all rewards, and others 

responded positively to only the very largest reward. b, Responses recorded 
from light-identified dopamine neurons in behaving mice. Neurons differed 
markedly in their reversal points. c, To assess whether this diversity was 
reliable, we randomly partitioned the data into two halves and estimated 
reversal points independently in each half. We found that the reversal point 
estimated in one half was correlated with that estimated in the other half 
(P = 1.8 × 10−5 by linear regression). d, Spike rasters for two example dopamine 
neurons from the same animal, showing responses to all trials when the 5 μl 
reward was delivered. We analysed data from 200 to 600 ms after reward onset 
(highlighted), to exclude the initial transient that was positive for all 
magnitudes. During this epoch, the cell on the bottom fires above its baseline 
rate, while the cell on the top pauses.
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more optimistic reward prediction. Conversely, in channels overweighting 
negative RPEs, a more pessimistic prediction is needed to attain equilibrium 
(Fig. 4a, Extended Data Fig. 1a). Together, the set of predictions learned 
across all channels encodes the full shape of the reward distribution.

When distributional RL is considered as a model of the dopamine sys-
tem, these points translate into two testable predictions. First, dopamine 
neurons should differ in their relative scaling of positive and negative 
RPEs. To test this prediction, we analysed activity from VTA dopamine 
neurons in the variable-magnitude task described above. We first esti-
mated a reversal point for each cell as previously described. Then, for each 
cell, we separately estimated two slopes: α+ for responses in the positive 
domain (that is, above the reversal point), and α− for the negative domain 
(Fig. 4b). This revealed reproducible differences across dopamine neurons 
in the relative magnitude of positive versus negative RPEs (Extended 
Data Fig. 5). Across all animals, the mean value of the ratio α+/(α+ + α−) 
was 0.48. However, many cells had a value significantly above or below 
this mean (Fig. 4c; see Methods for details of statistical test). At the group 
level, there was significant diversity between cells by one-way ANOVA 
(F(38, 234) = 2.93, P = 4 × 10−7). In the animal with the largest number of 
recorded cells, 3 out of 15 cells were significantly below the mean and 3 
out of 15 were significantly above the mean; ANOVA again rejected the 
null hypothesis of no diversity between cells (F(14, 90) = 4.06, P = 2 × 10−5).

Second, RPE asymmetry should correlate, across dopamine neu-
rons, with reversal point. Dopamine neurons that scale positive RPEs 
more steeply relative to negative RPEs should be linked with relatively 
optimistic reward predictions, and so should have reversal points at 
relatively high reward magnitudes. Dopamine neurons that scale posi-
tive RPEs less steeply should have relatively low reversal points. Again 
using data from the variable-magnitude task, we found a strong cor-
relation between RPE asymmetry and reversal point (P = 8.1 × 10−5 by 
linear regression; Fig. 4d, e), validating this prediction. Furthermore, 
this effect survived when only considering data from the single animal 
with the largest number of recorded cells (P = 0.002).

Decoding reward distributions
As we have discussed, the distributional TD model correctly predicts 
that dopamine neurons should show diverse reversal points and 
response asymmetries, and that these should correlate. Finally, we 
consider the most detailed prediction of the model. The specific rever-
sal points observed in any experimental situation, together with the 

particular response asymmetries in the corresponding neurons, should 
encode an approximate representation of the anticipated probability 
distribution over future rewards.

If this is the case, then with sufficient data it should be possible to 
decode the full value distribution from the responses of dopamine neu-
rons. As a final test of the distributional RL hypothesis, we attempted 
this type of decoding. The distributional TD model implies that, if 
dopaminergic responses are approximately linear in the positive and 
negative domains, then the resultant learned reward predictions will 
correspond to expectiles of the reward distribution20 (expectiles are 
a statistic of distributions, which generalize the mean in the same way 
that quantiles generalize the median).

We therefore treated the reversal points and response asymmetries 
measured in the variable-magnitude task as defining a set of expec-
tiles, and we transformed these expectiles into a probability density 
(see Methods). As shown in Fig. 5a–c, the resulting density captured 
multiple modes of the ground-truth value distribution. Decoding the 
RPEs produced by a distributional TD simulation, but not a classical 
TD simulation, produced the same pattern of results.

Parallel analyses focusing on the variable-probability task (see Meth-
ods) yielded similarly good matches to the ground-truth distributions 
in that task (Fig. 5d, e). In both tasks, successful decoding depended 
on the specific pattern of variability in the neural data, and not on the 
presence of variability per se (Extended Data Fig. 8).

It is worth emphasizing that none of the effects we have reported are 
anticipated by the standard RPE theory of dopamine, which implies that 
all dopamine neurons should transmit essentially the same RPE signal. 
Why have the present effects not been observed before? In some cases, 
relevant data have been hiding in plain sight. For example, a number of 
studies have reported marked variability in the relative magnitude of 
positive and negative RPEs across dopamine neurons; however, they 
have treated this as an incidental finding or a reflection of measure-
ment error, or viewed it as a problem for the RPE theory17. One of the 
earliest studies of reward-probability coding in dopaminergic RPEs 
remarked on apparent diversity across dopamine neurons, but only in a 
footnote18. A more general issue is that the forms of variability we have 
reported are masked by traditional analysis techniques, which typically 
focus on average responses across dopamine neurons (see Supplemen-
tary Information and Extended Data Fig. 10).

Distributional RL offers a range of untested predictions. Dopamine 
neurons should maintain their ordering of relative optimism across task 

–5
0
5

10
15

–5 100 5
–5
0
5

10
15

–5 100 5
–5
0
5

10
15

–5 100 5
Reward minus reversal point

Δ 
Fi

rin
g 

ra
te

Reward minus reversal point

Δ 
Fi

rin
g 

ra
te

Distributional TD simulation

Asymmetric scaling in DA �ring

10 15 20 25 30 35 40
Cell index

0

0.2

0.4

0.6

0.8

1

1.2

Each cell
Mean across cells

α+
/(
α+

+
α–

)

0 5

Different from mean

Diversity in asymmetry Normalized by negative scale

–10 –5 0 5 10 15
Reward minus reversal point

–20

–10

0

10

20

30

40

Δ 
Fi

rin
g 

ra
te

 (n
or

m
al

iz
ed

)

Asymmetry predicts reversal point

0 0.2 0.4 0.6 0.8 1

0.1 μl
1.2 μl
2.5 μl

5 μl

10 μl

α+/(α++α–)

R
ev

er
sa

l p
oi

nt

a

b

c d e

Fig. 4 | Relative scaling of positive and negative dopamine responses 
predicts reversal point. a, Three simulated dopamine neurons—each with a 
different asymmetry—in the variable-magnitude task. For each unit, we 
empirically estimated the reversal point where responses switch from negative 
to positive. The x axis shows reward minus the per-cell reversal point, 
effectively aligning each cell’s responses to its respective reversal point. 
Baseline-subtracted response to reward is plotted on the y axis. Responses 
below the reversal point are shown in green and those above are shown in 
orange. Solid curves show linear functions fit separately to the above-reversal 
and below-reversal domains of each cell. b, Same as a, but showing three real 
example dopamine cells. c, The diversity in relative scaling of positive and 
negative responses in dopamine cells is statistically reliable (one-way ANOVA; 
F(38, 234) = 2.93, P = 4 × 10−7). The mean and 95% confidence intervals of  

α+/(α+ + α−) are displayed, where α+ and α− are the slopes estimated above.  
d, Relative scaling of positive and negative responses predicts that cell’s 
reversal point (P = 8.1 × 10−5 by linear regression). Each point represents one 
dopamine cell. Dashed line is the mean over cells. Light grey traces show 
reversal points measured in distributional TD simulations of the same task, and 
show variability over simulation runs. e, All 40 dopamine cells plotted in the 
same fashion as in b, except normalized by the slope estimated in the negative 
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contexts, even as the specific distribution of rewards changes. If RPE 
channels with particular levels of optimism are selectively activated 
with optogenetics, this should sculpt the learned distribution, which 
should in turn be detectable with behavioural measures of sensitivity 
to moments of the distribution. We list further predictions in the Sup-
plementary Information.

Distributional RL also gives rise to a number of broader questions. 
What are the circuit- or cellular-level mechanisms that give rise to a 
diversity of asymmetry in positive versus negative RPE scaling? It is 
also worth considering whether other mechanisms, aside from asym-
metric scaling of RPEs, might contribute to distributional coding. It is 
well established, for example, that positive and negative RPEs differ-
entially engage striatal D1 and D2 dopamine receptors21, and that the 
balance of these receptors varies anatomically22–24. This suggests a sec-
ond potential mechanism for differential learning from positive versus 
negative RPEs25. Moreover, how do different RPE channels anatomically 
couple with their corresponding reward predictions (see Extended 
Data Fig. 4i–k)? Finally, what effects might distributional coding have 
downstream, at the level of action learning and selection? With this 
question in mind, it is notable that some current theories in behavioural 
economics centre on risk measures that can be easily read out from 
the kind of distributional codes that the present work has considered.

Finally, we speculate on the implications of the distributional hypothesis 
of dopamine for the mechanisms of mental disorders such as addiction and 
depression. Mood has been linked with predictions of future reward26, and 
it has been proposed that both depression and bipolar disorder may involve 
biased forecasts concerning value-laden outcomes27. It has recently been 
proposed that such biases may arise from asymmetries in RPE coding28,29. 
There are clear potential connections between these ideas and the phenom-
ena we have reported here, presenting opportunities for further research.
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Methods

Distributional RL model
The model for distributional RL we use throughout the work is based 
on the principle of asymmetric regression and extends recent results 
in AI5,6,15. We present a more detailed and accessible introduction to 
distributional RL in the Supplementary Information. Here we outline 
the method in brief.

Let f: ℝ → ℝ be a response function. In each observed state x, let there 
be a set of value predictions Vi(x) which are updated with learning rates 
α α, ∈ Ri i

+ − +. Then given a state x, next-state x′, resulting reward signal r 
and time discount γ ∈ [0, 1), the distributional TD model computes 
distributional TD errors

δ r γV x V x= + ( ′) − ( ) (1)i j i

where Vj(x′) is a sample from the distribution V(x′). The model then 
updates the baselines with

V x V x α f δ δ( ) ← ( ) + ( ) for > 0 (2)i i i i i
+

V x V x α f δ δ( ) ← ( ) + ( ) for ≤ 0 (3)i i i i i
−

When performed with a tabular representation, asymmetry uni-
formly distributed, and f(δ) = sgn(δ), this method converges to the τi 
quantile, τ =i

α

α α+
i

i i

+

+ − , of the distribution over discounted returns at x  
(ref. 6). Similarly, asymmetric regression with response function f(δ) = δ 
corresponds to expectile regression31. Like quantiles, expectiles fully 
characterize the distribution and have been shown to be particularly 
useful for measures of risk32,33.

Finally, we note that throughout the paper, we use the terms opti-
mistic and pessimistic to refer to return predictions that are above or 
below the mean (expected) return. Importantly, these predictions are 
optimistic in the sense of corresponding to particularly good outcomes 
from the set of possible outcomes. They are not optimistic in the sense 
of corresponding to outcomes that are impossibly good.

Artificial agent results
Atari results are on the Atari-57 benchmark using the publicly avail-
able Arcade Learning Environment34. This is a set of 57 Atari 2600 
games and human-performance baselines. Refer to previous work 
for details on deep Q-networks (DQN) and computation of human-
normalized scores8. The distributional TD agent uses our proposed 
model and a DQN with multiple (n = 200) value predictors, each with 
a different asymmetry, spaced uniformly in [0, 1]. The training objec-
tive of DQN, the Huber loss, is replaced with the asymmetric quantile-
Huber loss, which corresponds to the κ-saturating response function 
f(δ) = max(min(δ, κ), −κ), with κ = 1.

Finally, at each update we train all channels based on the immediate 
reward and the predicted future returns from all next-state value predic-
tors. Further details can be found in ref. 6. The physics-based motor-
control task requires control of a 28 degrees-of-freedom humanoid 
to complete a 3D obstacle course in minimal time35. Full details for the 
D3PG and distributional D3PG agents are as described14. Distributions 
over return shown in Extended Data Fig. 2d, f are based on the network-
predicted distribution in each of the given frames.

Tabular simulations
Tabular simulations of the classical TD and distributional TD models 
used a population of learning rates selected uniformly at random, 
α ~ U(0, 1)i

+  for each cell i. In all cases the only algorithmic difference 
between the classical and distributional TD models was that the dis-
tributional model used a separately varying learning rate for negative 
prediction errors, α ~ U(0, 1)i

−  for each cell i. Both methods used a linear 
response function. Qualitatively similar results were also obtained 

with other response functions (for example, Hill function30 or κ−satu-
rating), despite these leading to semantically different estimators of 
the distribution. The population sizes were chosen for clarity of pres-
entation and to provide similar variability as observed in the neuronal 
data. Each cell was paired with a different state-dependent value esti-
mate Vi(x). Note that while these simulations focused on immediate 
rewards, the same algorithm also learns distributions over multi-step 
returns.

In the variable-probability task, each cue corresponded to a differ-
ent value estimate and reward probability (90%, 50% or 10%). When 
rewarded, the agent received numerical reward of 1.0, and when omit-
ted, it received 0.0. Both agents were trained for 100 trials of 5,000 
updates, and both simulated n = 31 cells (separate value estimates). The 
learning rates were all selected uniformly at random between [0.001, 
0.2]. Cue response was taken to be the temporal difference from a con-
stant zero baseline to the value estimate.

In the variable-magnitude task, all rewards were taken to be the water 
magnitude measured in microlitres (qualitatively same results obtained 
with utilities instead of magnitudes). For Fig. 2 we ran 10 trials of 25,000 
updates each for 150 estimators with random learning rates in [0.001, 
0.02]. These smaller learning rates and larger number of updates were 
intended to ensure the values converged fully with low error. We then 
report temporal difference errors for ten cells taken uniformly to span 
the range of value estimates for each agent. Reported errors (simulating 
change in firing rate) are the utility of a reward minus the value estimate 
and scaled by the learning rate. As with the neuronal data, these are 
reported averaged over trials and normalized by variance over reward 
magnitudes. Distributional TD RPEs are computed using asymmetric 
learning rates, with a small constant (floor) added to the learning rates.

Distribution decoding
For both real neural data and TD simulations, we performed distribution 
decoding. The distributional and classical TD simulations used for 
decoding in the variable-magnitude task each used 40 value predictors, 
to match the 40 recorded cells in the neural data (neural analyses were 
pooled across the six animals). In the distributional TD simulation, each 
value predictor used a different asymmetric scaling factor τ =i

α

α α+
i

i i

+

+ − ,  
and therefore learned a different value prediction Vi.

The decoding analyses began with a set of reversal points, Vi, and 
asymmetric scaling factors τi. For the neural data, these were obtained 
as described elsewhere. For the simulations, they were read directly 
from the simulation. These numbers were interpreted as a set of expec-
tiles, with the τi-th expectile having value Vi. We decoded these into 
probability densities by solving an optimization problem to find the 
density most compatible with the set of expectiles20. For optimization, 
the density was parameterized as a set of samples. For display in Fig. 5, 
the samples are smoothed with kernel density estimation.

Animals and behavioural tasks
The rodent data we re-analysed here were first reported in ref. 19. Meth-
ods details can be found in that paper and in ref. 30. We give a brief 
description of the methods below.

Five mice were trained on a ‘variable-probability’ task, and six differ-
ent mice on a ‘variable-magnitude’ task. In the variable-probability task, 
in each trial the animal first experienced one of four odour cues for 1 s, 
followed by a 1-s pause, followed by a reward (3.75 μl water), an aversive 
airpuff or nothing. Odour 1 signalled a 90% chance of reward, odour 
2 signalled a 50% chance of reward, odour 3 signalled a 10% chance of 
reward and odour 4 signalled a 90% chance of airpuff. Odour meanings 
were randomized across animals. Inter-trial intervals were exponentially 
distributed.

An infrared beam was positioned in front of the water delivery spout, 
and each beam break was recorded as one lick event. We report the aver-
age lick rate over the entire interval between the cue and the outcome 
(that is, 0–2,000 ms after cue onset).



In the variable-magnitude task, in 10% of trials an odour cue was 
delivered that indicated that no reward would be delivered on that 
trial. In the remaining 90% of trials, one of the following reward mag-
nitudes was delivered, at random: 0.1, 0.3, 1.2, 2.5, 5, 10 or 20 μl. In half 
of these trials, this reward was preceded by 1,500 ms by an odour cue 
(which indicated that a reward was forthcoming but did not disclose 
its magnitude). In the other half, it was unsignalled.

In order to identify dopamine neurons while recording, neurons 
in the VTA were tagged with channelrhodopsin-2 (ChR2) by injecting 
adeno-associated virus (AAV) that expresses ChR2 in a Cre-dependent 
manner into the VTA of transgenic mice that express Cre recombinase 
under the promoter of the dopamine transporter (DAT) gene Slc6a3 
(B6.SJL-Slc6a3tm1.1(cre)Bkmn/J, The Jackson Laboratory)36. Mice were 
implanted with a head plate and custom-built microdrive containing 
6–8 tetrodes (Sandvik) and optical fibre, as described37.

All experiments were performed in accordance with the US National 
Institutes of Health Guide for the Care and Use of Laboratory Animals 
and approved by the Harvard Institutional Animal Care and Use Com-
mittee.

Neuronal data and analysis
Extracellular recordings were made from VTA using a data acquisi-
tion system (DigiLynx, Neuralynx). VTA recording sites were verified 
histologically. The identity of dopaminergic cells was confirmed by 
recording the electrophysiological responses of cells to a brief blue 
light pulse train, which stimulates only DAT-expressing cells. Spikes 
were sorted using SpikeSort3D (Neuralynx) or MClust-3.5 (A.D. Redish). 
Putative GABAergic neurons in the VTA were identified by clustering 
of firing patterns as described previously30,37. All confidence intervals 
are s.e.m. unless otherwise noted.

Data analyses were performed using NumPy 1.15 and MATLAB R2018a 
(Mathworks). Spike times were collected in 1-ms bins to create peri-
stimulus time histograms. These histograms were then smoothed by 
convolving with the function (1 − e ) ⋅ et t T− − / , where T was a time constant, 
set to 20 ms as in ref. 30. For single-cell traces, we set T to 200 ms for 
display purposes.

After smoothing, the data were baseline-corrected by subtracting 
from each trial and each neuron independently the mean over that trial’s 
activity from −1,000 to 0 ms relative to stimulus onset (or relative to 
reward onset in the unexpected reward condition).

Variable-probability task. n = 31 cells were recorded from five ani-
mals, with the following number of cells per animal: 1, 4, 16, 1 and 9. 
Responses to cue for dopamine neurons were defined as the average 
activity from 0 to 400 ms after cue onset. This interval was chosen to 
match ref. 30. Responses to cue for putative GABAergic neurons were 
defined as the average activity from 0 to 1,500 ms after cue onset. This 
longer interval was chosen because these neurons had much slower 
responses, often ramping up slowly over the first 500 or 1,000 ms after 
cue onset37 (Fig. 3d).

We were interested in whether there was between-cell diversity  
in responses to the 50% cue. We first normalized the responses  
to the 50% cue on a per-cell basis as follows: c c c= ( − mean( ))/50

norm
50 10

c c(mean( ) − mean( ))90 10 , where mean indicates the mean over trials 
within a cell. In order to be agnostic about the risk preferences of the 
animal, we then performed a two-tailed t-test of the cell’s normalized 
responses to the 50% cue against the average of all cells’ normalized 
responses to the 50% cue. This is the test for optimistic or pessimistic 
probability coding that we report in the main text. Note that these 
t-statistics would be t-distributed if the differences between cells were 
due to chance. We also report ANOVA results where we evaluate the null 
hypothesis that all cells’ normalized 50% responses have the same mean.

The same pattern of results held when instead comparing responses 
to the 50% cue against the midway point between responses to the 10% 
cue and responses to the 90% cue.

The per-cell cue responses shown in Extended Data Fig. 7 were nor-
malized to zero mean and unit variance, to allow direct comparison of 
cells with different response variability. Each cell appears in one of three 
panels based on the outcome of two single-tailed Mann–Whitney tests 
evaluating the rank order for c10 < c50 and c50 < c90 (see Supplementary 
Information section 3.3 for further details). The left, centre and right 
panels correspond to outcomes (P ≥ 0.05, P < 0.05), (P < 0.05, P < 0.05 
or P ≥ 0.05, P ≥ 0.05) and (P < 0.05, P ≥ 0.05), respectively.

Variable-magnitude task. n = 40 cells were recorded from five ani-
mals, with the following number of cells per animal: 3, 6, 9, 16 and 6. 
Responses to reward were defined as the average activity from 200 to 
600 ms after reward onset. This time interval was selected to match 
ref. 30 as closely as possible, while excluding the initial response to the 
feeder click30,38,39, which was not selective to reward magnitude and was 
positive for all reward magnitudes. This enabled us to find the reward 
magnitudes for which the dopamine response was either boosted or 
suppressed relative to baseline.

The reversal point (that is, the reward magnitude that would elicit 
neither a positive nor a negative deflection in firing relative to baseline) 
for each cell was defined as the magnitude MR that maximized the num-
ber of positive responses to rewards greater than MR plus the number 
of negative responses to rewards less than MR. To obtain statistics for 
reliability of cell-to-cell differences in reversal point, we partitioned 
the data into random halves and estimated the reversal point for each 
cell separately in each half. We repeated this procedure 1,000 times 
with different random partitions, and we report the mean R value and 
geometric mean p value across these 1,000 folds.

After measuring reversal points, we fit linear functions separately to 
the positive and negative domains of each cell. To obtain confidence 
intervals, we divided the data into seven random partitions (seven being 
the smallest number of trials in any condition for any cell), subject to 
the constraint that every condition for every cell contain at least one 
trial in each partition. In each partition, we repeated the procedure 
for estimating reversal points and finding slopes in the positive and 
negative domains. Our confidence interval on τ = α+/(α+ + α−) was then 
the s.e.m. of the values calculated across the seven partitions. ANOVAs 
are also reported testing the null hypothesis that means (across parti-
tions) were not different between cells.

Fitting linear functions to dopamine responses was more logical in 
utility space than in reward volume space. We relied on ref. 38 to approxi-
mate the underlying utility function from the dopamine responses 
to rewards of varying magnitudes. We used these empirical utilities 
instead of raw reward magnitudes for the analyses shown in Fig. 4. 
However, none of the reported results were sensitive to this choice of 
utility function. We also ran the analyses using other utility functions, 
and these results are reported in Extended Data Fig. 5. One cell was 
excluded from analyses in Fig. 5: because it had no positive responses 
to any reward magnitude, a slope could not be fit in the positive domain.

When measuring the correlation (across cells) between reversal 
point and τ, we first randomly split the data into two disjoint halves of 
trials. In one half, we first calculated reversal points RP1 and used these 
reversal points to calculate α+ and α−. In the other half, we calculated 
reversal points RP2. The correlation we report is between RP2 and τ = α+/
(α+ + α−). We did this to avoid confounds associated with using the same 
data to estimate both slopes and intercepts.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The neuronal data analysed in this work are available at https://doi.
org/10.17605/OSF.IO/UX5RG.

https://doi.org/10.17605/OSF.IO/UX5RG
https://doi.org/10.17605/OSF.IO/UX5RG


Article

Code availability
The analysis code from our value-distribution decoding and code used 
to generate model predictions for distributional TD are available at 
https://doi.org/10.17605/OSF.IO/UX5RG.
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Extended Data Fig. 1 | Mechanism of distributional TD. a, The degree of 
asymmetry in positive to negative scale determines the equilibrium where 
positive and negative errors balance. Equal scaling equilibrates at the mean, 
whereas a larger positive (negative) scaling produces an equilibrium above 
(below) the mean. b, Distributional prediction emerges through experience. 

Quantile (sign function) version is displayed here for clarity. Model is trained 
on arbitrary task with trimodal reward distribution. c, Same as b, viewed in 
terms of cumulative distribution (left) or learned value for each predictor 
(quantile function) (right).
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Extended Data Fig. 2 | Learning the distribution of returns improves 
performance of deep RL agents across multiple domains. a, DQN and 
distributional TD share identical nonlinear network structures. b, c, After 
training classical or distributional DQN on MsPacman, we freeze the agent and 
then train a separate linear decoder to reconstruct frames from the agent’s 
final layer representation. For each agent, reconstructions are shown. The 
distributional model’s representation allows substantially better 
reconstruction. d, At a single frame of MsPacman (not shown), the agent’s value 
predictions together represent a probability distribution over future rewards. 

Reward predictions of individual RPE channels shown as tick marks ranging 
from pessimistic (blue) to optimistic (red), and kernel density estimate shown 
in black. e, Atari-57 experiments with single runs of prioritized experience 
replay40 and double DQN41 agents for reference. Benefits of distributional 
learning exceed other popular innovations. f, g, The performance pay-off of 
distributional RL can be seen across a wide diversity of tasks. Here we give 
another example, a humanoid motor-control task in the MuJoCo physics 
simulator. Prioritized experience replay agent is shown for reference14. Traces 
show individual runs; averages are in bold.



Extended Data Fig. 3 | Simulation experiment to examine the role of 
representation learning in distributional RL. a, Illustration of tasks 1 and 2.  
b, Example images for each class used in our experiment42 c, Experimental 
results, where each of ten random seeds yields an individual run shown with 
traces; average over seeds is shown in bold. d, Same as c, but for control 

experiment. e, Bird–dog t-SNE visualization of final hidden layer of network, 
given different input images (blue, bird; red, dog). Left, classical TD; right, 
distributional TD; top row, representation after training on task 1; bottom row, 
representation after training on task 2.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Null models. a, Classical TD plus noise does not give rise 
to the pattern of results observed in real dopamine data in the variable-
magnitude task. When reversal points were estimated in two independent 
partitions there was no correlation between the two (P = 0.32 by linear 
regression). b, We then estimated asymmetric scaling of responses and found 
no correlation between this and reversal point (P = 0.78 by linear regression).  
c, Model comparison between ‘same’, a single reversal point, and ‘diverse’, 
separate reversal points. In both, the model is used to predict whether a held-
out trial has a positive or negative response. d, Simulated baseline-subtracted 
RPEs, colour-coded according to the ground-truth value of bias added to that 
cell’s RPEs. e, Across all simulated cells, there was a strong positive relationship 
between pre-stimulus baseline firing and the estimated reversal point. f, Two 
independent measurements of the reversal point were strongly correlated.  
g, The proportion of simulated cells that have significantly positive (blue) or 
negative (red) responses showed no magnitudes with both positive and 
negative responses. h, In the simulation, there was a significant negative 
relationship between the estimated asymmetry of each cell and its estimated 

reversal point (opposite that observed in neural data). i, Diagram illustrating a 
Gaussian-weighted topological mapping between RPEs and value predictors.  
j, Varying the standard deviation of this Gaussian modulates the degree of 
coupling. k, In a task with equal chance of a reward 1.0 or 0.0, distributional TD 
with different levels of coupling shows robustness to the degree of coupling.  
l, When there is no coupling, a distributional code is not learned, but 
asymmetric scaling can cause spurious detection of diverse reversal points.  
m, Even though every cell has the same reward prediction they appear to have 
different reversal points. n, With this model, some cells may have significantly 
positive responses, and others significantly negative responses, in response to 
the same reward. o, But this model is unable to explain a positive correlation 
between asymmetric scaling and reversal points. p, Simulation of ‘synaptic’ 
distributional RL, in which learning rates but not firing rates are 
asymmetrically scaled. This model predicts diversity in reversal points 
between dopamine neurons. q, The model predicts no correlation between 
asymmetric scaling of firing rates and reversal point.
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Extended Data Fig. 5 | Asymmetry and reversal. a, Left, all data points (trials) 
from an example cell. The solid lines are linear fits to the positive and negative 
domains, and the shaded areas show 95% confidence intervals calculated with 
Bayesian regression. Right, the same cell plotted in the format of Fig. 4b.  
b, Cross-validated model comparison on the dopamine data favours allowing 
each cell to have its own asymmetric scaling (P = 1.4 × 10−11 by paired t-test). The 
standard error of the mean appears large relative to the P value because the  
P value is computed using a paired test. c, Although the difference between 
single-asymmetry and diverse-asymmetry models was small in firing-rate 
space, such small differences correspond to large differences in decoded 
distribution space (more details in Supplementary Information). Each point is a 
TD simulation; colour indicates the degree of diversity in asymmetric scaling 
within that simulation. d, We were interested in whether an apparent 
correlation between reversal point and asymmetry could arise as an artefact, 
owing to a mismatch between the shape of the actual dopamine response 
function and the function used to fit it. Here we simulate the variable-
magnitude task using a TD model without a true correlation between 
asymmetric scaling and reversal point. We then apply the same analysis 
pipeline as in the main paper, to measure the correlation (colour axis) between 

asymmetric scaling and reversal point. We repeat this procedure 20 times with 
different dopamine response functions in the simulation, and different 
functions used to fit the positive and negative domains of the simulated data. 
The functions are sorted in increasing order of concavity. An artefact can 
emerge if the response function used to fit the data is less concave than the 
response function used to generate the data. For example, when generating 
data with a Hill function but fitting with a linear function, a positive correlation 
can be spuriously measured. e, When simulating data from the distributional 
TD model, where a true correlation exists between asymmetric scaling and 
reversal point, it is always possible to detect this positive correlation, even if 
the fitting response function is more concave than the generating response 
function. The black rectangle highlights the function used to fit real neural 
data in c. f, Here we analyse the real dopamine cell data identically to Fig. 4d, 
but using Hill functions instead of linear functions to fit the positive and 
negative domains. Because the correlation between asymmetric scaling and 
reversal point still appears under these adversarial conditions, we can be 
confident it is not driven by this artefact. g, Same as Fig. 4d, but using linear 
response function and linear utility function (instead of empirical utility).



Extended Data Fig. 6 | Cue responses versus outcome responses, and more 
evidence for diversity. a, In the variable-probability task: firing at cue, versus 
firing at reward (left) or omission (right). Colour brightness denotes 
asymmetry. b, Same as a, but showing RPEs from distributional TD simulation. 
c, Data from ref. 30 also included unpredicted rewards and unpredicted 
airpuffs. Top two panels show responses for all the cells recorded in one animal 
and bottom two panels show responses for all the cells of another animal. Left, 
the x axis is the baseline-subtracted response to free reward and the y axis is the 

baseline-subtracted response to airpuff. Dots with black outlines are per-cell 
means, and un-outlined dots are means of disjoint subsets of trials indicating 
consistency of asymmetry. Right, the same data plotted in a different way, with 
cells sorted along the x axis by response to airpuff. Response to reward is shown 
in greyscale dots. Asterisks indicate significant difference in firing rates from 
one or both neighbouring cells. d, Simulations for distributional but not 
classical TD produce diversity in relative response.
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Extended Data Fig. 7 | More details of data in variable-probability task.  
a, Details of analysis method. Of the four possible outcomes of the two Mann–
Whitney tests (Methods), two outcomes correspond to interpolation (middle) 
and one each to the pessimistic (left) and optimistic (right) groups.  
b, Simulation results for the classical TD and distributional TD models. y axis 
shows the average firing-rate change, normalized to mean zero and unit 
variance, in response to each of the three cues. Each curve is one cell. The cells 

are split into panels according to a statistical test for type of probability coding 
(see Methods for details). Colour indicates the degree of optimism or 
pessimism. Distributional TD predicts simultaneous optimistic and 
pessimistic coding of probability, whereas classical TD predicts all cells have 
the same coding. c, Same as b, but using data from real dopamine neurons. The 
pattern of results closely matches the predictions from the distributional TD 
model. d, Same as b, using data from putative VTA GABAergic interneurons.



Extended Data Fig. 8 | Further distribution decoding analysis. This figure 
pertains to the variable-magnitude experiment. a–c, In the decoding shown in 
the main text, we constrained the support of the distribution to the range of the 
rewards in the task. Here, we applied the decoding analysis without 
constraining the output values. We find similar results, although with 
increased variance. d, We compare the quality of the decoded distribution 
against several controls. The real decoding is shown as black dots. In coloured 
lines are reference distributions (uniform and Gaussian with the same mean 
and variance as the ground truth; and the ground truth mirrored). Black traces 
shift or scale the ground-truth distribution by varying amounts. e, Nonlinear 

functions used to shift asymmetries, to measure degradation of decoded 
distribution. The normal cumulative distribution function ϕ is used to 
transform asymmetry τ. This is shifted by some value s and transformed back 
through the normal quantile function ϕ−1. Positive values s increase the value of 
τ and negative values decrease the value of τ. f, Decoded distributions under 
different shifts, s. g, Plot of shifted asymmetries for values of s used.  
h, Quantification of match between decoded and ground-truth distribution, 
for each s. i, j, Same as Fig. 5d, e, but for putative GABAergic cells rather than 
dopamine cells.
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Extended Data Fig. 9 | Simultaneous diversity. a, b, Variable-probability task. 
Mean spiking (a) and licking (b) activity in response to each of the three cues 
(indicating 10%, 50% or 90% probability of reward) at time 0, and in response to 
the outcome (reward or no reward) at time 2,000 ms. c, Trial-to-trial variations 
in lick rates were strongly correlated with trial-to-trial variations in dopamine 
firing rates. Mean of each cell is subtracted from each axis, and the x axis is 
binned for ease of visualization. d, Dopaminergic coding of the 50% cue relative 
to the 10% and 90% cues (as shown in b) was not correlated with the same 
measure computed on lick rates. Therefore, between-session differences in 
cue preference, measured by anticipatory licking, cannot explain between-cell 
differences in optimism. e, Four simultaneously recorded dopamine neurons. 

These are the same four cells whose time courses are shown in Fig. 3c.  
f, Variable-magnitude task. Across cells, there was no relationship between 
asymmetric scaling of positive versus negative prediction errors, and baseline 
firing rates (R = 0.18, P = 0.29). Each point is a cell. These data are from 
dopamine neurons at reward delivery time. g, t-statistics of response to 5 μl 
reward compared with baseline firing rate, for all 16 cells from animal D. Some 
cells respond significantly above baseline and others significantly below. Cells 
are sorted by t-statistic. h, Spike rasters showing all trials in which the 5 μl 
reward was delivered. The two panels are two example cells from the same 
animal with rasters shown in Fig. 2.



Extended Data Fig. 10 | Relationship of results to original analysis. Here  
we reproduce results for the variable-magnitude task in ref. 30 with two 
different time windows. a, Change in firing rate in response to cued reward 
delivery averaged over all cells. b, Comparing Hill-function fit and response 
averaged over all cells for expected (cued) and unexpected reward delivery.  

c, Correlation between response predicted by scaled common response 
function and actual response to expected reward delivery. d, Zooming in  
on c shows correlation driven primarily by larger reward magnitudes.  
e–h, Repeating the above analysis for a window of 200–600 ms.
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