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In this supplement, we present additional information concerning computational and experimental
methods, as well as additional data and analysis. This material is divided into six sections: Section 1
covers the basic mechanisms underlying distributional RL, including a discussion of why distributional
RL accelerates learning; Section 2 considers a range of alternative models, each implementing a differ-
ent explanations of the experimental results; Section 3 tests the robustness of our results to modeling
assumptions involved in our analyses; Section 4 presents supplementary experimental results; Section 5
discusses relations to previous work; and Section 6 gives further predictions of the theory.

1 Distributional Reinforcement Learning: Basic Principles

1.1 Distributional Temporal Difference Learning

In this section we provide a more complete and accessible introduction to distributional TD learning.
The problem of RL is finding the best behavior policy. A policy, π, is a specification for every possible
state of which action(s) to take in that state. Thus, starting from a state x, running the policy forward
determines the future rewards Rt that will be received at all future times t. The sum of these future
rewards, discounted by γ, is called the return, Z:

Zπ(x) =

∞∑
t=0

γtRt

However, Z is not a single number but a random variable whose value depends on the possible
rewarding outcomes. Given a known starting state x and a policy π, there are two sources of randomness:
the environment may have stochastic transitions and rewards, and the policy itself could be probabilistic.
Most existing RL algorithms learn about V = E[Z], the expectation of the return. For example, the
simple TD rule with learning rate α:

δ = r + γV (x′)− V (x), V (x)← V (x) + αδ (1)

computed at the transition from state x to state x′, moves V toward the expectation of the return1.
However, it may be useful to learn about the full distribution. There is a simple way to learn the

distribution, using a very small modification to standard TD learning2. In this method, instead of a
single value function, a set of value functions is learned. For each value function Vi, a distinct reward
prediction error δi is computed:

δi = r + γVj(x
′)− Vi(x),

where Vj(x
′) is a sample from the distribution V (x′).

The value update rule of Equation 1 is modified (see also Bowling and Veloso 3) such that different
learning rates α+ and α− apply to positive and negative RPEs:

Vi(x)← Vi(x) + α+
i δi for δi > 0 (2)

Vi(x)← Vi(x) + α−i δi for δi < 0 (3)
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At convergence, the learned Vi together comprise a set of sufficient statistics for the distribution of
returns from state x. Although the population of statistics, when averaged, mimics the classic mean-
value function, the individual statistics vary significantly from this mean. Thus, distribution learning
arises automatically from a very simple modification to standard TD learning.

Next, we discuss the intuition for why the learned Vi comprise a set of sufficient statistics for the
return distribution. The learning rule described in equations 2 and 3 can be generalized as follows:

Vi(x)← Vi(x) + α+
i f(δi) for δi > 0 (4)

Vi(x)← Vi(x) + α−i f(δi) for δi < 0 (5)

where f is a function that transforms the prediction error. For any non-decreasing f , the learned Vi’s
comprise a set of statistics for the return distribution.

This is particularly easy to see for the special case of f(x) = sign(x). Suppose α+
i = 3 and α−i = 1. In

other words, every positive prediction error (PE) is +3 and every negative PE is −1. In this case, Vi will
converge to predict exactly the upper quartile of the return distribution. At the upper quartile, there
will be three times as many negative PEs as positive PEs, so after being weighted by α+

i and α−i , positive
and negative PEs will exactly balance. Thus, this is the fixed point of the learning dynamics. Under
mild assumptions, each Vi converges exactly on a quantile of the return distribution. The particular

quantile is τi =
α+
i

α+
i +α−i

. In other words, Vi is the return that has cumulative probability τi. As long as

τi spans the range from 0 to 1, the set of Vi together form the complete quantile function (aka inverse
cumulative distribution function) for the distribution2,4.

Quantile regression, where f(δ) = sign(δ), is useful to visualize distribution learning. However, it
is physiologically implausible that dopaminergic firing follows a sign function. Maximum likelihood
estimation (MLE) is widely used to estimate the parameters of a statistical model and provides many
appealing properties and guarantees. In our work we rely heavily upon a class of maximum likelihood-
like estimators, known as M -estimators, which provide many of the same guarantees while significantly
expanding the class of functions5. For a prediction error δ, the quantile regression loss,

ρτ (δ) = (τ − Iδ≤0)δ, ρ′τ (δ) = |τ − Iδ≤0| × sign(δ),

is an asymmetric absolute loss whose minimum is the quantile function at τ . But quantile regression
is just one of many asymmetric regression methods that learn statistics that fully describe a scalar
distribution. Given a response function f(δ) and incremental update following the gradient

ρ′τ (δ) = |τ − Iδ≤0| × f(δ)

various M -estimators can be found depending on the choice of response function f . In the main text,
we used a linear response function, f(δ) = δ. This response function causes a different statistic, called
expectiles, to be learned6. We chose this function because neural responses in estimated utility space
were empirically close to linear in each domain (negative and positive). The qualitative pattern of results
was not sensitive to the choice of response function.

1.2 Benefits of distributional RL

In the main text we showed that distributional RL significantly improves performance in simulated
agents; this finding has also been replicated multiple times7–10. To contextualize the scale of the perfor-
mance gains, here we compare the benefit of distributional RL against other architectural advancements
(Extended Data Figure 2). The techniques of prioritized replay and double DQN were both consid-
ered to induce step-changes in performance relative to standard DQN11, and distributional RL yields a
performance advantage greater than either.

Why does distributional RL help? One hypothesis for why distributional RL improves performance
of artificial agents is that it drives learning of richer representations. States associated with the same
expected return but different return distributions may be represented as different under distributional
RL, but not under ordinary RL. (A similar proposal has been made about the performance benefits that
arise from requiring an agent to learn multiple value functions at multiple discount rates12).

To illustrate this idea, we analyzed the representations learned by DQN and distributional TD in
the Atari 2600 game Ms. Pacman. For both fully trained agents we generated trajectories by allowing
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the agents to play the game, but with a higher than usual (0.1) probability of taking random actions.
For each trajectory we recorded the full-resolution frame and the activations of the final hidden layer
of the neural network (a 512 dimension real-valued representation vector). We then trained, for each
agent, a linear decoder from the representation vector to the game frame. How well the agent is able
to reconstruct the full game state can be taken as an indication of how rich a representation has been
learned.13 We split each agent’s trajectories into a training and testing set. In Extended Data Figure
2b,c we show example reconstructions as well as the mean-squared reconstruction error (MSE) on the
test set.

If representation learning is the reason for the improved performance of distributional TD, we should
be able to control the degree to which distributional TD boosts performance by manipulating the rep-
resentational demand of a task. We therefore designed a simple, laboratory-style task with seven states
arranged in a tree. The task required no actions; the agent’s only job was to predict reward. In each
episode, the agent first transitioned with 0.5 probability from the starting state to either a “dog” state
or a “bird” state. The agent would then observe an image (drawn at random from CIFAR-10)14 of the
corresponding image class. Next, the agent would transition to a second-stage state where it received
a positive or negative reward. Following the dog state, the agent could receive -1 or +3 reward, and
following the bird state, the agent would always receive +1 reward. For the first 1000 episodes (Task 1),
the agent received -1 or +3 reward with 0.5 probability following the dog. For the second 1000 episodes
(Task 2), the agent received a guaranteed reward of +3 following the dog. We observed that distribu-
tional TD was much faster than classic TD to learn the correct reward prediction after the change in
transition probabilities (Extended Data Figure 3a-c).

This speedup is attributable to the fact that the distributional loss should encourage the network to
learn features that discriminate between dogs and birds, because they lead to different reward distri-
butions. As a direct measurement of this, we looked at the representations learned by classic TD and
distributional TD in each task (Extended Data Figure 3e). In Task 1, distributional TD but not classic
TD learned features that discriminated between birds and dogs.

Finally, we performed a control experiment, identical to the first bird-dog experiment, but replacing
birds and dogs with airplanes and ships after the first 1000 episodes. We found that distributional TD’s
advantage was greatly reduced in this experiment, in line with our predictions (Extended Data Figure
3d). For all experiments using CIFAR-10 data, we used an 11-layer convolutional neural network suitable
for classification in CIFAR-10, but with the final classification layer replaced for regression. We trained
with mini-batch sizes of 256 and using the Adam optimizer with learning rate 0.000515.

Does distributional TD increase network capacity? We have argued that distributional RL drives
representation learning, and therefore a natural question is whether such effects are due to the learning
process itself or to adding representation capacity to the neural network itself by way of additional
parameters. In Extended Data Figure 2a we clarify that it is entirely the former, with |φ| = 512 and
convolutional network number of filters, filter size, and stride as |A| = (32, 8, 4), |B| = (64, 4, 2) and
|C| = (64, 3, 1). Both algorithms represent outputs as linear functions on top of the same non-linear
function, φ. That is, although there are more linear functions, wia, for distributional TD than for DQN,
wa, there is no extra capacity in the network.

Extension to risk-sensitive behavior In the neural network simulations of Section 1.2, the agent
selected actions according to the mean (so the policy effectively discarded information about the dis-
tribution) – the benefits of distributional RL arose from facilitating learning. However, it may also be
the case that an organism does not always act according to the mean return. For example, if the rat
needs some amount of cheese not to starve, then it should risk everything for the long odds of reaching
the largest outcome. In general, distributional RL may be useful if an agent wants to rapidly shift its
risk preferences without requiring new (slow) learning. For example, humans and animals shift their risk
preferences according to hunger16,17.

2 Evaluation of Alternative Models

In this section we introduce a set of potential null models, which attempt to explain our experimental
results without invoking distributional RL. We consider whether several of our primary results can be
mimicked by any of these null models. In this section, we will evaluate these null models in the context
of the variable-magnitude task (described in the main text).
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One important assumption underlying most of these null models is that reward magnitudes are
range normalized before entering into TD computations. Range normalization is a very well established
feature of reward learning18–21, and therefore would appear to constitute an unobjectionable modeling
assumption. Importantly, range normalization alone cannot account for our observation that, across
neurons, the set of reversal points is distributed to match the range of reward magnitudes (Figure 2a,b
in main text). This is because, in classic TD, even if the rewards are range-normalized, the learned reward
prediction will converge on the mean; there is no mechanism for any form of noise, superimposed on this
learned mean, to generate between-cell firing variability that matches the range of possible rewards.

2.1 Model 1: RPE+noise

One important alternative model to rule out is one that simply adds noise to the standard TD RPE:

DA = r + γV (x′)− V (x) + ε, ε ∼ N (0, σ),

This model can be excluded based on its failure to explain our findings of (1) reliably diverse reversal
points and (2) correlation between reversal point and response asymmetry.

In the analyses reported in the main text, we measured the reliability of reversal-point diversity by
measuring reversal points separately in two disjoint halves of the data and confirming a correlation across
halves. Another way to assess the reliability of the differences between cells is by model comparison. We
performed a leave-one-trial-out cross-validation procedure on the dopamine data. For each held-out trial,
we fit two models to the remaining data. One model estimated reversal points for each cell using the
same procedure described in the main text. The other model proceeded as if all trials came from a single
cell, and fit a single reversal point. Each model then predicted whether the left-out trial should have a
positive or negative response. The former model correctly predicted significantly more trials (Extended
Data Figure 4a,b; p = 3.7e-8 by Fisher exact test).

2.2 Model 2: RPE+bias+noise

One might wonder if the diversity in optimism that we report in the main text could be due not to
distributional RL, but simply to stable differences across neurons in the form of a “bias” term, leading
to a null model with the following form:

DA = r + γV (x′)− V (x) + bi + ε, ε ∼ N (0, σ)

In the standard TD framework, dopamine firing at each moment reflects the instantaneous prediction
error. During the inter-trial interval, in each moment there is a prediction error but it is close to zero
because there is essentially zero new information. Therefore, adding a consistent bias term to the RPEs
cannot produce the diversity that we reported in the main text. This bias term would be added to
both the pre-stimulus baseline and the reward response, and so it would be eliminated when performing
baseline-subtraction.

2.3 Model 3: σ(RPE+bias)+noise

The “RPE+bias+noise” model becomes more interesting if a non-linearity is applied to the dopamine
response after the cell-specific bias is added, but only if the noise occurs outside the non-linearity,

DA = σ(r + γV (x′)− V (x) + bi) + ε, ε ∼ N (0, σ).

We analyzed synthetic data from this model using the same analysis used to generate Figure 2c in the
main text. For each simulated DA cell we estimated the reward magnitude at which that cell’s response
was equal to its baseline firing rate. As with the actual experimental data, we carried out this procedure
in two independent subsets of the data. The bias is still removed by baseline-subtraction, leading to no
actual change in reversal point, but the effect of noise in the saturating region can produce artifacts.
Thus, to our initial surprise, this analysis yielded reliable (though artifactual) between-cell diversity in
apparent reversal points (Extended Data Figure 4f). However, this null model is excluded by other
aspects of the experimental data. In particular, in frank contradiction to the experimental data, the null
model yields a negative correlation between reversal point and response asymmetry; and again unlike
the experimental data there is no reward magnitude that gives rise in the model to a situation in which
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more than 5% of cells generate positive responses and more than 5% of cells generate negative responses
(Extended Data Figure 4g).

Finally, we also considered a variant of this model where the bias and the sigmoid’s slope are positively
correlated with each other across cells. This variant similarly produced a negative correlation between
asymmetry and reversal point (data not shown). The reason is the same as in the plotted version
with uncorrelated bias and slope. Although all cells have the same actual reversal point, cells with steep
slopes in the positive domain tend to have their reversal points estimated lower because of noise. But this
same effect necessarily produces a negative correlation between measured reversal point and measured
asymmetric scaling.

2.4 Model 4: RPE+biasT+noise

Another possibility is that a cell-specific bias term is added to the RPE only at the time of a reward
outcome, and not during the inter-trial interval:

DA = r + γV (x′)− V (x) + bi(t) + ε, ε ∼ N (0, σ)

This model appears physiologically implausible: we don’t know of any mechanism for a bias to be
added to dopamine firing selectively at particular moments. If this model were true, it could explain the
systematic between-cell differences in measured optimism. However, it cannot account for the correlation
we observe between asymmetric scaling and reversal point.

As an aside, it is worth noting that this null model shares some properties with distributional RL.
In particular, it could be viewed as learning a set of diverse value predictions. If the distribution of
returns in the environment were close to uniform, the learned “set of predictions” would be a reasonable
approximation of the true distribution. However, in this null model it would not be possible to perform
distribution decoding as shown in main text Figure 5.

2.5 Model 5: “One-sided” distributional RL

Distributional RL requires some degree of anatomical coupling between reward prediction (V ) cells, and
reward prediction error (δ) cells (see Section 2.7 below). Here we examine two null models in which this
requirement is relaxed. First, what if there are stable variations in scaling of positive versus negative
RPEs, but these are averaged and fed back to the value predictors non-specifically? This null model has
the form:

δi = r + γV ∗(x′)− Vi(x)

DA = α+
i · δi for δi > 0 (6)

DA = α−i · δi for δi ≤ 0 (7)

Vi(x)← Vi(x) + Ei[DA]

Under this model, there is no mechanism to produce consistent diversity in value baselines. The
averaging of RPEs causes all Vi to converge to the same prediction. Interestingly, if we extend the model
to have a saturating non-linear response function, it is possible to produce apparent diversity in reversal
points (Extended Data Figure 4m). This artifact arises due to a combination of noise and non-linearity
in the cell’s response function. For example, if a set of cells all listen to the same reward prediction
Vi, but have different relative scalings of positive versus negative RPEs, and also have noise in their
responses, then they can appear to have consistently different reversal points. Importantly, however, this
kind of model cannot explain the positive correlation we observe between reversal point and asymmetric
scaling (Figure 4), nor the precise decoding of the shape of the distribution shown in Figure 5.

This model is a special case of the more general null model in which there are stable variations
between cells in any parameters controlling the shape of the dopamine response function. We have
also explored parameterizing these stable variations using a Hill function where each cell has its own
randomly selected parameters controlling the shape of the function. Similarly to before, this model
produces apparent diversity in reversal points but not positive correlations with asymmetry (data not
shown).

Second, what if there are there are stable variations in scaling of positive versus negative RPEs, and
there are stable variations in the value baselines that set the zero point for each dopamine neuron, but
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nevertheless the resulting RPEs are averaged and fed back to the value predictors non-specifically? Note
that this model is, in fact, a form of distributional RL, albeit a different one than we have proposed.
This form of the theory would explain the diversity of reversal points spanning the range of reward
magnitudes, but it would not explain the correlation between asymmetric scaling and reversal point
shown in Figure 5. However, such a mechanism could co-exist with asymmetric scaling of firing rates;
we discuss that possibility in the next section.

2.6 Model 6: Distributional RL implemented by synaptic asymmetries

In this paper, we have explored a form of distributional RL in which asymmetries between scaling of
above-baseline vs below-baseline dopamine firing rates drive learning of optimistic or pessimistic value
predictions. However, the math of distributional RL is equally compatible with a neurobiological re-
alization where firing rates are scaled equally in the positive versus the negative domain, but synaptic
mechanisms are asymmetrically scaled downstream of dopamine firing. For example, it could be that
some RPE channels have a higher ratio of D1 to D2 receptors, and therefore learn faster from positive
versus negative RPEs. This model does not predict a correlation between reversal points and asymmetric
scaling of firing rates (Extended Data Figure 4p,q). Therefore, this type of synaptic asymmetry mecha-
nism doesn’t seem to be the sole mechanism in operation – however, it is possible that both mechanisms
operate, and this is an interesting line for future research. It is notable that to do distributional TD
learning in multi-step transition models, one must sample from the value distribution at the new state6.
The brain could approximate such samples using sparse non-topographic connections.

2.7 Model 7: Coupling between prediction and prediction error

In our main implementation of distributional TD learning, for simplicity we assumed a perfect anatomical
mapping such that each dopamine cell projects to one value predictor cell, which in turn projects back
to exactly the same dopamine cell. Although there is topographic organization in the basal ganglia, this
level of precision seems unlikely to prevail in the brain. Therefore we here examine the consequences
of relaxing this ‘connectomic’ assumption. We find that, as long as value predictor cells project more
strongly back to approximately the same region of VTA that they receive RPEs from, the distribution-
learning mechanism remains intact (Extended Data Figure 4i-k). In these simulations we computed the
weights for each connection between a value predicting cell i and an RPE cell j as

wij ∝
1√

2πσ2
e−
|i−j|2

2σ2

where σ controls the degree of precision in the mapping (with σ = 0 being the case explored in the main
text). Even at relatively large values of σ, the characteristics of the distribution are preserved. When
σ →∞, the algorithm becomes standard (non-distributional) TD learning.

3 Robustness of Results to Modeling Assumptions

Given the novelty of the data analysis techniques employed in the main text, we conducted a wide range
of complementary analyses to establish that qualitative results were not dependent on specific modeling
choices, and also to confirm that artifacts could not arise for example from interacting non-linearities in
data and model. Results from these analyses – which were in all cases reassuring – are presented in the
following sections.

3.1 Mapping from reward volume to utility

In the work presented in the main text, the subjective utility of each reward volume in the variable-
magnitude task was modeled following a procedure introduced and validated by Stauffer et al. 22 . Specif-
ically, utility was quantified as the mean (baseline-subtracted) dopaminergic firing rate in response to
the relevant reward volume. We repeated the analyses in main text Figure 4 using linear, logarithmic,
or power law utility functions in place of the empirically-defined function just described, and obtained
the same pattern of results in all cases (results for linear utility shown in Extended Data Figure 5g).
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3.2 Measuring asymmetric scaling

As a corroborating measure of reliability in the diversity of asymmetric scaling, we performed model
comparison between two models (Extended Data Figure 5b). The ‘single asymmetry’ model fit an overall
scale factor to each cell (applied to both positive and negative domains). It also fit, to all cells together,
a single scale factor that applied only to the positive domain, and a single scale factor that applied only
to the positive domain. The ‘diverse asymmetry’ model similarly fit a reversal point and overall scale
factor to each cell, but it allowed each cell to have its own positive domain scale factor. Thus, the diverse
asymmetry model had an extra N-2 parameters compared to the single asymmetry model, where N is
the number of cells. To avoid a potential confound whereby noisy estimation of reversal points could
create the appearance of diverse asymmetry, we fixed the reversal points for all cells to the mean reversal
point across cells.

We performed cross-validation by fitting the model on M-1 trials, where M is the total number of
trials across all cells. We used the fit model to predict dopamine cell firing on the held-out trial, and we
recorded the mean squared error (MSE) across all such predictions. We found that the MSE was 3.4%
lower for the diverse asymmetry model (p = 1.4× 10−11), indicating that the additional parameters –
allowing each cell to have its own unique asymmetry – were justified by the data.

In order to establish a frame of reference for interpreting this 3% difference in MSE, we simulated 100
TD learners on the variable-magnitude task. The learners had different degrees of ‘distributionalness,’
ranging from non-distributional models with little variation in positive-to-positive asymmetry, to highly
distributional models with a high degree of diversity (Extended Data Figure 5c). Each simulation had 40
RPE channels, and across simulations we varied the degree to which there was diversity in asymmetric
scaling between channels. Gaussian noise was added to simulations, with a scale estimated from the
neural data (although the results are potentially sensitive to the covariance between cells of the noise,
we simulate independent noise). For each model, we performed the same model-comparison analysis
as above and computed percent difference in MSE for each simulation. We also performed distribution
decoding on each simulation and measured the percent difference in Wasserstein distance between the
decoded distribution and (1) the true task reward distribution and (2) a Gaussian with the same mean
and variance. Plotting these two differences against each other, it was observed that 3.4% difference
in firing-rate space translated to a roughly 50% difference in distribution space. The simulations are
sensitive to the noise scale, and for these simulations we use a noise scale estimated from the real
dopamine data. Finally, we note that when the simulation uses a non-distributional TD learner, it is
possible for the simpler model to achieve a better MSE than the more complex model, because the model
comparison is performed in cross-validation.

3.3 Measuring ‘optimism’ in variable-probability task

In Figure 3 of the main text, we showed simultaneous optimistic and pessimistic probability coding. In
panels a, b, and e of that figure, responses (or simulated responses), were sorted into three groups, based
upon two single-tailed Mann-Whitney tests comparing the per-trial responses of 10% to 50% and 50%
to 90% cues. Extended Data Figure 7a provides an illustration of the outcomes for these two tests and
how they determine the groups.

The individual line for each (simulated) neuron was colored based upon the associated t-statistic,
which was also shown in the histograms next to each. Notice that distributional RL does predict that
some neurons should be neutral, that is, close to the mean. This can be understood as a consequence of
the asymmetric regression depicted in Extended Data Figure 1a. Classic TD predicts that no neurons
should learn a reward prediction systematically different from the mean. This means that under classic
TD we would expect to see only 5% of neurons significantly different from the mean at a p = 0.05
threshold. Equivalently, we would expect the distribution of t-statistics to be t-distributed, which is not
observed in the neural data.

3.4 Response functions and the asymmetry/reversal-point correlation

In Figure 5e, we report a positive correlation between α+/(α+ +α−) and reversal point. One important
choice in this analysis involved the function used to fit dopaminergic tuning curves. In this section, we
consider the sensitivity of the correlation result to this choice.

There is an interesting effect whereby if the dopamine response function (i.e., the function that
converts a reward prediction error into a firing rate) is more concave than the function used for fitting,
then the analysis can produce false positives (Extended Data Figure 5d). This is because at higher
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reversal points, the positive data are on average closer to the reversal point, and therefore lie in the
steeper part of the concave function. (Likewise the negative data are on average further from the
reversal point and so lie toward the shallower part of the function.) On the other hand, note that if
a real positive correlation exists in the data, then our simulations show that it is detectable under any
combination of generating and fitting functions (Extended Data Figure 5e).

In Figure 4, we used linear functions to estimate slopes in the positive and negative domains. So is it
possible that this form of artifact is responsible for the correlation that we measured in the neural data?
This appears highly unlikely for the following reasons. First, the neural data themselves are close to
piecewise linear (i.e., the positive domain is linear and the negative domain is linear). For example, when
we performed nested model comparison (by likelihood ratio test) between linear and quadratic models,
separately for the negative and positive domains of each cell, we found only 6/79 tests favored concavity
(the positive domain in one cell could not be estimated as there were no positive responses).

Second, in Extended Data Figure 5f we re-fit the neural data using a very convex function, the Hill
function (also used in Eshel et al. 23). Reassuringly, we found that the correlation between α+/(α++α−)
and reversal point remained significant (r = 0.41, p = 0.006). Importantly, this function is more convex
than the neural data themselves, which strongly guards against the possibility of the aforementioned
artifact. Together, these observations provide reassurance that the results presented in the main text
are not artifactually arising from non-linearities in the data.

3.5 Negative RPEs and pausing

Negative reward prediction errors may be coded by the length of pausing in dopamine cell firing24. In
our analyses, we averaged firing rates over a relatively long time window in order to account for both
firing rate changes and durations of pauses. For completeness, we also performed the same analyses in
the variable-magnitude task using a longer window of 200 to 1000 ms, which might capture the longest
pauses (with the tradeoff of including more noise). The key results of the paper still held: (1) Reversal
point estimated in half of the data was correlated with reversal point estimated in the other half of data
(p = 1.3× 10−4 by linear regression, geometric mean across 1000 random partitions). (2) Different cells
had different asymmetric scalings (p = 3.9× 10−16 by ANOVA). (3) Asymmetric scaling was positive
correlated with reversal point (p = 2.6× 10−6 by linear regression).

3.6 Distribution decoding

Distribution decoding is the result of solving a minimization problem defined by taking the distributional
TD model as a loss function between (1) reversal points, (2) asymmetries, and (3) samples from the reward
distribution. Thus, the minimization problem yields a distribution decoding by fixing the paired reversal
point estimates Zτi and asymmetries τi = α+

i /(α
+
i +α−i ), and solving for the sampling distribution that

minimizes the loss.
For N the number of estimated reversal points, and M = 100 the number of samples zm to decode,

arg min
z1,...,zm

L(z, V, τ),

L(z, V, τ) =
1

M

M∑
m=1

N∑
n=1

|τn − Izm≤Vn |(zm − Vn)2.

We solved this minimization problem using the SciPy 1.2.1 minimize function using the truncated
Newton method, with solutions constrained to fall in the total range of observed utilities. This decoding
method was recently suggested, with the decoding denoted as the imputed distribution, as a general
method for deriving distributional RL algorithms6.

To overcome noise in our estimates of reversal points and asymmetries we generated 20000 random
samples for (z1, . . . , zm), uniform between the range of rewards, and initialized the minimization problem
at the sample points with the smallest loss.

Extended Data Figure 8 shows our investigation into the robustness of this decoding procedure.
Figure 5c in the main text shows the value distribution decoded from dopaminergic responses in the
variable-magnitude experiment. The RPE asymmetry for each neuron was interpreted, in line with
the distributional RL model (2), as defining the expectile of the value distribution encoded by that
neuron, and the above procedure was used to back out the distribution that best fit the data, under the
distributional RL model. The best-fit distribution closely resembles a kernel-density estimate of the true
distribution, based on the rewards actually received by experimental animals.
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Critically, the decoding depended on the specific pattern of reversal points and RPE asymmetries
observed. In Extended Data Figure 8e-h we show that when asymmetries were non-linearly transformed,
the fidelity of decoding was seriously compromised. In order to verify that the decoding objective was
sensitive to the modes of the empirical distribution we evaluate the loss against reference distributions
(Extended Data Figure 8d). We consider the uniform and Gaussian distributions with ground truth
mean and variances, “mirroring” of the true return distribution about its mean, and perturbations of
the mean and variance of the ground truth reward distribution. This shows that the decoding loss is
highly sensitive not only to the first two moments of the distribution, but also to structure such as
multimodality. Note, as this is a loss function, lower values indicate better fits. Finally, in Extended
Data Figure 8a-c, we apply our decoding analysis without constraining the resulting reward values, which
produces qualitatively similar results.

For the variable-magnitude task we use the reversal points and asymmetries estimated on each
dopamine neuron by first averaging responses over trials for each reward magnitude, as opposed to the
split-halves testing used elsewhere. For the variable-probability task we use the normalized responses
reported in the Figure 3. Because we cannot estimate asymmetries for this task we used the observation
of correlation in Figure 4 to approximate the asymmetries here as,

τn ≈
Vn(x50)−mini Vi(x50)

maxi Vi(x50)−mini Vi(x50)
,

where Vn(x50) denotes the normalized response to the 50% cue for neuron n. This sacrifices some
decoding accuracy, and is unlikely to work well for more complex reward distributions.

When evaluating the loss function L against a reference distribution, we generate M = 2000 samples
from the distribution and compute the loss function for the estimated reversal points and asymmetries.
When testing the sensitivity to the pairing of reversal points and asymmetries, we computed monotonic
transformations of the values τn, for a shift of s ∈ [−2.5, 2.5],

τ̂n = φ(φ−1(τn) + s), (8)

where φ is the standard normal cumulative distribution functions (see Extended Data Figure 8e).

4 Supplementary Results

4.1 Both positive and negative responses to 5µL reward

A prediction of the distributional model, but not of some null models, is that in response to a single
reward magnitude in the variable-magnitude task, there should be some cells that reliably fire positive
RPEs and others that reliably fire negative RPEs. This prediction is borne out in the dopamine data
(Extended Data Figure 9g).

4.2 Optimism and pessimism in variable-probability task

In Extended Data Figure 7, we show the firing rate data used to calculate the t-statistics displayed in
the histograms in Figure 3b of the main text.

4.3 Simultaneous recordings support diversity

Most of the cells in the data sets were not simultaneously recorded. This raises the question of whether
apparent diversity in reward predictions across cells could actually reflect session-to-session differences.
However, in one instance in the variable-probability task there were four simultaneously recorded cells.
These are shown in main text Figure 3c, and in Extended Data Figure 9e.

For statistical purposes, we evaluated the quantity c50: the response to the 50% cue as a proportion
of the distance between the mean response to the 10% cue and the mean response to the 90% cue. This
quantity could be computed for each trial when the 50% cue was delivered. One-way ANOVA rejected
the null hypothesis that all four cells had the same mean c50 (p = 1.4e-7).
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4.4 Relationship between cue-time and outcome-time responses

In Extended Data Figure 6a-b we use the variable-probability task to illustrate the relationship between
cue- and outcome-response in the distributional TD model, and show how this compares with normalized
firing rates in the neural data,

cnormcue = (ccue −mean(c10, c50, c90))/std(c10, c50, c90).

The cause of the complicated relationship, which is hard to see in noisy data, is that raw prediction
errors at delivery time are smallest for optimistic cells, where the scaling is largest, and largest for
pessimistic cells, where scaling is smallest. This produces a natural canceling-out effect that removes
much of the correlation between cue and outcome prediction errors we would otherwise expect to see.
Despite this rather strange relationship, noisy simulations closely resemble actual (normalized) neural
firing rates.

4.5 Further examples of diversity in single-cell RPE signalling

In main text Figure 2d we showed rasters of two cells that had particularly dramatic (positive and
negative) responses. We noticed that the example cell with the positive response also appeared to have a
small dip afterwards. This was not a general characteristic of the data. For example, here are two more
cells from the same animal, with positive responses and without dips (Extended Data Figure 9h).

4.6 Asymmetric scaling as a function of baseline firing rate

A priori it seems possible that cells with a lower baseline firing rate could have a shallower slope in the
negative domain because they cannot fire below 0 Hz. Thus, cells with a lower baseline firing rate might
be expected to have a larger value of α+/(α+ + α−). If this were true, then the variability in baseline
firing rates between cells could be a source of the variability in asymmetric scaling that we observed in the
variable-magnitude task. This would not conflict with the distributional RL theory, but would suggest a
mechanism for the origin of variability. To assess this possibility, we looked at the relationship between
baseline firing rate and asymmetric scaling (Extended Data Figure 9f). We found no relationship.

4.7 Licking data

In the datasets analyzed, most recording sessions consisted of a single cell. This raises the question
of whether apparent diversity between cells (in terms of optimism) could actually arise from between-
session (or between-animal) differences in preferences at the whole-organism level. As mentioned in the
main text, anticipatory licking data argues against this interpretation, because between-cell differences in
optimism (measured in the variable-probability task) were not predicted by between-session differences
in anticipatory licking (Extended Data Figure 9a-d).

5 Relationship to past work

Previous work has modeled how temporal difference learning in humans and animals can incorporate
epistemic uncertainty25,26. It is also well-established experimentally that neural circuits for economic
decision making have access to higher-order statistics of the outcome distribution, including variance
and skewness27–34. Finally, methods have been proposed to learn value functions with specific risk
preferences35. Our proposal goes beyond these to explain how the full distribution of outcomes is
learned through a remarkably simple mechanism implemented in dopamine cells. We also consider the
relationship to the findings of specific papers below.

Eshel et al., 2016 Eshel et al. 23 observed that the response functions of individual dopamine neurons
are well-predicted as uniformly scaled copies of the mean (across neurons) response function. In the
present work, we have used the same data to argue for diversity in response functions, specifically,
diversity in the relationship of scaling of the positive domain to scaling of the negative domain. How can
these two perspectives be compatible?

In Extended Data Figure 10a-h, we reproduce the analysis of Eshel et al. 23 . Note that these analyses
are performed using the time window from 0 to 600 ms after reward onset (illustrated by dotted lines
in panel a). In Extended Data Figure 10d, we plot the same data as in panel c, but zoomed in to show
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that the predictability of the dopamine response breaks down in the negative domain. (The predictions
are based on the entire range, and the positive domain dominates.) This is also reflected in the fact that
only 80% of the total variance in responses is explained by the common response function.

In Extended Data Figure 10e-h, we show exactly the same analyses as in panels a-d, but using data
from the time window 200 to 600 ms after reward onset. This is the time window we have used for
analyses in the main text, because it allows us to establish “reversal points” by excluding the large
initial positive response36. In this time window, the common response function predicts only 40% of the
variance in the responses.

In conclusion, there are two factors explaining the relationship between our results and those of Eshel
et al. First, even using the 0 to 600 ms time window used by Eshel et al, there is variance unexplained
by a common response function, which we argue corresponds to different cells having different relative
scalings from positive and negative RPEs. Second, this diversity is exaggerated when using a time
window that permits measurement of negative responses to below-expected reward magnitudes.

Fiorillo et al. (2013), Matsumoto et al. (2016) One surprising finding of this work was the
existence of within-animal diversity in the asymmetric response to positive versus negative outcomes.
To further support these findings, we consider a simple free-reward/airpuff experiment. Past work
using similar tasks has shown remarkable diversity in the response asymmetry to ostensibly positive
versus negative prediction errors. In particular, Fiorillo et al. investigated diversity in response to a
variety of rewarding, and aversive, stimuli. Although unremarked upon at the time, their findings show
substantial differences between neurons in the asymmetry of response (not just in their overall magnitude
of response). Similarly, Matsumoto et al., while studying the effect of reward-context on response to
aversive stimuli, found precisely the type of diverse asymmetry we have been discussing.

However, in these previous studies results are presented aggregated over animals, leaving uncertainty
as to whether this diverse asymmetry is (as we have already found in this work) present within single
animals, or only between animals. In Extended Data Figure 6c we show that, indeed, even within
individual animals the results seen in these past works are reproduced. Finally, observe in Extended Data
Figure 6d that distributional TD, but not classical TD, predicts similar types of asymmetric diversity.

6 Predictions

Distributional RL makes many other interesting predictions, a few of which we briefly highlight:

• The degree of optimism for a dopamine cell should be persistent between different tasks, even while
the corresponding reversal point changes.

• During learning, the degree of optimism measured for a dopamine cell should predict how fast a
cell changes its reward prediction in response to positive versus negative prediction errors.

• In particular, optimistic cells should be slower, relative to pessimistic cells, to devalue.
• The blocking phenomenon should be affected by the distribution of rewards, due to distributional

TD errors persisting even if the mean is well-predicted.
• Inputs to dopaminergic neurons should should show preferential responses that relate to the degree

of optimism in their downstream dopaminergic neurons.
• If risk-sensitive behavior is driven by the dopamine-based distribution of returns, then risk-sensitivity

could be induced due to a changing task. That is, a changing task should induce behavior that
mimicks risk-sensitivity despite being deterministic.

• Generalization benefits, of the type illustrated in Extended Data Figure 3, should be seen when
the change in probabilities are due to changing behavior as well as changing task. This effect
could show up by differences in how quickly an animal adapts behavior, where previous training
on related stochastic tasks enhances adaptation to new tasks.
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