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Mesolimbic dopamine adapts the rate of 
learning from action

     
Luke T. Coddington1 ✉, Sarah E. Lindo1 & Joshua T. Dudman1 ✉

Recent success in training artificial agents and robots derives from a combination  
of direct learning of behavioural policies and indirect learning through value 
functions1–3. Policy learning and value learning use distinct algorithms that optimize 
behavioural performance and reward prediction, respectively. In animals, behavioural 
learning and the role of mesolimbic dopamine signalling have been extensively 
evaluated with respect to reward prediction4; however, so far there has been little 
consideration of how direct policy learning might inform our understanding5. Here  
we used a comprehensive dataset of orofacial and body movements to understand 
how behavioural policies evolved as naive, head-restrained mice learned a trace 
conditioning paradigm. Individual differences in initial dopaminergic reward responses 
correlated with the emergence of learned behavioural policy, but not the emergence 
of putative value encoding for a predictive cue. Likewise, physiologically calibrated 
manipulations of mesolimbic dopamine produced several effects inconsistent with 
value learning but predicted by a neural-network-based model that used dopamine 
signals to set an adaptive rate, not an error signal, for behavioural policy learning.  
This work provides strong evidence that phasic dopamine activity can regulate direct 
learning of behavioural policies, expanding the explanatory power of reinforcement 
learning models for animal learning6.

Biological and artificial agents learn how to optimize behaviour through 
experience with an environment. Reinforcement learning theory 
describes the algorithms that allow an agent to iteratively improve 
its success through training3. Experience with the environment can 
be evaluated either by the success of an agent’s behavioural ‘policy’ 
that directly determines the actions performed (‘policy learning’) or 
by an agent’s subjective expectations of reward that indirectly guide 
action (‘value learning’). Over the past several decades much work has 
explored how midbrain dopamine neuron (mDA) activity matches the 
predicted update signals (reward prediction errors (RPEs)7) for value 
learning4. However, mDA activity also reflects a heterogeneous mix 
of signals and functions that may not be completely addressed by the 
predictions of value learning models8–12. Phasic mDA activity can be 
intertwined with the production and monitoring of action10,13–18 and is 
determined at least in part by inputs from areas involved in determining 
behavioural policy19. This calls for an exploration of how broadening 
the scope of considered reinforcement learning algorithms might 
inform our understanding of phasic mDA signals in biological agents.

Direct policy learning specifically offers untapped potential5,20 to 
provide ‘computational and mechanistic primitives’6 that explain the 
functions of dopamine, especially in the context of novel task acquisi-
tion by animals. First, direct policy learning methods have achieved 
substantial success in embodied learning problems in robotics that 
resemble problems faced by a behaving animal1. Second, under a wide 
set of conditions policy learning is the most parsimonious reinforce-
ment learning model that explains learned behaviour5. Third, policy 
learning can be directly driven by behavioural performance error (PE) 

signals, in lieu of, or in addition to, RPEs21,22, connecting them to diverse 
observations of learning in dopamine-recipient brain areas23,24. Finally, 
policy learning methods facilitate explicit modelling of meaningful 
variability25 in individual behavioural learning trajectories as a search 
through the space of policy parameterizations1.

It can in fact be a criticism of policy search that learning trajectories 
can be too variable; although conducive to modelling individual dif-
ferences, this feature can produce suboptimal learning26,27. A powerful 
solution is to set an optimal update size for each trial according to 
some heuristic for how useful each trial could be for learning2. Doing so 
independently of the performance feedback that directs learning can 
enhance useful variability while suppressing noise1,26,28. Such ‘adaptive 
learning rates’ have led to fundamental advances in machine learning28, 
and can also make models of animal learning more accurate29. Thus, 
insights from policy learning lead to an intriguing hypothesis for phasic 
mDA activity that has not, so far, been explored. Phasic mDA activity 
could be a useful adaptive learning rate signal, given its correlations to 
novel and salient stimuli12, upcoming actions13 and prediction errors7, 
all of which are useful heuristics for identifying key moments during 
which learning rates should be elevated. Alternatively, mDA activity 
correlates with PEs during avian song learning30, suggesting that in 
mammals it could also dictate error-based updates to behavioural 
policies—a role more analogous to conveying RPEs for value learn-
ing. The establishment of policy learning models of canonical animal 
behavioural tasks is required to distinguish among these possibilities.

Here we develop a policy learning account of the acquisition of classi-
cal trace conditioning in which behaviour is optimized to minimize the 
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latency to collect reward once it is available, inspired by observations of 
this process in naive mice. A multidimensional dataset of behavioural 
changes during acquisition could be seen to drive improvements in 
reward collection performance, and a novel policy learning model 
quantitatively accounted for the diverse learned behaviour of indi-
vidual animals. mDA activity predicted by the component of this model 
that sets an adaptive learning rate closely matched fibre photometry 
recordings of mDA activity made continuously throughout learning. 
Individual differences in initial phasic mDA responses predicted learn-
ing outcome hundreds of trials later in a manner consistent with dopa-
mine modulating learning rate. Optogenetic manipulation of ventral 
tegmental area (VTA) dopamine neurons was calibrated to physiological 
signals and triggered in closed-loop with behaviour to provide a key 
test of the hypothesis that phasic mDA activity modulates learning 
rate as a distinct alternative to signalling signed errors. Together, these 
results define a novel function for mesolimbic dopamine in adapting 
the learning rate of direct policy learning (summarized in Extended 
Data Fig. 10).

Task design and learning trajectories
We tracked multiple features of behavioural responses to classical trace 
conditioning in thirsty mice that had been acclimated to head fixation 
but had received no other ‘shaping’ or pre-training. Sweetened water 
reward was ‘cued’ by a 0.5-s auditory cue (10-kHz tone) followed by a 
1-s delay, except on a small number of randomly interleaved ‘uncued’ 
probe trials (about 10% of total trials). Although reward was delivered 
irrespective of behaviour, mice still learned to optimize reward collec-
tion, as assayed by monotonic decreases in latency to collect reward 
across training (Fig. 1a–c). We measured multiple features of behav-
iour to understand how idiosyncratic learning across individual mice 
subserved performance improvements: an accelerometer attached to 
the movable basket under the mice summarized body movements9, 
while high-resolution video was used to infer lick rate, whisking state, 
pupil diameter and nose motion. We reasoned that reward collection 
performance could be improved along two dimensions: preparation 
for reward delivery and reaction to its sensory components (Fig. 1d–f). 
‘Preparatory’ behaviour was assayed across lick, body, whisker and pupil 
measurements as the total amount of activity during the delay period 
between cue and reward. ‘Reactive’ behaviour was assayed across nose, 
body and whisker measurements as the latency to initiate following 
reward delivery.

Although preparatory and reactive components of learned behaviour 
exhibited roughly monotonic trajectories on average (Fig. 1c), this 
belied heterogeneity in the dynamics of learning across individuals 
(Extended Data Fig. 1a–c). To assess the relationship between learned 
behaviours and reward collection performance on an individual basis, 
we built generalized linear models (GLMs) to predict reward collection 
latency across training in each mouse (Fig. 1d). GLMs using preparatory 
and reactive behavioural measures as predictors captured much of the 
variance in reward collection efficiency over training (r2 = 0.69 ± 0.11; 
r2 with shuffled responses = 0.01 ± 3 × 10−4). Each predictor’s weighting 
could vary widely from mouse to mouse, with preparatory licking hav-
ing the most consistent relation to reward collection latency (Fig. 1d). 
However, both preparatory and reactive variables were necessary 
to most accurately predict reward collection latency (Fig. 1d; Fried-
man’s: P = 0.0003; preparatory alone r2 = 0.51 ± 0.24, versus full model 
P = 0.004; reactive alone r2 = 0.46 ± 0.20, versus full model P = 0.002). 
Consistent with direct policy updates by a PE related to reward collec-
tion latency, our observations showed that updates to both the reactive 
and preparatory behaviour on each current trial were significantly 
related to reward collection latency on the previous trial (Fig. 1e). The 
significantly different time courses of preparatory and reactive learn-
ing (Fig. 1f) further confirm that these two learning components are 
dissociable processes.

We thus describe updates to the behavioural policy for each mouse 
as a trajectory through an abstract ‘learning space’ spanned by two 
components (preparation and reaction) that together explain improve-
ments in reward collection performance optimized by minimizing 
reaction times and maximizing preparation (Fig. 1i and Extended Data 
Fig. 1b,c).

ACTR policy learning model
The above data suggest that naive acquisition of trace conditioning 
could be considered as a problem of optimizing an effective control 
policy for reward collection through direct policy learning rather 
than indirectly through value learning. To formalize this comparison, 
we took an exemplar of a low-parameter value learning model that 
accounts for variable learning rates across individuals31 and imple-
mented a matched direct policy learning algorithm of the REINFORCE 
class21 with equal free parameters (Methods). We next compared the 
negative log likelihood (−LL) and Akaike information criterion for the 
data given the optimal parameterization of each model class as carried 
out previously32. We found that the policy learning variant achieved 
significantly better fits (lower −LL and Akaike information criterion) 
when comparing optimally parameterized versions across nine mice 
(∆LL = −252.6 ± 70.8; P < 0.01, signrank; Extended Data Fig. 1d,e).  
We also found that the policy learning formulation was markedly less 
brittle (∆LLmedian = −3.8 × 103 ± 0.8 × 103; P < 0.01, signrank; Extended 
Data Fig. 1f).

This model comparison indicates that for these broad algorithmic 
classes, a policy learning instantiation is a better descriptor of learning 
behaviour, as observed previously in human dynamic foraging32 and 
sensorimotor adaptation tasks33. However, these low-parameter mod-
els enable only limited comparisons to behavioural and neurophysi-
ological measurements. First, our experimental data clearly indicated 
two dissociable components of learning (reactive and preparatory) 
that have no clear analogy to abstract policy or value learning models 
in large part because there is no explicit modelling of the control of 
behaviour. Second, although model comparison reveals that policy 
learning algorithms in general may be superior, this is a broad class of 
algorithm that prescribes properties of the learning rule, but depend-
ing on model structure can be computed in many different ways21. 
Thus, we next sought to implement a circuit-inspired policy learning 
model that might facilitate direct comparisons to neurophysiological 
measurements.

To address these issues, we first specified a behavioural ‘plant’ 
(Extended Data Fig. 2d and Fig. 1h) that captured the statistics of 
rodent licking behaviour as a state model that transitions between 
quiescence and a licking state that emits a physiological lick frequency. 
A continuous control policy (π(t)) determined the forward transition 
rate to active licking. The reverse transition rate reflects a bias towards 
quiescence that decreases in the presence of water such that licking is 
sustained until collection is complete (Methods). The control policy 
was learned as the additive combination of output from a recurrent 
neural network (RNN) modelling preparatory learning and a feed-
forward sensorimotor pathway modelling reactive learning (Fig. 1h; 
see Methods for model details and code). Notably, optimal policies 
for speeding reward collection (identified by a search through the 
space of potential RNNs; Extended Data Fig. 2a,b) required prepara-
tory cued licking that depends on sustained dynamics in the RNN  
output.

The PE used to train the model was proportional to the difference 
between performance, as measured by the latency to collect the water 
reward, and a correlate of expected performance, the activity of the 
output unit at the time of reward delivery (Methods). Both reactive 
and preparatory learning occurred in proportion to this PE, but they 
were implemented at different positions within the network. Reac-
tive learning was modelled as changes to feedforward weights from 
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sensory inputs to behavioural policy output (Skj; Fig. 1h), to replicate 
the optimization of behavioural responses to reward delivery in both 
cued and uncued trials (Extended Data Fig. 2e). Preparatory learning 
was modelled as changes to internal weights in the RNN (Wij; Fig. 1h), 
and was proportional to the relative change in PE (customary in many 
policy learning algorithms21). The combination of reactive and pre-
paratory learning robustly converged on stable, near-optimal policies 
that led to marked reductions in the latency to collect reward over 
several hundreds of training trials (Fig. 1i,j). To stabilize policy across 
a range of model initializations, an adaptive learning rate for each 
trial was controlled by a feedback unit (pink output unit in Fig. 1h); 
activity of the feedback unit was the sum of the state change in the 
behavioural plant (akin to an efference copy of reward-related action 
initiation commands) and the change in behavioural policy at the time 
of reward delivery (akin to reward-related sensory evidence inform-
ing behaviour9). This feedback scheme has a direct and intentional 

parallel to the phasic activity of mDA neurons in this task, which is 
well described as the sum of action- and sensory-related components 
of reward prediction9,13 and occurs in parallel to direct sensorimotor 
outputs34. Notably, this scheme closely reproduces mDA activity across 
naive learning as measured by both somatic spiking9 and Ca2+-sensor 
dynamics (Fig. 4). Overall, our approach adds an adaptive rate compo-
nent inspired by supervised learning optimization methods26,28,35 to 
an unsupervised, biologically plausible rule for training RNNs36 that 
itself drew inspiration from node perturbation methods and the classic 
direct policy optimization method whose acronym is REINFORCE3,21. 
Hence, we refer to the complete model as ACTR (for adaptive rate, cost 
of performance to REINFORCE).

ACTR successfully reproduced many meaningful aspects of mouse 
behavioural learning data. For repeated ACTR simulations (n = 24) with 
a range of initializations, latency to collect rewards declined compara-
bly to observed mouse behaviour over training (Fig. 1i–j, including an 
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Fig. 1 | Changes to behavioural policy correlate with improved reward 
collection performance. a, Experimental design. b, Ten-trial binned 
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collection latency (Rew. col. lat.; leftmost column) compared to normalized 
(Norm.) heat maps of preparatory (middle four columns; grey arrows: cue start) 
and reactive behaviour (right three columns; blue arrows: reward delivery; 
black triangles: mean first response). c, One-hundred-trial moving means of 
reward collection latency (top), and normalized preparatory (middle, motion 
energy (ME)) and reactive (bottom, latency) measures (n = 9 mice). d, Top: 
behavioural measures predicted reward collection latency in a GLM for each 
mouse. Bottom left: GLM predictor weights for each of nine mice. Bottom 
right: preparatory (Prep.; blue) or reactive (React.; orange) predictors alone 
performed worse than the full model. Significance testing: Friedman’s.  
e, Trialwise reactive (top, orange) and preparatory (bottom, blue) behaviour 
(Beh.; binned into tertiles of PE magnitudes) correlated with inferred PE on the 
previous trial (black lines: shuffled control of trialwise PE for all other mice).  
n, trial number. Significance testing: two-way ANOVA; Tukey–Cramer post hoc. 
f, Trials to reach 75% maximum learned performance for reactive (orange) and 

preparatory (blue) behaviours (n = 9 mice). P < 0.001; two-tailed rank sum test. 
g, Difference between fits (in negative log likelihood (−LL)) for versions of 
ACTR model (grey bars (smaller number equals better fit) for each mouse 
(coloured circles). h, The ACTR model learned a lick plant control policy (π) as 
the output from an RNN receiving sensory inputs following cue onset/offset 
(purple) and reward delivery (red). eij, eligibility trace for node perturbation at 
the synapse between the ith neuron and the jth neuron. Learning rules (blue 
and orange boxes) updated the weights of sensory inputs (Skj) and internal 
connections (Wij) using a mDA-like adaptive learning rate (β, pink). i, Top: cost 
surface calculated from ACTR model, overlaid with trajectories from individual 
initializations (white). Bottom: cost surface fitted from mouse data, overlaid 
with individual trajectories (white). j, Final performance for versions of ACTR 
model (grey bars; individuals as dots; n = 24) with the indicated differences in 
dopamine function (see main text) compared to observed performance in mice 
(red bar; individuals as circles; n = 9). Significance testing: rank sum. All error 
bars denote ±s.e.m. Box plots represent the median at their centre bounded  
by the 25th and 75th percentile of the data, with whiskers to each extreme. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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equivalent cued performance gain (Extended Data Fig. 2e)). Learning 
trajectories and cost surfaces calculated from a range of model ini-
tializations compared well qualitatively and quantitatively to those 
inferred from mouse data (Fig. 1i, Extended Data Fig. 2c and Methods). 
Finally, modelling the adaptive rate term (β) after phasic mDA activity 
(see Fig. 4 for comparison of modelled to actual) was well supported 
by comparing end performance of the full model to modified versions 
(Fig. 1j) in which: the mDA-like feedback unit signalled PE instead of 
rate (Extended Data Fig. 2f; significantly worse performance, rank 
sum P < 2 × 10−7); learning rate was globally reduced (akin to dopamine 
depletion37; significantly worse performance, rank sum P < 2 x 10−6); a 
basal learning rate was intact but there was no adaptive component 
(akin to disruption of phasic mDA reward signalling38; significantly 
worse performance, rank sum P = 0.02). Thus, naive trace conditioning 
is well described as the optimization of reward collection behaviour, 
and best approximated when mDA-like signals act not as signed errors 

directing changes to the policy, but instead adapting the size of the 
learned update on each trial.

Change in dopamine activity over learning
We measured mDA activity in the above mice, which were DAT-Cre::ai32 
mice that transgenically expressed Chr2 under control of the dopamine 
transporter promoter, by injecting a Cre-dependent jRCaMP1b virus 
across the ventral midbrain9 (Fig. 2a,b). This combined optogenetic–
fibre photometry strategy also allowed for calibrated dopamine manip-
ulations in later experiments. Optical fibres were implanted bilaterally 
over the VTA, and unilaterally in the nucleus accumbens core (NAc), and 
in the dorsomedial striatum (DS; Fig. 2a). We recorded jRCaMP1b signals 
from the NAc (‘NAc–DA’) in all mice, with some additional simultane-
ous recordings from ipsilateral VTA (n = 3, ‘VTA–DA’) or contralateral 
DS (n = 6, ‘DS–DA’). NAc–DA reward responses became better aligned 
to reward delivery across training but did not decrease significantly 
(trials 1–100: 0.82 ± 0.21 z, trials 700–800: 1.16 ± 0.23 z, signed rank 
P = 0.13), even as cue responses steadily increased (Extended Data 
Fig. 3a,b). These dynamics recapitulated our previous observations 
from somatic activity9 and indeed closely resembled simultaneously 
recorded VTA–DA signals (Extended Data Fig. 3a–e). By contrast, DS–DA 
developed cue and reward responses only on further training, match-
ing previous reports39,40 (Extended Data Fig. 3a–e), and indicating that 
mesolimbic (for example, VTA-to-NAc) reward signals are of specific 
interest during the initial learning period studied here.

We thus proceeded to examine how individual differences in mes-
olimbic reward signals were related to the individual differences in 
behavioural learning. We found substantial inter-animal variance in 
initial NAc–DA responses in the first 100 trials that was not related to 
anatomical location of fibres (Fig. 2c,d; initial NAc–DA reward: anterior–
posterior: P = 0.5, medial–lateral: P = 0.4, dorsal–ventral: P = 0.5; mul-
tiple linear regression all axes, P = 0.7). Unexpectedly, initial NAc–DA 
reward signals were negatively correlated with the amount of prepara-
tory behaviour at the end of training (Fig. 2c and Extended Data Fig. 3f; 
NAc–DA rewardtrials 1–100 versus preparatory indextrials 700–800, r = −0.85, 
P = 0.004), as well as the speed of reward collection (Fig. 2e; NAc–DA 
rewardtrials 1–100 versus reward collection latencytrials 700–800, r = 0.81, 
P = 0.008). This relationship was specific for preparatory behav-
iours (Extended Data Fig. 3g; NAc–DA rewardtrials 1–100 versus reactive  
indextrials 700–800, P = 0.24), and was robust as each mouse’s initial dopa-
mine reward signals could be accurately predicted from quantifications 
of final preparatory behaviour (Extended Data Fig. 3h; actual versus 
predicted r = 0.99, P < 0.0001).

The negative correlation between dopaminergic reward signaling 
and behavioural learning is not consistent with the magnitude of pha-
sic mDA activity determining or correlating with the error used for a 
learning update. However, it is potentially consistent with phasic mDA 
activity reflecting action-related and sensory-related components of 
the control policy. At initialization of the ACTR model, no prepara-
tory actions have been learned, so the dopamine signal is dominated 
by the initial reactive response to sensory input at reward delivery. 
Adjusting the strength of this sensory input at model initialization 
scales the initial dopamine reward response magnitudes similarly to 
the range observed in mice (Fig. 2f). These initialization differences 
in ACTR simulations predicted a delayed collection latency at the end 
of training (Extended Data Fig. 3i; r = 0.73, P = 0.007) due to a reduced 
development of a preparatory licking policy (Extended Data Fig. 3j), 
mirroring our results in mice and demonstrating that stronger reactive 
responses to sensory information can impair the learned development 
of preparatory responses (and thus ultimately impair performance). 
These insights from the ACTR model suggest that, in real mice, initial 
sensitivity to reward-related sensory stimuli is reported by increased 
mDA reward signalling, and this initial condition can explain meaningful 
individual differences in the courses of future learning. 
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Calibrated dopamine stimulation
Work exploring direct roles of dopamine in movement10 or motivation41 
suggests that phasic cue responses provoke or invigorate preparatory 
behaviour. Indeed, learned NAc–DA cue responses were correlated with 
cued licking across mice (Extended Data Fig. 4c). However, at the end 
of regular training some mice experienced an extra session in which  
VTA–DA stimulation was triggered on cue presentation on a random 
subset of trials (Extended Data Fig. 4). Increasing mesolimbic cue 
responses in this way had no effect on cued licking in the concurrent 
trial (control 2.3 ± 1.1 Hz, stimulation 2.3 ± 1.0 Hz, P > 0.99). Thus, within 
this context (although not necessarily others42), the magnitude of  
NAc–DA cue signals correlates only with learned changes in behavioural 
policy but does not seem to directly regulate preparatory behaviour 
in anticipation of reward delivery9,43.

Notably, individual differences in initial NAc–DA reward signals were 
not correlated with the learning of NAc–DA cue signals (rewardtrials 1–100  
versus cuetrials 700–800, P = 0.5; Fig. 2e). This could argue that dopamine 
reward signals are not a driving force in the learning of cue signals. 
This is surprising given that results in rodents43,44 and monkeys45 pro-
vide specific evidence for value learning effects following exogenous  
VTA–DA stimulation. However, reward-related mDA bursting is brief 
(≤0.2 s) in our task9 as well as in canonical results across species4, 

raising the question of whether high-power, longer-duration stimu-
lation recruits the same learning mechanisms as briefer, smaller 
reward-sized responses. We next used our ability to simultaneously 
manipulate and measure mesolimbic dopamine9 to examine the func-
tion of brief dopamine transients calibrated to match reward responses 
from our task.

Following initial training on the trace conditioning paradigm (Sup-
plementary Table 1), we introduced mice to a novel predictive cue—a 
500-ms flash of light directed at the chamber wall in front of the mouse. 
After ten introductory trials, this visible cue stimulus was paired with 
exogenous VTA–DA stimulation after 1 s delay for five daily sessions 
(about 150 trials per session; Fig. 3a). One group of randomly selected 
mice received VTA–DA stimulation calibrated to uncued reward 
responses (150 ms at 30 Hz and 1–3 mW steady-state power, stimula-
tion response = 1.4 ± 0.3 uncued reward response, n = 10), whereas the 
complement received larger, uncalibrated stimulations (500 ms at 
30 Hz and 10 mW steady-state power, stimulation response = 5.5 ± 0.8 
uncued reward response, n = 7; Fig. 3a,b). After five sessions, the group 
receiving calibrated, reward-sized stimulation did not exhibit NAc–DA 
cue responses above baseline (0.0 ± 0.2 z, P = 0.8), whereas the large, 
uncalibrated stimulation group exhibited substantial NAc–DA cue 
responses (0.5 ± 0.2 z, P = 0.02; Fig. 3b).

The emergence of cue signals following uncalibrated dopamine 
stimulation was captured in ACTR by introducing a nonlinearity in 
which larger, more sustained dopamine activation was modelled as a 
large modulation of learning rate coupled with a change in PE encoding 
(Fig. 3c–e and Methods). This coupled effect in the model enhanced 
cue encoding in a manner similar to the predictions of value learn-
ing; however, it was also distinct in that this change in the encoding of 
cues was not accompanied by the suppression of dopamine activity on 
omission of the laser stimulus expected from value learning models 
(Fig. 3d,e). In contrast to previous observations of inhibition following 
omission of expected stimulation in the context of consistent, overt 
behavioural responses to cues17,46, only a brief bout of body movement 
accompanied cue learning in the current paradigm (Extended Data 
Fig. 5). This suggests that dopamine inhibition observed following 
omission of expected rewards may depend on concurrent control9,13 
or evaluation17 of action.

In separate experiments, calibrated and uncalibrated VTA–DA stimu-
lations had a similar spatial profile of response magnitude across the 
medial prefrontal cortex and the dorsal-to-ventral axis of the striatum, 
suggesting that the recruitment of value-like cue learning by uncali-
brated stimulation was related to the magnitude or duration of the 
uncalibrated signal rather than an increased spatial spread (Extended 
Data Fig. 6). Together, these data provide further evidence that phasic 
mDA reward responses of the magnitude measured in our task are not 
sufficient to drive value-like learning of predictive cue responses, but 
larger stimulation flooding the same downstream regions with higher 
dopamine concentrations are sufficient to teach phasic responses to 
a cue that predicts dopamine stimulation.

Dopamine sets an adaptive learning rate
We next elaborate on the role of dopamine reward signals in 
performance-driven direct policy learning. NAc–DA signals predicted 
by ACTR and temporal difference (TD) value learning can be visual-
ized by convolving their dopamine signals (the adaptive rate signal in 
ACTR and the RPE signal from the optimized TD model parameters; 
Extended Data Fig. 1) with a temporal kernel matched to the kinet-
ics of jRCaMP1b (Fig. 4 and Methods). ACTR’s predicted phasic mDA 
photometry signal corresponds closely to experimentally measured 
NAc– and VTA–DA activity across training (Fig. 4a–d and Extended Data 
Fig. 3a). Notably, ACTR’s modelling of mDA activity as the sum of action 
and sensory components in a control policy reproduces the emergence 
of differences between expected and unexpected rewards, despite the 
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lack of an explicit RPE computation (Fig. 4b and Extended Data Fig. 7). 
This scheme also predicts that mDA reward signals should reflect the 
evolution of reward collection policy across learning. Although ani-
mals’ policies are not directly observable, the presence or absence of 
preparatory licking on a given trial of behaviour is a noisy correlate 
of differences in underlying behavioural policy. Indeed, both ACTR 
and mouse data exhibited differential reward responses on trials with 
(‘lick+’) or without (‘lick−’) preparatory licking as learning progressed 
(Extended Data Fig. 8a–d).

A close examination of the learning signals on lick− versus lick+ trials 
indicates that those trial types are capturing different distributions 
of PEs, as estimated from reward collection latency and anticipatory 
licking (Methods). Although lick+ trials are critical for optimal per-
formance, generally lick+ trials are associated with negative PEs and 
lick− trials are associated with positive PEs (Extended Data Fig. 8f). Our 
modelling provides some insight into why this effect is expected and 
can be most easily illustrated by considering the limiting cases. If the 
policy is optimal then trials are lick+ and stochasticity in the licking 
plant or fluctuations in the policy can result only in deviations towards 
worse than expected reward collection latencies (that is, resulting in 
a bias towards negative PEs). By contrast, if the policy is as bad as pos-
sible, trials are lick− and stochastic initiation of the lick plant right after 
reward delivery or stochastic fluctuations in the underlying policy (even 
without inducing a pre-reward lick) can only improve reward collection 
relative to expected latency of a poor policy (that is, resulting in a bias 
towards positive PEs).

It then follows that disrupting the balance of dopamine signalling 
between lick+ and lick− trials should systematically affect learning 
given the biases in PEs between the two trial types. Owing to their 
average negative PE, increasing the learning rate exogenously (by 
increasing the dopamine signal) only on lick+ trials should bias away 

from robust preparatory policies and decrease final learned prepara-
tory licking. The converse is true for lick− trials, for which selective 
amplification of positive PEs should bias to more preparatory licking. 
These paradoxical effects of enhanced rates impairing learning of the 
contingent behaviour can be demonstrated in ACTR simulations, as 
trial-type-dependent enhancement of the dopaminergic learning rate 
signal indeed produced opposite signed effects on preparatory lick-
ing behaviour (Extended Data Fig. 8e). Furthermore, this closed-loop 
stimulation paradigm offers the unique ability to distinguish between 
many competing models of dopamine function: when dopamine reward 
signals are modelled as signed errors (PEs in ACTR or RPEs in value 
learning models) or as a simple behavioural reinforcement signal, the 
same closed-loop stimulation paradigm biases dopamine cue signals 
and preparatory licking in opposite directions for at least one of the 
two trial types (Fig. 5e).

We thus performed this experiment in mice, selectively increas-
ing dopamine reward signals through optogenetic stimulation in the 
VTA contingent on preparatory cued behaviour. Separate groups of 
animals experienced each of the following stimulation contingencies: 
‘stimLick+’ animals received VTA–DA stimulation at the moment of 
reward delivery on trials in which we detected licking in the 750 ms 
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preceding reward delivery, whereas ‘stimLick−’ animals received the 
same stimulation on trials in which no licking was detected during the 
delay interval (Fig. 5a). Crucially, stimulation was brief (150 ms) and 
low power (3 mW), approximately doubling the endogenous NAc–DA  
reward response (Fig. 5b). To account for the large discrepancy in sti-
mulated trials that would arise between the two stimulation groups 
due to eventual predominance of lick+ trials, stimLick+ animals were 
limited to having a maximum of 50% of total trials stimulated in a given 
session. This resulted in a comparable number of stimulated trials 
between the two groups by the end of the training period (Fig. 5b). 
We also confirmed post hoc that stimulation captured systematically 
different (P = 0.004, rank sum test) positive and negative PEs for each 
condition as expected (Extended Data Fig. 8g).

Calibrated enhancement of reward-related activity in mesolimbic 
projections in this way had opposite effects on emerging delay-period 
behaviour across the two stimLick contingencies (Fig. 5b–d and 
Extended Data Fig. 8h). As in the ACTR model, behaviour was biased 
in opposite directions for each contingency, with stimLick+ animals 
exhibiting lower and stimLick− animals exhibiting higher preparatory 
licking (trials 600–800, stimLick+ 1.0 ± 0.7, stimLick− 0.6 ± 0.1, analy-
sis of variance (ANOVA) F1,72 = 10.5, P = 0.002; Fig. 5d). Furthermore,  
NAc–DA cue signals were biased in matching directions, with the 
stimLick− group also exhibiting higher NAc-DA cue responses versus 
stimLick+ (trials 600–800, stimLick+ 0.3 ± 0.1 z, stimLick− 2.6 ± 0.7 z, 
ANOVA F1,72 = 10.1, P = 0.002; Fig. 5d). Baseline licking examined just 
before trials began across training showed no correlation with the 
extent of learning (P = 0.9) or initial NAc–DA magnitude (P = 0.8), con-
firming that preparatory licking learning was indeed driven by the 
predictive cue (Extended Data Fig. 9).

The differences in effects of calibrated and uncalibrated stimula-
tions (Fig. 3) suggest that uncalibrated stimulation could paradoxically 
reverse the effect on suppression of cued licking seen in the stimLick+ 
condition above. To test this possibility, we repeated the stimLick+ 
experiment with a new set of mice, but this time augmented rewards 
on lick+ trials with large, uncalibrated VTA–DA stimulation (500 ms, 
at 30 Hz and about 10 mW power; Fig. 6a). Indeed, this new larger 
exogenous stimulation contingency (‘stim+Lick+’) now resulted in 
increased NAc–DA cue responses (Fig. 5b, two-way ANOVA, stimula-
tion group F1,66 = 11.7, P = 0.001) and increased cued licking (Fig. 5b, 
two-way ANOVA, stimulation group F1,60 = 7.1, P = 0.01), reversing 
the sign of the effects of calibrated stimLick+ stimulation (Fig. 5d). 
These effects were well predicted by a modified version of the ACTR 
model in which large dopamine stimulations biased towards positive 

errors in addition to modulating learning rate (Fig. 6c), exactly as 
in the previous experiment in which large uncalibrated stimulation 
caused the emergence of NAc–DA responses to a predictive cue  
(Fig. 3a–c).

Discussion
The discovery that the phasic activity of mDA neurons in several spe-
cies correlated with a key quantity (RPE) in value learning algorithms 
has been a marked and important advance suggesting that the brain 
may implement analogous processes4,7. At the same time, reinforce-
ment learning constitutes a large family of algorithms1,3 that include 
not only learning about expected values of environmental states, but 
also directly learning parameterized policies for behavioural control. 
Close analysis of our trace conditioning paradigm indeed revealed that 
behavioural learning was better explained by direct policy learning as 
compared to value learning. The fact that signed RPEs are not required 
for policy learning opened up the possibility that mDA activity could 
map onto a different quantity. This led us to develop a biologically 
plausible network-based formulation of policy learning that is consist-
ent with many aspects of individual behavioural trajectories, but also 
closely matches observed mDA neuron activity during naive learning. 
This is distinct from standard ‘actor–critic’ models of dopamine func-
tion in the basal ganglia47 in multiple ways, including in the function of 
dopamine in the model and the proposition that the ventral striatum 
is part of the ‘actor’ that determines policy, rather than the ‘critic’. 
However, both emphasize the need to understand how policy is imple-
mented in dopamine-recipient circuits as an abstracted action-control 
signal.

Regardless of the specific reinforcement learning algorithm 
favoured, our analyses and experiments discriminate between two 
potential biological functions of dopamine: a signed error signal that 
governs the direction of learned changes and an unsigned adaptive 
rate signal that governs how much of the error is captured on a given 
trial. A role in modulating learning rate as opposed to signalling an 
error predicts that stimulation of mDA neurons will often enhance 
learning as previously observed, but could paradoxically slow learning 
in some contingencies. Slowed learning would be paradoxical if dopa-
mine activity functioned as an error or as a reinforcer of past action. 
Stimulation of mDA neurons without respect to ongoing behaviour, as 
routinely carried out, fails to distinguish between these possibilities 
and thus a new experiment was required—calibrated manipulation of 
mDA activity in closed-loop operation with behaviour (inferred policy 
state). We found a remarkable agreement between policy learning 
model-based predictions and experimental observations. Intrigu-
ingly, we also discovered that uncalibrated mDA stimulation 3–5 times 
stronger than endogenous mDA activity (but with parameters common 
in the field at present) was well explained by our model as a bias in a 
signed error in addition to modulating learning rate. This suggests that 
dopamine-dependent attribution of motivational value to cues46,48,49 is 
at least partially dissociable from the regulation of policy learning rate 
within the same mesolimbic circuits. Such parallel functions could be 
complementary, intriguingly mirroring the system of parallel policy 
and value learning networks implemented in AlphaGo50, a landmark 
achievement in modern artificial intelligence.

Value-like error signalling following higher-power, longer stimula-
tion may depend on specific receptor recruitment within a circuit51 
(as suggested by similar input–output relationships across tested 
regions (Extended Data Fig. 6)), and/or differential recruitment of 
diverse8,52–54 dopaminergic circuits. This predicts that recipient areas 
should exhibit distinct electrophysiological responses to supraphysi-
ological stimulation, which can be tested in future experiments. Our 
data indicate that both strongly enhanced dopmaine signalling and 
oversensitivity to sensory input can bias towards value-like learning 
that leads an animal to exhibit excessively strong reactive responses to 
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cues at the expense of optimal behaviour. This may be akin to the exces-
sive acquired and innate sensitivity to drug-predictive cues thought 
to underlie the development of addiction55, and connects our results 
to previous observations of correlations between the magnitude of 
phasic dopamine signalling and individual differences in reward-related 
behaviours49. This suggests that policy learning, and specifically the 
reactive component in our ACTR model, may be a useful way to model 
the acquisition of incentive salience41 (although not its expression, as 
phasic dopamine signals could be shown to modulate only learning, 
and not apparent incentive salience on the current trial (Extended 
Data Fig. 4)). Our results promote the practice of matching exogenous 
manipulations of neuromodulators to physiological signals9,56, and sup-
port the modelling of addictive maladaptive learning57 with extended, 
high-magnitude mDA stimulation.

There are many opportunities to extend the current ACTR model 
formulation to capture more biological reality and evaluate the 
biologically plausible, but so far incompletely tested, cellular and 
circuit mechanisms of posited ACTR learning rules. There is prior 
evidence for the capacity of mDA activity to capture eligibility traces 
and modulate synaptic plasticity58,59; however, our behavioural data 
and modelling call for further examination of multiple coordinated 
learning rules governing reactive-like and preparatory-like learning. 
Given that adaptive control over the magnitude of learning rate can 
be a key determinant of machine learning performance in deep neural 
networks2,28 and RNNs35, studying how adaptive control of learning 
rates is implemented in animal brains, and especially across diverse 
tasks, may provide additional algorithmic insights to those developed 
here. Recent evidence also suggests that other neuromodulators in the 
brain may play distinct, putatively complementary roles in control-
ling the rate of learning60. Here we effectively identify a key heuristic 
apparent in phasic mDA activity that adapts learning rates to produce 
more stable and performant learning; however, we focused on a single 
behavioural learning paradigm and dopamine is known to be critical 
for a broad range of putative behavioural policies. Our work provides 
a perspective for future work to expand on and identify other aspects 
of mDA activity that may be critical for the adaptive control of learn-
ing from action.
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Methods

Animals
All protocols and animal handling procedures were carried out in strict 
accordance with a protocol (no. 19–190) approved by the Janelia Insti-
tutional Animal Care and Use Committee and in compliance with the 
standards set forth by the Association for Assessment and Accreditation 
of Laboratory Animal Care.

For behaviour and juxtacellular recordings, we used 24 adult male 
DAT-Cre::ai32 mice (3–9 months old) resulting from the cross of  
DATIREScre (The Jackson Laboratory stock 006660) and Ai32 (The Jackson 
Laboratory stock 012569) lines of mice, such that a Chr2–EYFP fusion 
protein was expressed under control of the endogenous dopamine 
transporter Slc6a3 locus to specifically label dopaminergic neurons. 
Mice were maintained under specific-pathogen-free conditions. Mice 
were housed on a free-standing, individually ventilated (about 60 air 
changes hourly) rack (Allentown Inc.). The holding room was venti-
lated with 100% outside filtered air with >15 air changes hourly. Each 
ventilated cage (Allentown) was provided with corncob bedding (Shep-
ard Specialty Papers), at least 8 g of nesting material (Bed-r’Nest, The 
Andersons) and a red mouse tunnel (Bio-Serv). Mice were maintained 
on a 12:12-h (8 am–8 pm) light/dark cycle and recordings were made 
between 9 am and 3 pm. The holding room temperature was maintained 
at 21 ± 1 °C with a relative humidity of 30% to 70%. Irradiated rodent 
laboratory chow (LabDiet 5053) was provided ad libitum. Following 
at least 4 days recovery from headcap implantation surgery, animals’ 
water consumption was restricted to 1.2 ml per day for at least 3 days 
before training. Mice underwent daily health checks, and water restric-
tion was eased if mice fell below 75% of their original body weight.

Behavioural training
Mice were habituated to head fixation in a separate area from the 
recording rig in multiple sessions of increasing length over ≥3 days. 
During this time they received some manual water administration 
through a syringe. Mice were then habituated to head fixation while 
resting in a spring-suspended basket in the recording rig for at least 
two sessions of 30+ min each before training commenced. No liquid 
rewards were administered during this recording rig acclimation; thus, 
trial 1 in the data represents the first time naive mice received the liquid 
water reward in the training environment. The reward consisted of 3 μl 
of water sweetened with the non-caloric sweetener saccharin deliv-
ered through a lick port under control of a solenoid. A 0.5-s, 10-kHz 
tone preceded reward delivery by 1.5 s on ‘cued’ trials, and 10% of ran-
domly selected rewards were ‘uncued’. Matching our previous training 
schedule9, after three sessions, mice also experienced ‘omission’ probe 
trials, in which the cue was delivered but not followed by reward, on 
10% of randomly selected trials. Intertrial intervals were chosen from a 
randomly permuted exponential distribution with a mean of about 25 s. 
Ambient room noise was 50–55 dB, and an audible click of about 53 dB 
accompanied solenoid opening on water delivery and the predictive 
tone was about 65 dB loud. Mice experienced 100 trials per session and 
one session per day for 8–10 days. In previous pilot experiments, it was 
observed that at similar intertrial intervals, behavioural responses to 
cues and rewards began to decrease in some mice at 150–200 trials. 
Thus, the 100 trials per session limit was chosen to ensure homogeneity 
in motivated engagement across the dataset.

Some animals received optogenetic stimulation of VTA–DA neurons 
concurrent with reward delivery, contingent on their behaviour during 
the delay period (see technical details below). Mice were randomly 
assigned to stimulation group (control, stimLick−, stimLick+) before 
training. Experimenter was not blinded to group identity during data 
collection. Following trace conditioning with or without exogenous 
dopamine stimulation, five mice experienced an extra session during 
which VTA–DA neurons were optogenetically stimulated concurrently 
with cue presentation (Extended Data Fig. 4). Mice were then randomly 

assigned to groups for a new experiment in which a light cue predicted 
VTA–DA stimulation with no concurrent liquid water reward (5–7 days, 
150–200 trials per day). The light cue consisted of a 500-ms flash of a 
blue light-emitting diode (LED) directed at the wall in front of head 
fixation. Intertrial intervals were chosen from randomly permuted 
exponential distributions with a mean of about 13 s. Supplementary 
Table 1 lists the experimental groups each mouse was assigned to in 
the order in which experiments were experienced.

Video and behavioural measurement
Face video was captured at 100 Hz continuously across each session 
with a single camera (Flea 3, FLIR) positioned level with the point of 
head fixation, at an approximately 30º angle from horizontal, and com-
pressed and streamed to disk with custom code written by J. Keller 
(available at https://github.com/neurojak/pySpinCapture). Dim visible 
light was maintained in the rig so that pupils were not overly dilated, 
and an infrared LED (model#) trained at the face provided illumination 
for video capture. Video was post-processed with custom MATLAB 
code available on request.

Briefly, for each session, a rectangular region of interest (ROI) for 
each measurement was defined from the mean of 500 randomly drawn 
frames. Pupil diameter was estimated as the mean of the major and 
minor axis of the object detected with the MATLAB regionprops func-
tion, following noise removal by thresholding the image to separate 
light and dark pixels, then applying a circular averaging filter and then 
dilating and eroding the image. This noise removal process accounted 
for frames distorted by passage of whiskers in front of the eye, and 
slight differences in face illumination between mice. For each session, 
appropriateness of fit was verified by overlaying the estimated pupil 
on the actual image for about 20–50 randomly drawn frames. A single 
variable, the dark/light pixel thresholding value, could be changed to 
ensure optimal fitting for each session. Nose motion was extracted as 
the mean of pixel displacement in the ROI y axis estimated using an 
image registration algorithm (MATLAB imregdemons). Whisker pad 
motion was estimated as the absolute difference in the whisker pad 
ROI between frames (MATLAB imabsdiff; this was sufficiently accurate 
to define whisking periods, and required much less computing time 
than imregdemons). Whisking was determined as the crossing of pad 
motion above a threshold, and whisking bouts were made continuous 
by convolving pad motion with a smoothing kernel. Licks were times-
tamped as the moment pixel intensity in the ROI in between the face 
and the lick port crossed a threshold.

Body movement was summarized as basket movements recorded 
by a triple-axis accelerometer (Adafruit, ADXL335) attached to the 
underside of a custom-designed three-dimensionally printed basket 
suspended from springs (Century Spring Corp, ZZ3-36). Relative basket 
position was tracked by low-pass filtering accelerometer data at 2.5 Hz. 
Stimulations and cue deliveries were coordinated with custom-written 
software using Arduino Mega hardware (https://www.arduino.cc). All 
measurement and control signals were synchronously recorded and 
digitized (at 1 kHz for behavioural data, 10 kHz for fibre photometry 
data) with a Cerebus Signal Processor (Blackrock Microsystems). Data 
were analysed using MATLAB software (Mathworks).

Preparatory and reactive measures and abstract learning 
trajectories
To describe the relationship between behavioural adaptations and 
reward collection performance, for each mouse in the control group a 
GLM was created to predict reward collection latency from preparatory 
and reactive predictor variables on each trial. Preparatory changes in 
licking, whisking, body movement and pupil diameter were quanti-
fied by measuring the average of each of those signals during the 1-s 
delay period preceding cued rewards. The nose motion signal was not 
included as it did not display consistent preparatory changes. Reactive 
responses in the whisking, nose motion and body movement were 

https://github.com/neurojak/pySpinCapture
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measured as the latency to the first response following reward delivery. 
For whisking, this was simply the first moment of whisking following 
reward delivery. For nose motion, the raw signal was convolved with a 
smoothing kernel and then the first response was detected as a thresh-
old crossing of the cumulative sum of the signal. For body movement, 
the response was detected as the first peak in the data following reward 
delivery. On occasional trials no event was detected within the analysis 
window. Additionally, discrete blocks of trials were lost owing to data 
collection error for mouse 3, session 7; mouse 4, session 5; and mouse 
9, session 4. To fit learning curves through these absent data points, 
missing trials were filled in using nearest-neighbour interpolation.

Trial-by-trial reward collection latencies and predictor variables 
(preparatory licking, whisking, body movement and pupil diameter; 
and reactive nose motions, whisking and body movement) were median 
filtered (MATLAB medfilt1(signal,10)) to minimize trial-to-trial variance 
in favour of variance due to learning across training. Collection latency 
was predicted from z-scored predictor variables using MATLAB glmfit 
to fit β-values for each predictor. The unique explained variance of 
each predictor was calculated as the difference in explained variance 
between the full model and a partial model in which β-values were fitted 
without using that predictor.

Preparatory and reactive predictor variables were used to define 
abstract learning trajectories that were plots of collection latency 
against the inferred reactive and preparatory variables for each of 
the first 800 cue–reward trials of training. Reactive and preparatory 
variables were calculated as the first principal component of the 
individual reactive and preparatory variables used in the GLM fits. 
For visualization, we fitted a parametric model to all three variables 
(single exponential for preparatory, double exponentials for reactive 
and latency using the MATLAB fit function). Quality of fits and choice 
of model were verified by visual inspection of all data for all mice.  
An individual mouse’s trajectory was then visualized by plotting down-
sampled versions of the fit functions for latency, reactive and prepara-
tory. Arrowheads were placed at logarithmically spaced trials.

To quantify the total amount of preparatory behaviour in each mouse 
at a given point in training (final prep. behav., Extended Data Fig. 3f), 
each preparatory measure (pupil, licking, whisking and body move-
ment) was z-scored and combined across mice into a single data matrix. 
The first principal component of this matrix was calculated and loading 
onto PC1 was defined as a measure of an inferred underlying ‘prepara-
tory’ component of the behavioural policy. This created an equally 
weighted, variance-normalized combination of all preparatory meas-
ures to allow comparisons between individual mice. An analogous 
method was used to reduce the dimensionality of reactive variables 
down to a single ‘reactive’ dimension that captures most variance in 
reactive behavioural variables across animals (final reactive behav., 
Extended Data Fig. 3g). Initial NAc–DA signals were predicted from 
trained behaviour at trials 700–800 by multiple regression (specifically, 
pseudoinverse of the data matrix of reactive and preparatory variables 
at the end of training multiplied by data matrix of physiological signals 
for all animals).

Combined fibre photometry and optogenetic stimulation
In the course of a single surgery session, DAT-Cre::ai32 mice received: 
bilateral injections of AAV2/1-CAG-FLEX-jRCaMP1b in the VTA (150 nl 
at the coordinates −3.1 mm anterior–posterior (A–P), 1.3 mm medial–
lateral (M–L) from bregma, at depths of 4.6 and 4.3 mm) and in the 
substantia nigra pars compacta (100 nl at the coordinates −3.2 mm 
A–P, 0.5 mm M–L, depth of 4.1, mm); custom 0.39-NA, 200-μm fibre 
cannulas implanted bilaterally above the VTA (−3.2 mm A–P, 0.5 mm 
M–L, depth of −4.1 mm); and fibre cannula implanted unilaterally in the 
DS (0.9 mm A–P, 1.5 mm M–L, depth of 2.5 mm) and NAc (1.2 mm A–P, 
0.85 mm M–L, depth of 4.3 mm). Hemisphere choice was counterbal-
anced across individuals. A detailed description of the methods has 
been published previously56.

Imaging began >20 days post-injections using custom-built fibre 
photometry systems (Fig. 2a)56. Two parallel excitation–emission chan-
nels through a five-port filter cube (FMC5, Doric Lenses) allowed for 
simultaneous measurement of RCaMP1b and eYFP fluorescence, the lat-
ter channel having the purpose of controlling for the presence of move-
ment artefacts. Fibre-coupled LEDs of 470 nm and 565 nm (M470F3, 
M565F3, Thorlabs) were connected to excitation ports with accept-
ance bandwidths of 465–490 nm and 555–570 nm, respectively, with 
200-μm, 0.22-NA fibres (Doric Lenses). Light was conveyed between 
the sample port of the cube and the animal by a 200-μm-core, 0.39-NA 
fibre (Doric Lenses) terminating in a ceramic ferrule that was connected 
to the implanted fibre cannula by a ceramic mating sleeve (ADAL1, 
Thorlabs) using index matching gel to improve coupling efficiency 
(G608N3, Thorlabs). Light collected from the sample fibre was meas-
ured at separate output ports (emission bandwidths 500–540 nm and 
600–680 nm) by 600-μm-core, 0.48-NA fibres (Doric Lenses) con-
nected to silicon photoreceivers (2151, Newport).

A time-division multiplexing strategy was used in which LEDs were 
controlled at a frequency of 100 Hz (1 ms on, 10 ms off), offset from 
each other to avoid crosstalk between channels. A Y-cable split each 
LED output between the filter cube and a photodetector to measure 
output power. LED output power was 50–80 μW. This low power com-
bined with the 10% duty cycle used for multiplexing prevented local 
ChR2 excitation56 by 473 nm eYFP excitation. Excitation-specific signals 
were recovered in post-processing by only keeping data from each 
channel when its LED output power was high. Data were downsampled 
to 100 Hz, and then band-pass filtered between 0.01 and 40 Hz with a 
second-order Butterworth filter. Although movement artefacts were 
negligible when mice were head-fixed in the rig (the movable basket 
was designed to minimize brain movement with respect to the skull9), 
according to standard procedure the least-squares fit of the eYFP move-
ment artefact signal was subtracted from the jRCaMP1b signal. dF/F 
was calculated by dividing the raw signal by a baseline defined as the 
polynomial trend (MATLAB detrend) across the entire session. This pre-
served local slow signal changes while correcting for photobleaching. 
Comparisons between mice were carried out using the z-scored dF/F.

Experimenters were blind to group identity during the initial stages 
of analysis when analysis windows were determined and custom code 
was established to quantify fibre photometry signals and behavioural 
measurements. Analysis windows were chosen to capture the extent 
of mean phasic activations following each kind of stimulus. For NAc–
DA and VTA–DA, reward responses were quantified from 0 to 2 s after 
reward delivery and cue responses were quantified from 0 to 1 s after 
cue delivery. DS–DA exhibited much faster kinetics, and thus reward 
and cue responses were quantified from 0 to 0.75 s after delivery.

Somatic Chr2 excitation was carried out with a 473-nm laser (50 mW, 
OEM Laser Systems) coupled by a branching fibre patch cord (200 μm, 
Doric Lenses) to the VTA-implanted fibres using ceramic mating sleeves. 
Burst activations of 30 Hz (10 ms on, 23 ms off) were delivered with 
durations of either 150 ms for calibrated stimulation or 500 ms for large 
stimulations. For calibrated stimulation, laser power was set between 
1 and 3 mW (steady-state output) to produce a NAc–DA reactive of 
similar amplitude to the largest transients observed during the first 
several trials of the session. This was confirmed post hoc to have roughly 
doubled the size of reward-related NAc–DA transients (Figs. 3a and 
5b). For large stimulations, steady-state laser output was set to 10 mW.

ACTR computational learning model
Behavioural plant. An important aspect of this modelling work was 
to create a generative agent model that would produce core aspects 
of reward-seeking behaviour in mice. To this end, we focused on lick-
ing, which in the context of this task is the unique aspect of behav-
iour critical for reward collection. A reader may look at the function  
dlRNN_Pcheck_transfer.m within the software repository to appreciate 
the structure of the plant model. We describe the function of the plant 



briefly here. It is well known that during consumptive, repetitive licking 
mice exhibit preparatory periods of about 7 Hz licking. We modelled a 
simple fixed rate plant with an active, ‘lick’ state that emitted observed 
licks at a fixed time interval of 150 ms. The onset of this lick pattern 
relative to entry into the lick state was started at a variable phase of 
the interval (average latency to lick initialization from transition into 
lick state about 100 ms). Stochastic transitions between ‘rest’ and ‘lick’ 
states were governed by forward and backward transition rates. The 
reverse transition rate was a constant that depended on the presence 
of reward (5 × 10−3 ms without reward, 5 × 10−1 ms with reward). This 
change in the backwards rate captured the average duration of con-
sumptive licking bouts. The forward rate was governed by the scaled 
policy network output and a background tendency to transition to 
licking as a function of trial time (analogous to an exponential rising 
hazard function; 𝜏 = 100 ms). The output unit of the policy network 
was the sum of the RNN output unit (constrained {−1,1} by the tanh 
activation function) and a large reactive transient proportional to the 
sensory weight ({0,max_scale}), in which max_scale was a free parameter 
generally bounded from 5 to 10 during initialization. This net output was 
scaled by S = 0.02 ms−1 to convert to a scaled transition rate in the policy 
output. Behaviour of the plant for a range of policies is illustrated in 
Extended Data Fig. 2. A large range of parameterizations were explored 
with qualitatively similar results. Chosen parameters were arrived at by 
scanning many different simulations and matching average initial and 
final latencies for cue–reward pairings across the population of animals. 
More complicated versions (high-pass filtered, nonlinear scaling) of the 
transition from RNN output to transition rate can be explored in the 
provided code. However, all transformations were found to produce 
qualitatively similar results, and thus the simplest (scalar) transforma-
tion was chosen for reported simulations for clarity of presentation.

RNN. As noted in the main text, the RNN component of the model and 
the learning rules used for training drew on inspiration from ref. 36, 
which itself drew on inspiration variants of node perturbation meth-
ods61 and the classic policy optimization methods known as REINFORCE 
rules3,21. Briefly, ref. 36 demonstrated that a relatively simple learning 
rule that computed a nonlinear function of the correlation between a 
change in input and change in output multiplied by the change in per-
formance on the objective was sufficiently correlated with the analytic 
gradient to allow efficient training of the RNN. We implemented a few 
changes relative to this prior work. Below we delve into the learning 
rule as implemented here or a reader may examine the commented 
open source code to get further clarification as well. First, we describe 
the structure of the RNN and some core aspects of its function in the 
context of the model. The RNN was constructed largely as described in 
ref. 36, and was very comparable to the structure of a re-implementation 
of that model in ref. 62.

Although we explored a range of parameters governing RNN con-
struction, many examples of which are shown in Extended Data Fig. 2, 
the simulations shown in the main results come from a network with 50 
units (Nu = 50; chosen for simulation efficiency; larger networks were 
explored extensively as well), densely connected (Pc = 0.9), spectral 
scaling to produce preparatory dynamics (g = 1.3), a characteristic time 
constant (𝝉 = 25 ms) and a standard tanh activation function for indi-
vidual units. Initial internal weights of the network (Wij) were assigned 
according to the equation (in RNN-dudlab-master-LearnDA.m)

NW P N= × (0, 1) × ( × ) (1)ij c u
−1/2g

The RNN had a single primary output unit with activity that consti-
tuted the continuous time policy (that is, π(t)) input to the behaviour 
plant (see above), and a ‘feedback’ unit that did not project back into 
the network as would be standard, but rather was used to produce 
adaptive changes in the learning rate (described in more detail in the 
section below entitled Learning rules).

Objective function. Evaluation of model performance was calculated 
according to an objective function that defines the cost as the perfor-
mance cost (equation (2), costP) and an optional network stability cost 
(equation (3), costN) (for example, lines 269 and 387 in dlRNN-train_
learnDA.m, for equations (4) and (5), respectively)

cost = 1 − e (2)P
−Δt/500

t tcost = sum( ( )/ ) (3)N ∣δπ δ

πR t= (1 − cost ) − ( ) (4)obj P reward

R T R T R T⟨ ( )⟩ = × ( ) + (1 − ) × ( − 1) (5)R obj R objα α

in which T is the trial index. In all presented simulations, WN = 0.25.  
A filtered average cost, R, was computed as before36 with αR = 0.75 and 
used in the update equation for changing network weights through the 
learning rule described below. For all constants a range of values were 
tried with qualitatively similar results. The performance objective was 
defined by costP, for which ∆t is the latency to collected reward after it 
is available. The network stability cost (costN) penalizes high-frequency 
oscillatory dynamics that can emerge in some (but not all) simulations. 
Such oscillations are inconsistent with observed dynamics of neural 
activity so far.

Identifying properties of RNN required for optimal performance. 
To examine what properties of the RNN were required for optimal per-
formance, we scanned through thousands of simulated network con-
figurations (random initializations of Wij) and ranked those networks 
according to their mean cost (Robj) when run through the behav iour 
plant for 50 trials (an illustrative group of such simulations is shown 
in Extended Data Fig. 2). This analysis revealed a few key aspects 
of the RNN required for optimality. First, a preparatory policy that 
spans time from the detection of the cue through the delivery of water  
reward minimizes latency cost. Second, although optimal RNNs are 
relatively indifferent to some parameters (for example, Pc), they tend 
to require a coupling coefficient (g) ≧ 1.2. This range of values for the 
coupling coefficient is known to determine the capacity of an RNN to 
develop preparatory dynamics63. Consistent with this interpretation, 
our findings showed that optimal policies were observed uniquely 
in RNNs with large leading eigenvalues (Extended Data Fig. 2; that is, 
long-time-constant dynamics64). These analyses define the optimal 
policy as one that requires preparatory dynamics of output unit activity 
that span the interval between the cue offset and reward delivery and 
further reveal that an RNN with long-timescale dynamics is required to 
realize such a policy. Intuitively: preparatory anticipatory behaviour, 
or ‘conditioned responding’, optimizes reward collection latency. If an 
agent is already licking when reward is delivered the latency to collect 
that reward is minimized.

RNN initialization for simulations. All mice tested in our experiments 
began training with no preparatory licking to cues and a long latency 
(about 1 s or more) to collect water rewards. This indicates that animal 
behaviour is consistent with an RNN initialization that has a policy 
π(t) ≈ 0 for the entire trial. As noted above, there are many random 
initializations of the RNN that can produce clear preparatory behaviour 
and even optimal performance. Thus, we carried out large searches of 
RNN initializations (random matrices Wij) and used only those that had 
approximately 0 average activity in the output unit. We used a variety 
of different initializations across the simulations reported (Fig. 1 and 
Extended Data Fig. 2) and indeed there can be substantial differences 
in the observed rate of convergence depending on initial conditions (as 
there are across mice as well). For simulations of individual differences 



Article
(Fig. 1j and Extended Data Fig. 2), distinct network initializations were 
chosen (as described above), and paired comparisons were made for 
the control initialization and an initialization in which the weights of 
the inputs from the reward to the internal RNN units were tripled.

Learning rules. Below we articulate how each aspect of the model 
acronym, ACTR (adaptive rate cost of performance to REINFORCE), is 
reflected in the learning rule that governs updates to the RNN. The 
connections between the variant of node perturbation used here and 
REINFORCE21 has been discussed in detail previously36. There are two 
key classes of weight changes governed by distinct learning rules 
within the ACTR model. First, we will discuss the learning that governs 
changes in the ‘internal’ weights of the RNN (Wij). The idea of the rule 
is to use perturbations (1–10 Hz rate of perturbations in each unit; 
simulations reported used 3 Hz) to drive fluctuations in activity and 
corresponding changes in the output unit that could improve or de-
grade performance. To solve the temporal credit assignment problem, 
we used eligibility traces similar to those described previously36. One 
difference here was that the eligibility trace decayed exponentially 
with a time constant of 500 ms and it was unclear whether decay was 
a feature of prior work. The eligibility trace (ℯ) for a given connection 
i,j could be changed at any time point by computing a nonlinear func-
tion (S) of the product of the derivative in the input from the ith unit 
(xi) and the output rate of the jth unit (rj) in the RNN according to the 
equation (in dlRNN_engine.m)

ℯ ℯ ϕϕt t r t x t x( ) = ( − 1) + [ ( − 1) × ( ( ) − ⟨ ⟩)] (6)i j i j j i i, ,

As noted in ref. 36, the function S  need only be a signed, nonlinear 
function. Similarly, in our simulations we also found that a range of 
functions could all be used. Typically, we used either ϕ(y) = y3 or 
ϕ(y) = |y| × y, and simulations presented were generally the latter, which 
runs more rapidly.

The change in a connection weight (Wij) in the RNN in the original 
formulation36 is then computed as the product of the eligibility trace 
and the change in PE scaled by a learning rate parameter. Our imple-
mentation kept this core aspect of the computation, but several criti-
cal updates were made and will be described. First, as the eligibility 
trace is believed to be ‘read out’ into a plastic change in the synapse 
by a phasic burst of dopamine firing58, we chose to evaluate the eli-
gibility at the time of the computed burst of dopamine activity esti-
mated from the activity of the parallel feedback unit (see below for 
further details). Again, models that do not use this convention can 
also converge, but in general converge worse than and less similarly 
to observed mice. The update equation is thus (for example, line 330 
in dlRNN-train_learnDA.m)

β ST T η e t R T R TW ( ) = W ( − 1) + × × ( ) × ( ( ) − ⟨ ( )⟩) (7)i j i j i j, , DA , DA obj

in which ηS
 is the baseline learning rate parameter and is generally used 

in the range 5 × 10−4 ± 1 × 10−3 and βDA is the ‘adaptive rate’ parameter 
that is a nonlinear function (sigmoid) of the sum of the derivative of 
the policy at the time of reward plus the magnitude of the reactive 
response component plus a tonic activity component, T (T = 1 except 
in Extended Data Fig. 2 where noted and ϕ is a sigmoid function map-
ping inputs from {0,10} to {0,3} with parameters: σ = 1.25, μ = 7) (for 
example, line 259 in dlRNN-train_learnDA.m):

ϕϕT t= + (Δ ( ) + ) (8)iDA reward ,rewardβ π S

As noted in the description of the behavioural data described in 
Fig. 1, it is clear that animal behaviour exhibits learning of both prepara-
tory behavioural responses to the cue as well as reactive learning that 
reduces reaction times between sensory input (either cues or rewards) 
and motor outputs. This is particularly prominent in early training 

during which a marked decrease in reward collection latency occurs 
even in the absence of particularly large changes in the preparatory 
component of behaviour. We interpreted this reactive component as 
a ‘direct’ sensorimotor transformation consistent with the treatment 
of reaction times in the literature65, and thus reactive learning updates 
weights between sensory inputs and the output unit (one specific ele-
ment of the RNN indexed as ‘o’ below). This reactive learning was also 
updated according to PEs. In particular, the difference between Robj(T) 
and the activity of the output unit at the time of reward delivery. For the 
cue, updates were proportional to the difference between the derivative 
in the output unit activity at the cue and the PE at the reward delivery. 
These rates were also scaled by the same 𝜷DA adaptive learning rate 
parameter (for example, line 346 in dlRNN-train_learnDA.m):

SW T W T η R T t( ) = ( − 1) + × × ( ( ) − ( )) (9)trans,o trans,o DA obj rewardβ π

in which ηI is the baseline reactive learning rate and typical values were 
about 0.02 in presented simulations (again a range of different initiali-
zations were tested).

We compared acquisition learning in the complete ACTR model to 
observed mouse behaviour using a variety of approaches. We scanned 
about two orders of magnitude for two critical parameters ηI and ηW. 
We also aimed to sample the model across a range of initializations 
that approximately covered the range of learning curves exhibited by 
control mice. To scan this space, we followed the following procedure. 
We initialized 500–1,000 networks with random internal weights and 
initial sensory input weights (as described above). As no mice that we 
observed initially exhibited sustained licking, we selected six network 
initializations with preparatory policies approximately constant and 
0. For these 6 net initializations, we ran 24 simulations with 4 conditions 
for each initialization. Specifically, we simulated input vectors with 
initial weights S  = [0.1, 0.125, 0.15, 0.175] and baseline learning rates 
ηI = [2, 2.25, 2.5, 2.75] × 8 × 10−3. Representative curves of these simula-
tions are shown in Fig. 1j.

Visualizing the objective surface. To visualize the objective surface 
that governs learning, we scanned a range of policies (combinations 
of reactive and preparatory components) passed through the behav-
iour plant. The range of reactive components covered was [0:1.1] and 
preparatory was [−0.25:1]. This range corresponded to the space of all 
possible policy outputs realizable by the ACTR network. For each pair 
of values, a policy was computed and passed through the behaviour 
plant 50 times to get an estimate of the mean performance cost. These 
simulations were then fitted using a third-order, two-dimensional poly-
nomial (analogous to the procedure used for experimental data) and 
visualized as a three-dimensional surface.

In the case of experimental data, the full distribution of individual 
trial data points across all mice (N = 7,200 observations) was used to 
fit a third-order, two-dimensional polynomial (MATLAB; fit). Observed 
trajectories of preparatory versus reactive were superimposed on this 
surface by finding the nearest corresponding point on the fitted two- 
dimensional surface for the parametric preparatory and reactive tra-
jectories. These data are presented in Fig. 1j.

Simulating closed-loop stimulation of mDA experiments. We sought 
to develop an experimental test of the model that was tractable (as 
opposed to inferring the unobserved policy for example). The ex-
perimenter in principle has access to real-time detection of licking 
during the cue–reward interval. In simulations, this also can easily be 
observed by monitoring the output of the behavioural plant. Thus, in 
the model we kept track of individual trials and the number of licks 
produced in the cue–reward interval. For analysis experiments (Fig. 5e),  
we tracked these trials and separately calculated the predicted do-
pamine responses depending on trial type classification (lick– vs 
lick+). For simulations in Fig. 5e, we ran simulations from the same 



initialization in nine replicates (matched to the number of control 
mice) and error bars reflect the standard error.

To simulate calibrated stimulation of mDA neurons, we multiplied 
the adaptive rate parameter, βDA, by 2 on the appropriate trials For 
simulations reported in Fig. 5e, we used three conditions: control, 
stimLick– and stimLick+. For each of these three conditions, we ran  
9 simulations (3 different initializations, 3 replicates) for 27 total learn-
ing simulations (800 trials). This choice was an attempt to estimate 
the expected experimental variance as trial classification scheme is 
an imperfect estimate of underlying policy.

Pseudocode summary of model. Here we provide a description of 
how the model functions in pseudocode to complement the graphi-
cal diagrams in the main figures and the discursive descriptions of 
individual elements that are used below.

Initialize trial to T = 0
Initialize ACTR with W(0), Srew(T), Scue(T)
repeat

Run RNN simulation engine for trial T
Compute plant input π(T) = O(T) + S(T)
Compute lick output L(t) = Plant(π(T))
Compute latency to collect reward tcollect ← find L(t) > treward

Compute cost(T) = 1 −exp(−∆t/500)
Evaluate eligibility trace at collection ℯ ← ℯi,j(tcollect)
Compute βDA = 1 + ϕ(∆π(treward) + Srew)
Compute Robj(T) = 1 − (1 − exp(−∆t/500)) − O(T, treward − 1)
Estimate objective gradient PE = Robj(T) − ⟨R(T)⟩
Compute update ∆W = − ηJ × ℯ× PE × βDA

Update W(T + 1) ← W(T) + ∆W
Update Sreward(T + 1) ← Srew(T) + 

Sη  × Robj(T) × βDA

Update Scue(T + 1) ← Scue(T) + ηS
× Robj(T) × βDA

Until T == 800

in which T is the current trial and t is time within a trial, W is the RNN 
connection weight matrix, S is the sensory input strength, O is the RNN 
output, π is the behavioural policy, ∆t = tcollect − treward, ϕ is the nonlinear 
(sigmoid) transform, ⟨R(T)⟩ is the running mean PE, ηJ is the baseline 
learning rate for W and 

Sη  is the baseline learning rate for input S.

ACTR model variants. In Fig. 1k, we consider three model variants 
equivalent to dopamine signalling PEs, dopamine depletion and loss of 
phasic dopamine activity—all manipulations that have been published 
in the literature. To accomplish these simulations, we: changed βDA to 
equal PE; changed βDA offset to 0.1 from 1; and changed βDA to equal 1 
and removed the adaptive term.

In Figs. 3 and 5, calibrated stimulation was modelled as setting βDA to 
double the maximal possible magnitude of βDA under normal learning. 
In Figs. 3c–e and 5i, we modelled uncalibrated dopamine stimulation 
as setting PE = +1 in addition to the calibrated stimulation effect.

TD learning model. To model a standard TD value learning model we 
reimplemented a previously published model that spanned a range of 
model parameterizations from ref. 66.

Policy learning model equivalent to the low-parameter TD learning 
model. The ACTR model that we articulate seeks to provide a plausi-
ble mechanistic account of naive trace conditioning learning using: 
RNNs; a biologically plausible synaptic plasticity rule; conceptually 
accurate circuit organization of mDA neurons; a ‘plant’ to control re-
alistic behaviour; and multiple components of processing of sensory 
cues and rewards. However, to facilitate formal comparison between 
value learning and direct policy learning models, we sought to develop 
a simplified model that captures a key aspect of ACTR (the specific 
gradient it uses) and allows for explicit comparison against existing 

value learning models with the same number of free parameters. To 
model a low-parameter (as compared to ACTR) policy learning equiv-
alent of the TD value learning model from ref. 67, we used the same 
core structure, basis function representation and free parameters. 
However, rather than using an RPE (value gradient) for updating, we 
follow previous work32 and consider a direct policy learning version 
in which a policy gradient is used for updates as originally described 
in ref. 21 and equivalent in terms of the effective gradient to the ACTR 
implementation. First, we consider the latency to collect reward rather 
than the reward value per se as used in TD models. The latency to col-
lect reward is a monotonic function of the underlying policy such that 
increased policy leads to increased anticipatory licking as a reduction 
in the collection latency (Fig. 1). Typically one uses a nonlinearity that 
saturates towards the limits 0,1. For simplicity, we choose a soft non-
linearity (half-Gaussian) for convenience of the simple policy gradi-
ent that results. Regardless of the scaling parameter of the Gaussian 
(sigma), the derivative of the log of the policy is then proportional to 
1 − pt, in which pt is the policy on trial t (subject to scaling by a constant 
proportional to sigma that is subsumed into a learning rate term in the 
update equation). According to the REINFORCE algorithm family21, we 
have an update function proportional to (rcurr − b) × (1 − pt), in which rcurr 
is the current trial reward collection latency and b is a local average of 
the latency calculated by b = υ × rcurr + (1 − υ) × b. Typical values for υ 
were 0.25 (although a range of different calculations for b, including 
b = 0, yield consistent results as noted previously21).

Formal model comparison. As in previous work32, we sought to com-
pare the relative likelihood of the observed data under the optimal 
parameterization of either the value learning (TD) model or the direct 
policy learning model. The data we aimed to evaluate were the fre-
quency of anticipatory licking during the delay period over the first 
approximately 1,000 trials of naive learning for each mouse. We used a 
recent model formalization proposed to describe naive learning67 and 
used grid search to find optimal values of the parameters λ, α and γ.  
To compute the probability of observing a given amount of anticipatory 
licking as a function of the value function or policy, respectively, we 
used a normal probability density (sigma = 1) centred on the predicted 
lick frequency (7 Hz × value or policy). Initial examination revealed that 
sigma = 1 minimized the LL for all models, but the trends were the same 
across a range of sigma. The −LL of a given parameterization of the 
model was computed as the negative sum of log probabilities over trials 
for all combinations of free parameters. We also computed the Akaike 
information criterion68—sum of ln(sum(residuals2))—as preferred in 
some previous work69. The results were consistent and the number of 
free parameters was equivalent; thus, we primarily report −LL in the 
manuscript. For direct comparison, we took the minimum of the −LL 
for each model (that is, its optimal parameterization) and compared 
these minima across all animals. To examine the ‘brittleness’ of the 
model fit, we compare the median −LL across the entire grid search 
parameter space for each model.

Estimating PEs from behavioural data. First, we assume that on av-
erage the number of anticipatory licks is an unbiased estimate of the 
underlying policy (the core assumption of the low-parameter models 
described above). The latency to collect reward can be converted into 
a performance cost using the same equation (2) described for ACTR. 
The PE was then computed as in equation (4). A smoothed baseline 
estimate was calculated by smoothing PE with a 3-order, 41-trial-wide 
Savitzky–Golay filter and the baseline subtracted PE calculated analo-
gous to equations (4) and (5).

Histology
Mice were killed by anaesthetic overdose (isoflurane, >3%) and perfused 
with ice-cold phosphate-buffered saline, followed by paraformalde-
hyde (4% wt/vol in phosphate-buffered saline). Brains were post-fixed 
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for 2 h at 4 °C and then rinsed in saline. Whole brains were then sec-
tioned (100 μm thickness) using a vibrating microtome (VT-1200, Leica 
Microsystems). Fibre tip positions were estimated by referencing stand-
ard mouse brain coordinates70.

Statistical analysis
Two-sample, unpaired comparisons were made using Wilcoxon’s 
rank sum test (MATLAB rank sum); paired comparisons using Wil-
coxon signed rank test (MATLAB signrank). Multiple comparisons 
with repeated measures were made using Friedman’s test (MATLAB 
friedman). Comparisons between groups across training were made 
using two-way ANOVA (MATLAB anova2). Correlations were quanti-
fied using Pearson’s correlation coefficient (MATLAB corr). Linear 
regression to estimate contribution of fibre position to variance in 
mDA reward signals was fitted using MATLAB fitlm. Polynomial regres-
sion used to fit objective surfaces were third order and (MATLAB fit). 
Errors are reported as s.e.m. Sample sizes (n) refer to biological, not 
technical, replicates. No statistical methods were used to predeter-
mine sample size. Data visualizations were created in MATLAB or 
GraphPad Prism.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The dataused to generate results supporting the findings of this 
study are available at https://janelia.figshare.com/account/collec-
tions/6369111 or https://doi.org/10.25378/janelia.c.6369111; the pri-
mary dataset is 10.25378/janelia.21816054.

Code availability
All code relating to simulating the ACTR model and for a reader to 
explore both described parameterizations and explore a number of 
implemented, but unused in this manuscript, features is available at 

https://github.com/dudmanj/RNN_learnDA. Specific line numbers 
are provided within the code for a subset of critical computations in 
the model.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of low dimensional policy learning and 
value learning model fits to behavioral learning. a) Reward collection 
latency (leftmost column) compared to normalized heat maps of preparatory 
measures of licking, body movement, whisking probability and pupil diameter 
(middle 4 columns), and reactive measures of nose motion, body movements, 
and whisking probability (right 3 columns, with mean first response following 
reward delivery indicated by black triangles) for standard trials in which a 0.5 s 
auditory cue (grey arrows at cue start) predicted 3 μL sweetened water reward 
(blue arrows), averaged in 10-trial bins across training. Each color-coded row 
corresponds to a separate example mouse, with the background color identifying 
the same mice in the low dimensional learning trajectories in Extended Data 
Fig. 1b, c. b) Abstract learning trajectories were described as exponential fits to 
the first principal. component of “preparatory” (left) and “reactive” (right) 
behavioral measurements. (example mice from panel A: red, yellow, grey; all 

other mice: thin black, total n = 9 mice). c) The relationship of inferred policy 
updates to reward collection performance visualized for each mouse as 
exponential fits to the first principal component of reactive and preparatory 
measurement variables (as shown in panel B), then plotted against the latency 
to collect reward (example mice from panel a: red, yellow, grey; all other mice: 
thin black, total n = 9 mice). d) Fits of value (blue) and policy (orange) learning 
models for each mouse across the space of possible parameterizations, 
measured as -log likelihood (smaller number is better fit) (n = 9 mice).  
e) Comparison of optimally parameterized policy and value models for each 
mouse, quantified by -log likelihood (left) or Aikake information criterion per 
trial (right). f) Comparison of median parameterized policy and value models 
for each mouse, quantified by -log likelihood (left) or Aikake information 
criterion per trial (right).
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Extended Data Fig. 2 | ACTR model details. a) top) Schematic of ACTR policy 
recurrent neural network (RNN) and licking output from example different 
network initialization (right). b) Thousands of randomized initial network 
configurations ranked according to their performance cost (Fig. 1h; cost is a 
combination of latency and a network variance cost, see methods for details). 
Displayed are the latency to collect reward (black), network sparsity (blue), 
coupling coefficient (red), leading eigenvalue (purple). This analysis reveals a 
few key aspects. First, a sustained policy that spans time from the detection of 
the cue through the delivery of water reward is necessary to minimize latency 
cost. Second, while optimal RNNs are relatively indifferent to some parameters 
(sparsity of connectivity) they tend to require a strong coupling coefficient 
which is known to determine the capacity of a RNN to develop sustained 
dynamics86, and thus optimal policies were observed uniquely in RNNs with 
large leading eigenvalues (i.e. long time constant dynamics87). These analyses 
indicate that there are realizable RNN configurations sufficient to produce an 
optimal policy, given an effective learning rule. c) Different ratios of sustained 
vs transient learning rates (inset color code) produced a range of trajectories 
similar to observed trajectories in individual mice (Fig. 1e). d) (top row) Licking 

behavior was modeled as a two state ({off,on}) plant that emitted 7 Hz lick bouts 
from the ‘on’ state. Forward transition rate (off→on) was determined by a policy 
π(t). Reverse transition rate (on→off) was a constant modulated by the presence 
of water. Bottom three rows illustrate example licking behavior produced by 
the plant for three different constant policies (red, purple, blue) before and 
after water reward delivery (vertical black line) for 100 repetitions of each 
policy. e) Learning quantified by a decrease in reward collection latency over 
training. As training progressed, a predictive cue led to faster reward collection 
(red) as compared to uncued probe trials (black) in both the ACTR model (top, 
trials 600–800, cued: 146 ± 21 ms, uncued: 205 ± 7 ms, two-tailed signed rank 
p = 0.01) and mouse data (bottom, cued: 176 ± 26 ms, uncued: 231 ± 23 ms, 
two-tailed signed rank p = 0.03). f, Cost surface (red = high, blue = low) overlaid 
with trajectories of individual initializations (white) as in Fig 1g, except having  
a constant learning rate and using the dopamine-like feedback unit to set the 
performance error (PE) instead of an adaptive learning rate (β), showing that 
the dopamine-like signal does not perform well as the PE in the ACTR learning 
rule. All error bars and bands represent +/− SEM around the mean.
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Extended Data Fig. 3 | Dopamine signals across learning. a) (left 3 columns) 
jRCaMP1b dopamine signals in the nucleus accumbens core (NAc, black, n = 9) 
and simultaneous recordings in the ventral tegmental area (VTA, purple, n = 3) 
and dorsal striatum (DS, green, n = 6), for cued reward trials in the trial bins 
indicated across training. (right) Reward or omission signals in NAc (top), VTA 
(middle), and DS (bottom) in trials 600–800, for cued (red), uncued (black), 
and cued but omitted (blue) trials. b) Mean signals from the data in panel (a) 
during the 1 s following cue delivery (left) and 2 s following reward delivery 
(right) across training for NAc (black, n = 9), VTA (purple, n = 3), and DS (green, 
n = 6). c) Example simultaneous recordings from NAc + VTA (top) and NAc + DS 
(bottom). d) Mean cross correlations for simultaneously measured NAc + VTA 
signals (top row, n = 3) and NAc + DS signals (bottom row, n = 6) in trials 1–100 
(left) and trials 700–800 (right) within trial periods (1 s before cue to 3 s after 

reward). e) Peak cross correlation coefficients between NAc + VTA (purple, 
n = 3) and NAc + DS (green, n = 6) signal pairs across training, within “trial 
periods” defined as the time between cue start and 3 s after reward delivery.  
f) Correlation of initial NAc–DA reward signals with final combined 
preparatory behaviors (see Methods) (Pearson’s r = −0.85, p = 0.004). g) No 
correlation of initial NAc–DA reward signals with final combined reactive 
behaviors (Pearson’s p = 0.25). h) Correlation of initial NAc–DA reward signals 
predicted from behavior measures in trials 700–800 (see Methods) to observed 
initial NAc–DA reward signals (Pearson’s r = 0.99, p < 0.0001). i) Reward 
collection latency for simulations with low (cyan) and high (magenta) initial 
reward-related sensory input. j) Preparatory cued licking for simulations with 
low (cyan) and high (magenta) initial reward-related sensory input. All error 
bars and bands represent +/− SEM around the mean.
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Extended Data Fig. 4 | Augmenting mesolimbic cue signals does not affect 
cued behavior. a) To test for a causal connection between the size of mesolimbic 
dopamine cue responses and cued behavior, in a new session after regular 
training was complete, we delivered large, uncalibrated VTA–DA stimulation  
on a random subset of cued reward trials (light green). Shown are NAc–DA 
responses (top) and licking (bottom) for this session. b) Quantification of cued 

preparatory licking during the delay period for unstimulated (black) vs 
stimulated (green) trials. c) Cued licking was correlated with the size of NAc–DA 
cue responses across animals (Pearson’s r = 0.78, p = 0.01), even though 
manipulations did not support a causal relationship. All error bands represent 
+/− SEM around the mean.
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Extended Data Fig. 8 | Relationship of NAc–DA signals and performance 
errors to the presence of preparatory licking. a) Trial types defined as “lick+” 
trials (purple) with at least one lick during the delay between cue and reward 
and “lick-” trials (green) with no delay period licking. b) Percent of total trials 
that are “lick+” (top) and reward collection latency (bottom), for best 4 (green) 
and worst 4 (purple) performing mice, as determined by their reward collection 
latency in trials 700–800. c) NAc–DA signals in the second half of training (trials 
400–800) lick- (green) and lick+ (purple) trials, for ACTR simulations (top) and 
worst (left) and best (right) top 4 performing mice in terms of reward collection 
latency in trials 700–800. d) The ratio of NAc–DA reward signals on lick- vs lick+ 
trials was correlated with the final reward collection latency (Pearson’s r = −0.71, 
p = 0.03). e) Enhancing the mDA-like adaptive learning rate signal at reward on 
either lick- (green) or lick+ (purple) trials (schematic at left) in the ACTR model 
biases future licking behavior in opposite directions from the stimulation 

contingency across training (right) for n = 9 initializations. In other words, 
enhancing mDA-like reward signals on trials with cued licking decreases cued 
licking in the future. f) The average change in performance error (ΔPE, the 
learning signal for preparatory learning in the ACTR model (Fig. 1i)) for each 
control mouse (n = 9) switched sign on lick+ or lick- trial types (two-tailed 
signed rank test p < 0.001). g) Average ΔPE on all stimulated trials in each 
mouse that received VTA–DA stimulation depending on whether they licked 
during the delay period preceding reward (“StimLick+”, n = 5), or whether they 
did not lick during the delay period (“StimLick-”, n = 6) (two-tailed signed rank 
p < 0.004 StimLick+ vs StimLick-). h) 3d learning trajectories as in Fig. 1e, 
comparing preparatory and reactive components of behavior to the latency  
to collect reward across training. All error bands represent +/− SEM around the 
mean. Box plots represent the median at their center bounded by the 25th and 
75th percentile of the data, with whiskers to each extreme.
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Extended Data Fig. 9 | Baseline licking across training in all animals.  
a) Licking behavior showed in extended time before and after reward delivery 
to illustrate baseline intertrial licking behavior across the indicated training 
trials, for control (black), stimLick- (green), and stimLick+ (purple) mice. Grey 
numbered blocks indicate analysis epochs for panel (b). b) (top) Quantification 
of baseline licking at analysis epoch 1 (indicated at right of panel (a)) across 
training. (bottom) Quantification of baseline licking at analysis epoch 2.  
c) Mean baseline licking rate (final 300 trials of training) for all the experimental 
groups shown in Fig 1–6. No stimulation controls (white, n = 9), stimLick- 
(green, n = 6), stimLick+ (dark purple, n = 5), stim+Lick+ (light purple, n = 4).  
d) Licking behavior over the 3 s preceding uncued trials at the end of training 

(trials 600–800) for the best 4 and worst 4 performing mice displayed an 
insignificant trend towards more baseline licking in bad learners. e) (left)  
No correlation between baseline licking and final latency to collect reward  
(a measure of learned performance) for all mice (Pearson’s p = 0.46, n = 20). 
(right) No correlation between baseline licking and final latency to collect 
reward (a measure of learned performance) for only control mice that received 
no exogenous dopamine manipulations during training (corresponding to data 
from Fig 1–2, Pearson’s p = 0.9, n = 9). f) No correlation between baseline licking 
and initial NAc–DA reward responses for control mice (Pearson’s p = 0.75). All 
error bands represent +/− SEM around the mean.
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Extended Data Fig. 10 | Logic Outline. A) Key points of the paper grouped by 
theme (left), with location in figures for primary supporting data (blue). B) In 
Reinforcement Learning, an agent learns iteratively from environmental 

feedback to improve a policy, which is a set of parameters (Θ) describing an 
action (a) that is performed given a state (s). In policy learning, the agent 
applies a learning rule.
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