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Abstract
Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical
activity alternate with an isoelectric state. This pattern is commonly seen in states of severely
reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia
and certain developmental disorders. Devising accurate, reliable ways to quantify burst
suppression is an important clinical and research problem. Although thresholding and
segmentation algorithms readily identify burst suppression periods, analysis algorithms
require long intervals of data to characterize burst suppression at a given time and provide no
framework for statistical inference. Approach. We introduce the concept of the burst
suppression probability (BSP) to define the brain’s instantaneous propensity of being in the
suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space
model in which the observation process is a binomial model and the state equation is a
Gaussian random walk. We estimate the model using an approximate expectation
maximization algorithm and illustrate its application in the analysis of rodent burst
suppression recordings under general anesthesia and a patient during induction of controlled
hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second
time scale, and make possible formal statistical comparisons of burst suppression at different
times. Significance. The state-space approach suggests a principled and informative way to
analyze burst suppression that can be used to monitor, and eventually to control, the brain
states of patients in the operating room and in the intensive care unit.

(Some figures may appear in colour only in the online journal)

1. Introduction

Burst suppression is an electroencephalogram (EEG) pattern
indicating a severe reduction in the brain’s neuronal activity
and metabolic rate [1]. Observed in profound general
anesthesia [2], coma [3], hypothermia [4], epilepsy due to
Ohtahara’s syndrome [5], and postasphyctic newborns [6],
burst suppression consists of periods of electrical activity

alternating with a flat line or isoelectric state termed a
suppression. Both the bursts and the suppression periods can
last from a few seconds to several minutes [7]. Figures 1(A)
and (C) show respectively a 5-min and a 1-min segment of
burst suppression induced by the anesthetic propofol.

Devising accurate, reliable methods to quantify burst
suppression is an important clinical and research problem.
Medical coma is often induced by administering an anesthetic
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Figure 1. A. 5-min of burst suppression recorded from a patient following a propofol bolus. The 5-microvolt threshold used for the detection
of the binary events is shown in red. B. The corresponding binary time-series where 1 represents a suppression and 0 represents a burst. C.
1-min segment taken from A. D. The binary time-series corresponding to C.

such as propofol for cerebral protection following a brain
injury or to arrest intractable epilepsy [4, 8]. The level of
burst suppression is continuously monitored as a marker of
the level of coma in order to balance the trade-offs between
the drug‘s therapeutic benefits and its side effects [9]. Induced
hypothermia is used for brain protection in patients recovering
from a cardiac arrest and in patients having certain types of
cardiac, brain and major vascular surgeries [10]. The ascent
into and the descent out of hypothermia can be tracked by
monitoring the change in temperature along with the change
in burst suppression [11]. Persistence of burst suppression
patterns in the EEG of patients in coma is commonly associated
with a poor prognosis [3]. EEG-based monitors used to
track the brain states of patients under general anesthesia
compute measures of burst suppression as part of their analysis
algorithms [12, 13].

In anesthesiology research, monitoring the level of burst
suppression has been proposed as a way of assessing cortical
reactivity to stimuli and hence for making inferences about
the sites and mechanisms of anesthetic drug actions [14].
The effectiveness of anesthetic arousal agents has been tested
by measuring their ability to induce emergence from burst
suppression [15, 16]. Finally, one way of characterizing the
potential utility of a new anesthetic drug is by measuring its
efficacy in maintaining a specified level of burst suppression
using a computer-controlled infusion with feedback [17, 18].

Quantification of burst suppression begins by thresholding
and segmenting the EEG [18–23]. Thresholding sets a voltage
level to separate burst and suppression events. If the EEG is
less than the threshold in the interval, the event is a suppression
and is assigned a value of 1 whereas, if the EEG is greater than
the threshold in the interval then the event is a burst and is

assigned a value of 0. Figures 1(B) and (D) show the binary
time-series for a threshold of 5 microvolts and for the EEG
signals in figures 1(A) and (C). Using the binary time-series,
burst suppression is commonly characterized by computing
the burst suppression ratio (BSR); the fraction of a given time
interval that the EEG is suppressed [24]. The BSR is a number
ranging from 0, meaning no suppression to 1, meaning an
isoelectric EEG.

The BSR is positively correlated with reduction in
cerebral metabolic rate (CMR) [25]. During general
anesthesia and during induced hypothermia when this fraction
increases to one, the CMR decreases in a dose-dependent
manner until it plateaus [9, 26–28]. Other approaches
to characterizing burst suppression have included entropy
measures [29, 30] and artificial neural networks and support
vector machines [31].

Although the importance of quantitatively analyzing burst
suppression is broadly appreciated, there are key shortcomings
with current approaches. The binary time-series can be
computed on intervals as short as 100 msec, yet BSR
estimation requires several consecutive seconds or minutes
of binary events [15, 18]. This assumes that the brain state
remains constant during these long estimation intervals, a
condition which does not hold during the transitions into or out
of general anesthesia or hypothermia. An important objective
of quantitative burst suppression analyses is to make formal
statistical comparisons at different time points. The statistical
properties of the BSR estimated by averaging the binary events
over long time intervals have not been described. Hence, it is
not clear how best to use current BSR estimates in formal
statistical analyses of burst suppression.

We present a new approach to conducting dynamic
analyses of burst suppression based on the state-space
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framework for point processes and binary observations
developed in [32–34]. The observation model is a binomial
process and the temporal evolution of the brain state of
burst suppression is defined by a state equation represented
as a Gaussian random walk. By making a logistic
transformation on the state, we introduce the concept of
the burst suppression probability (BSP) to define the brain’s
instantaneous probability of being in the suppressed state.
We estimate the model parameters using an approximate EM
algorithm and illustrate its application in a rodent study of
the effects of the cholimimetic drug physostigmine on burst
suppression, and in a study of burst suppression induced in a
patient by controlled hypothermia. Our approach obviates the
need to average binary events over long intervals and allows
formal statistical comparisons of burst suppression at different
time points.

2. Theory

2.1. Model definition

To formulate our state-space model, we follow the state-space
paradigm for analyzing point processes and binary time-series
in [32–34]. We assume that the EEG recordings segmented
into binary events are collected in the observation interval
(0, T ] and that our state-space model is defined on a discrete
set of lattice points within that interval. To define the lattice,
we choose I large and divide (0, T ] into I subintervals of equal
width � = T I−1. The state-space model is evaluated at i� for
i = 1...I.

A state-space model is characterized by its state
and observation equations. The state equation defines the
unobservable state process whose evolution we wish to track
over time. In our case, the state represents the brain’s state
of burst suppression. We define our state to be positively
related to the probability of suppression. That is, as the state
increases the probability of suppression increases and as the
state decreases the probability of suppression decreases. The
observation equation describes how the observations relate to
the unobservable state process. Our objective is to estimate the
brain’s burst suppression state, its instantaneous probability of
being suppressed and the associated confidence intervals.

We assume that in each interval � is divided into n
subintervals of width δ and so that � = nδ and in each
subinterval there can be at most one suppression event or one
burst event. Let bi be the number of suppression events in
i�. We assume that the observation model is described by the
binomial probability mass function as

f (bi|xi, n) =
(

n

bi

)
pbi (1 − pi)

n−bi , (1)

where pi, the BSP, is

pi = exp(xi)

1 + exp(xi)
, (2)

where xi is the brain’s burst suppression state at time i�.
In other words, pi is the instantaneous probability of being
suppressed. The logistic function (2) links the brain’s burst
suppression state to the probability of a suppression event and

ensures that pi remains between 0 and 1 as xi ranges across all
real numbers.

We define the state equation as the random walk

xi = xi−1 + εi, (3)

where the εi are independent, Gaussian random variables with
mean 0 and variance σ 2

ε . This definition of the state provides a
stochastic continuity constraint which ensures that the states,
and hence that the BSPs that are close in time are close in
value. The parameter σ 2

ε governs how rapidly the BSP can
change; the larger (smaller) the value of σ 2

ε the more rapidly
(slowly) the state and the BSP can change.

2.2. Model estimation

To present our estimation algorithm we take b =
(b1, b2, ..., bI ) and x = (x1, x2, ..., xI ). Based on the random
walk defined in (3), the joint probability density of the state
process is

f
(
x|σ 2

ε , x0
) = (

2πσ 2
ε

) −I
2 exp

( −1

2σ 2
ε

�I
i=1(xi − xi−1)

2

)
, (4)

given the initial state x0. The joint probability mass function
of the observed suppression events given the states is

f (b|x, n) = �I
i=1

(
n

bi

)
pbi (1 − pi)

n−bi . (5)

Our objective is to estimate using maximum likelihood
(ML) the state process x and the parameters σ 2

ε and x0, where
we treat x0 as a parameter. Once we obtain these estimates we
can readily compute the BSP with its confidence intervals.

To compute the ML estimates of the parameters we use
an approximate expectation maximization (EM) algorithm
for point processes and binary time-series [32–34]. The EM
algorithm is a well established method for simultaneously
estimating model parameters and an unobservable state
process by iteratively maximizing the expectation of the
complete data log likelihood [35]. The complete data
likelihood is

f
(
b, x|n, σ 2

ε , x0
) = f (b|x, n) f

(
x|σ 2

ε , x0
)
. (6)

The EM algorithm is

Expectation step. At iteration 	 + 1 we compute in the
expectation step the expected value of the complete data log
likelihood given the data b and the estimates σ 2(	)

ε and x(	)

0 of
the parameters from iteration 	:

Q
(
σ 2(	+1)

ε , x(	+1)

0

∣∣σ 2(	)
ε , x(	)

0

)
= E

[
log

(
f
(
b, x|n, σ 2

ε , x0
))|b, σ 2(	)

ε , x(	)

0

]
= E

[
�I

i=1log
n!

bi!(n − bi)!

+ bixi − ni log(1 + exi )‖b, σ 2(	)
ε , x(	)

0

]

+ E

[
�I

i=1 − 1

2σ
2(	)
ε

(xi − xi−1)
2

+ I + 1

2
log(2π) − I + 1

2
log

(
σ 2(	)

ε

)

+ x2(	)

0

2σ
2(	)
ε

‖b, σ 2(	)
ε , x(	)

0

]
. (7)
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We see upon expanding the right side of (7) that we need
to estimate three quantities for i = 1, ..., I. The expectations
of the state variables conditioned on the data up to time I are

xi|I ≡ E
[
xi

∥∥b, σ 2(	)
ε , x(	)

0

]
, (8)

and the covariances of the state variables conditioned on the
data up to time I are

Wi,i|I ≡ E
[
x2

i

∥∥b, σ 2(	)
ε , x(	)

0

]
, (9)

and

Wi,i−1|I ≡ E
[
xixi−1

∥∥b, σ 2(	)
ε , x(	)

0

]
. (10)

To compute these quantities efficiently, we divide the
expectation step into three parts. First we compute the
estimates of xi|i and σ 2

i|i using a binary filter algorithm.
Second, we use a fixed interval smoothing (FIS) algorithm to
compute xi|I and σ 2

i|I . Finally, we use the state-space covariance
algorithm to compute the covariances Wi|I and Wi,i−1|I .

Binary filter algorithm. Given the parameter estimates from
iteration 	, this step estimates xi|i and σ 2

i|i, the state and the
variance at i, given the data from the start of the observation
interval up through time i [32, 36].

The one step prediction mean and variance are given by

xi|i−1 = xi−1|i−1 (11)

σ 2
i|i−1 = σ 2

i−1|i−1 + σ 2(	)
ε . (12)

The posterior mode and variance are given by

xi|i = xi|i−1 + σ 2
i|i−1(bi − npi|i) (13)

σ 2
i|i = [(

σ 2
i|i−1

)−1 + (npi|i(1 − pi|i))−1]−1
. (14)

The initial conditions are x0|0 = x(	)

0 , σ 2
0|0 = σ 2(	)

ε and pi|i is (2)
evaluated at xi|i. This filter is nonlinear because xi|i appears on
both sides of (13). We can compute it using Newton’s method
[32, 36] However, when � is small, adjacent states are close,
and we can replace the term pi|i in (13) with pi−1|i−1.

Fixed interval smoothing algorithm. Using the estimates
from the binary filter, a FIS algorithm [32, 33] gives the
state and variance estimates xi|I and σ 2

ı|I respectively for
i = I − 1, ..., 1. They are the estimates at time i conditioned
on all the data up through time I. The final state estimate is
thus a Gaussian variable with mean xi|I and variance σ 2

i|I . The
FIS is

xi|I = xi|i + Ai(xi+1|I − xi+1|i) (15)

Ai = σ 2
i|i
(
σ 2

i+1|i
)−1

(16)

σ 2
i|I = σ 2

i|i + A2
i

(
σ 2

i+1|I − σ 2
i+1|i

)
. (17)

The initial conditions are xI|I and σ 2
I|I , computed at the final

step of the binary filter algorithm.

State-space covariance algorithm. Finally, using the state-
space covariance algorithm [37] we compute σi, j|I :

σi, j|I = Aiσi+1, j|I, (18)

where 1 � i � j � I. The covariances we require in (9) and
(10) are thus given by

Wi,i−1|I = σi,i−1|I + xi|Ixi−1|I, (19)

and

Wi,i|I = σ 2
i|I + x2

i|I . (20)

Maximization step. To carry out the maximization step at
iteration 	 + 1 we let τ = 1

σ 2
ε

and assume that τ has a gamma
prior density defined as

f (τ |α, β) = βα


(α)
(τ )α−1 exp(−βτ ), (21)

for α > 1 and β > 0. We maximize the expected value of
the complete data log likelihood with respect to τ using the
gamma prior density for τ in (21). The expected value of
the complete data log likelihood serves as the likelihood in the
expression for the posterior. The log posterior density of τ is
proportional to

log( f (τ |α, β)) + E
[
log[ f (b, x|n, τ, x0)]‖b, τ (	), x(	)

0

]
. (22)

We chose the gamma distribution for the prior because it
is flexible and because it is the conjugate distribution for τ in
the Gaussian likelihood [32]. This latter property allows us to
compute the update of τ in closed form in the M-step (23).

We maximize (22) with respect to τ and find

τ (	+1) = [I + 2α − 2]
[
2
(
�I

i=2Wi|I − �I
i=2Wi−1,i|I

)
+ 3

2W1|I − WI|I + 2β
]−1

. (23)

We maximize (22) with respect to x0 and find

x(	+1)

0 = 1
2 x1|I . (24)

The algorithm iterates between the expectation and
maximization steps until convergence. The convergence
criteria we use are the same as those developed by [35]. The
ML estimates of τ , or equivalently σ 2

ε , and x0 are respectively
τ (L) = σ−2(L)

ε and x(L)

0 , where L is the last iteration of the
algorithm.

When (11–14) and (15–17) are applied to data to compute
pi|i and pi|I with x0 and σ 2

ε evaluated at their ML estimates,
we term them respectively the BSP filter and smoothing
algorithms.

2.3. The probability density of the BSP and confidence
intervals

The FIS estimate, xi|I together with (2) gives us the probability
of a suppression at time i for i = 1, . . . , I. Through a change of
variable, we can then compute the probability density function
for the BSP at time i as

f
(
p|xi|I, σ 2

i|I
) = f

(
x|xi|I, σ 2

i|I
) ∣∣∣∣ dx

dp

∣∣∣∣ = [(
2πσ 2

i|I
) 1

2 p(1 − p)
]−1

× exp

(
− 1

2σ 2
i|I

(log[p(1 − p)−1] − xi|I )2

)
. (25)
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The 95% confidence intervals are computed from the
cumulative density of (25) by identifying its 2.5th and 97.5th
percentiles.

2.4. Comparison of BSPs at different times

Given the ML estimates of x0 and σ 2
ε , it follows that we

can compute with the binary filter, the FIS algorithm and the
state-space covariance algorithm the Gaussian approximation
to the joint posterior density of the states x. This provides
an empirical Bayes estimate of the joint posterior density
of the burst suppression states [35]. Because the logistic
transformation (2) that relates the state xi to BSP pi is
monotonic, we can compute the joint posterior density of p
from the joint posterior density of x. Therefore, we can make
formal inferences comparing the BSP at any time i, with the
BSP at any time j by computing an empirical Bayes estimate
of the posterior probability that p j > pi, which is equivalent
to the posterior probability that x j > xi. We do so using a
Monte Carlo approach [34]. Using the covariance algorithm,
for times i and j such that 1 � i < j the covariance between
states at time i and time j is

Wi, j|I =
j−1∏
k=i

AkWj, j|I . (26)

We can then draw M samples from the Gaussian distribution
with mean [

xi|I
x j|I

]
, (27)

and covariance matrix[
Wi,i|I Wi, j|I
Wj,i|I Wj, j|I

]
, (28)

and count the number G of instances in which x j|I > xi|I . The
estimate of the probability of interest is

Pr(p j|I > pi|I ) = Pr(x j|I > xi|I ) ≈ G

M
. (29)

In our analysis we chose M=10 000.

3. Data analysis

3.1. Detection of the binary events

We applied a two-step procedure consisting of bandpass
filtering followed by thresholding to convert the EEG
recordings into time-series of binary events. For all of the
experiments the EEG signals were bandpass filtered between
5 and 30 Hz. For the rat experiment the filtered signal was
thresholded at 50 microvolts and segmented at 1 Hz (δ = 1s),
whereas for the human experiment the threshold was set at 5
microvolts and the segmentation rate was again 1 Hz (δ = 1s).
If the EEG exceeded the threshold in �, then the event was
classified as a burst, or a 0, whereas if the EEG was less than the
threshold in � then the event was classified as a suppression,
or a 1.

3.2. The binomial observation models

For both the rat and human experiments, we analyzed the data
in (� = 1) s intervals, making the observation model for both
the rat and the human experiments the binomial with n = 1. For
filtering and smoothing binary processes the update interval
can be chosen arbitrarily small as is appropriate for the problem
being studied as long as the state and observation processes
are defined in continuous time. We chose (� = 1) s because
in the operating room and in the intensive care unit using
1 s updates to track burst suppression balances the trade-off
between unnecessarily frequent updates and missing important
changes in the process due to infrequent sampling. This choice
of � also illustrates that in the state-space framework, unlike
with the BSR, large intervals are not needed to produce smooth
BSP estimates.

3.3. Choice of the prior density for τ

We used an empirical Bayes’ approach to selecting the prior
for τ by using the location of the likelihood to help guide
the choice of the prior [35]. We first estimated τ without
a prior (effectively an uninformative prior) to gain insight
into its relative size and scale. Given the initial estimate, we
then constructed the following prior for our analyses: for the
physostigmine analysis, we chose α = 105 and β = 2 and for
the hypothermia analysis we chose α = 3 × 105 and β = 2.

3.4. The BSR smoothing and filter algorithms

Based on previous reports using the BSR [17, 18] we applied
4 different types of symmetric and one-sided BSR filters for
comparison with our BSP algorithms making the observation
model for both the rat and the human experiments the binomial
with n = 1. The symmetric BSR filters are: 15-s symmetric filter
with no overlap; 15-s symmetric filter with 14-s overlap; 60-s
symmetric filter with no overlap; and 60-s symmetric filter with
59-s overlap. We also used the same 15-s and 60-s bandwidths
with the same degree of overlap to construct one-sided BSR
filters. We define BSR symmetric and one-sided filters at time
i as

BSR15,symmetric
i =

7∑
j=−7

bi− j

15n
, BSRone-sided

i =
14∑
j=0

bi− j

15n
(30)

BSR60,symmetric
i =

30∑
j=−29

bi− j

60n
, BSR60,one-sided

i =
59∑
j=0

bi− j

60n
.

(31)

We used the symmetric BSR filters to compare with our
BSP smoothing algorithm in the analysis of the physostigmine
experiment and we used the one-sided BSR filters to compare
with our BSP filter algorithm in the analysis of the hypothermia
experiment.

4. Results

We illustrate the application of our BSP algorithms through
comparisons with the BSR in two analyses: a rat in

5
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(A)

(B)

(C)

(D)

Figure 2. A. The EEG of an isoflurane anesthetized rat administered physostigmine to assess its arousal effects. At minute 10 (red vertical
arrow) normal saline is injected. At approximately minute 16 (red star), physostigmine is injected and the EEG promptly switches from a
burst suppression pattern to a dominant delta oscillations. B. The binary time-series associated with A. C. The BSP smoothing algorithm
estimate (black curve), the BSR estimate computed using 15-s intervals with no overlap (green curve), and the BSR estimate with 14-s
overlap (red curve). D. The BSP smoothing algorithm estimate (black curve), the BSR estimate computed using 60-s intervals with no
overlap (green curve), and the BSR estimate with 59-s overlap (red curve).

general anesthesia-induced burst suppression administered
physostigmine to elicit arousal; and a patient undergoing
controlled hypothermia for cerebral protection during total
circulatory arrest.

4.1. Burst suppression and the arousal effects of
physostigmine

Physostigmine is a cholimimetic drug that has been used in
anesthesiology research to induce emergence from general
anesthesia [38] and in anesthesiology practice to treat
emergence delirium [39], a confusional state that some
patients, frequently children, enter on emergence from general
anesthesia. For both induction of emergence and treatment
of emergence delirium, the effect of physostigmine is
attributed to an increase in cortical levels of the excitatory
neurotransmitter acetylcholine [39]. Because administration

of physostigmine induces cholinergically-mediated arousal
the administration of physostigmine to an animal maintained
in burst suppression should induce at least a decrease in
the level of burst suppression. Therefore, in this experiment,
to quantify the time course of the effect of physostigmine
on burst suppression we used the BSP smoothing algorithm
(15–17) and the BSR symmetric filters: 15-s symmetric filter
with no overlap (figure 2(C), green curve); 15-s symmetric
filter with 14-s of overlap (figure 2(C), red curve); 60-s
symmetric filter with no overlap (figure 2(D), green curve);
and 60-s symmetric filter with 59-s of overlap (figure 2(D),
red curve).

This study was approved by the Massachusetts General
Hospital Subcommittee on Research Animal Care. A rat
implanted with extradural EEG electrodes was anesthetized
with 2% isoflurane to induce burst suppression. This
concentration was maintained for 70-min. We analyzed the

6
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(A)

(B)

(C)

Figure 3. A. BSP smoothing algorithm estimate (black curve) and its associated 95% confidence (Bayesian credibility) intervals (red
curves) for minutes 2–5 in figure 2(C). B. BSR estimate computed with a 60-s interval and 59-s overlap (black curve) and its approximate
95% confidence interval based on the Gaussian approximation to the binomial (red curves) for minutes 2–5 in figure 2(C). C. Point-by-point
comparison matrix evaluating the Pr(pj > pi) where pj, the y-axis corresponds to the BSP at time j and pi the x-axis, corresponds to the
BSP at time for i, for 1 < j � i. Red (black) means that at the given x, y pair Pr(pj > pi) > 0.975 (Pr(pj > pi) < 0.025). Gray means that
0.025 � Pr(pj > pi) � 0.975. The coordinate 20, 15 is red because p15 is substantially greater than p20. The coordinate 25, 20 is black
because p25 and p20 are both near 0.

EEG recorded during the last 40-min. An intravenous injection
of saline was administered as a control stimulus at minute 10
(figure 2(A), vertical arrow). At minute 16, physostigmine was
administered intravenously (figure 2(A), star).

Burst suppression was readily visible in the raw EEG
(figure 2(A)) and in the binary time-series (figure 2(B)). As
expected, injection of normal saline at minute 10 (figure 2(A),
red arrow) had no effect on the raw EEG or on the binary
time-series. In contrast, the effect of injecting physostigmine
at minute 16 (figure 2(A), red star) was clearly evident in both
series. To quantify the structure in the EEG data, we fit the BSP
model to the binary series. The model fitting required 63-s.
From both the BSR and the BSP estimates (figures 2(C) and
(D)) it is easy to see that both the BSR and BSP (figures 2(C)
and (D)) are round 0.5 with the rat receiving 2% isoflurane at
the start of the experiment and that it returned to approximately
this value as the effect of the physostigmine subsided.

Following the physostigmine injection at minute 16, the
BSP (figure 2(D)) decreased to zero and remained at zero until
minute 24. It then returned to around 0.5 at minute 31 where
it stayed for the balance of the experiment. The BSP produced
smooth time-series estimates of the instantaneous probabilities
of burst suppression with confidence intervals (figure 3(A)).
Although the inspired concentration of isoflurane was
maintained at 2%, the BSP fluctuated between 0.4 and 0.6
suggesting that the pharmacokinetic state defined by a fixed
inspired concentration does not agree necessarily with the
neurophysiological state of the brain.

The BSR computed from the 15-s windows without
(figure 2(C), green) and with (figure 2(C), red) 14-s overlap
showed much more variability than the BSP. The overlapping
filter estimates added high frequency noise to the BSR
smoothing procedure. The non-overlapping BSR estimate is a
sub-sample of the overlap BSR estimate so as expected, it was
less noisy and the two estimates agreed every 15-s. In contrast,
the BSR estimate computed from the 60-s windows without
overlap (figure 2(D), green) and with (figure 2(C), red) 59-s
overlap showed much less variability and agreed more closely
with the time course of the BSP. The non-overlapping 60-s
smoother oversmoothed the data as features that are readily
apparent in the overlapping smoother and the BSP, such as the
fluctuations between minute 26 and minute 29 and between
minute 31 and minute 36, were lost with the non-overlapping
smoother (figure 2(D)). The BSR estimated from the 15-s
windows suggested that during the experiment with a constant
inspired concentration of isoflurane, the probability of burst
suppression fluctuated between 0.15 and 0.95, whereas the
degree of fluctuation estimated by the 60-s window BSR
estimates agreed more closely with that computed from the
BSP.

Although the BSP stayed around 0.5 before and after the
physostigmine injection, it shows fluctuations between 0.4 and
0.6 (figures 2(C) and 3(A)). For each BSP estimate we can
compute approximate 95% confidence intervals based on (25).
The benefit of the 95% confidence intervals is that they give a
measure of the uncertainty in the BSP estimate and they allow
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us to infer whether the BSP at two pre-selected times, say at
minute 2.5, where the BSP is 0.55, and at minute 4.5, where
the BSP is 0.64 differ (figure 3(A)). In this case, the estimates
at these two points did differ significantly as suggested by
the fact that the respective 95% confidence intervals did not
overlap. This is verified by the fact that the 95% confidence
interval for the difference (0.09 ± 0.04 = [0.05, 0.13]) does
not include zero.

The BSR estimates at minute 2.5 and minute 4.5 are
0.49 and 0.60, respectively. For comparison, we computed,
using the Gaussian approximation to the binomial [31], 95%
confidence intervals based on the BSR estimates (figure 3(B)).
These intervals are narrower than the ones derived from the
BSP. We also computed the 95% confidence interval for the
difference between the two BSR estimates at minute 2.5 and
4.5 (0.11 ± 0.008 = [0.082, 0.098]) which did not include
zero and was narrower than the 95% confidence interval
for the difference based on the BSP. The BSR confidence
interval underestimates the uncertainty in the analysis because
it assumes that the observations are independent, whereas the
BSP algorithm models the dependence in the binary time-
series through the state-space model.

Using our methods to make statistical inferences about
the effect of physostigmine on burst suppression, not only
at pre-selected time points but across the entire experiment,
is an important feature of our framework. Our BSP algorithm
estimates the joint distribution of the state process thus, we can
evaluate the empirical Bayes, or equivalently ML, estimate of
Pr(x j > xi) = 0.975 for any 0 � i < j � I. This is equivalent
to the probability that the BSP at time j is greater than the BSP
at time i because the transformation between the state variable
x j and the BSP p j is monotonic (2). We can therefore make
formal comparisons among the BSPs and state when any BSP
value differs from another.

These I(I − 1)/2 comparisons are easily represented in
a lower triangular matrix in which every time point along
the horizontal axis is compared to every preceding time point
(figure 3(C)). A red entry corresponds to Pr(p j > pi) > 0.975,
a black entry corresponds to Pr(pj > pi) < 0.025 and a gray
entry corresponds to 0.025 � Pr(p j > pi) � 0.975 where i is
the index across the horizontal axis and j is the index across
the vertical axis.

The change in the BSP following the physostigmine
injection was dramatic, and could be easily seen in the raw
data (figure 2(A)). However, the point-by-point comparison
matrix confirms that following injection of physostigmine at
minute 16 until about minute 26 (figure 3(C), red area, minutes
16–26, x-axis) the BSP was significantly smaller than at the
time points prior to the injection. The coordinate 25, 20 in
figure 3(C) is black because P25 and P20 are both close to 0.
The gray patterns pre- and post-saline injection (figure 3(C),
minute 10, x-axis) are similar suggesting, as expected, that
saline had no effect. These results show that our BSP state-
space model provides a principled statistical approach to
measuring quantitatively the effect of physostigmine on BSP.
These analyses are not possible with the BSR as these
algorithms do not consider the joint distribution of their
estimates across time.

4.2. Burst suppression and hypothermia

As stated in the Introduction, burst suppression can be
produced by states of profound general anesthesia and
hypothermia. Hypothermia is commonly induced in patients
having cardiac and major vascular surgery for cerebral
protection [9]. To illustrate the relevance of our algorithms
for real-time monitoring we analyzed the EEG recordings of a
patient under general anesthesia who underwent controlled
hypothermia as part of total circulatory arrest for thoracic
aortic aneurysm repair.

This study was approved by the Massachusetts General
Hospital Human Research Committee. Written informed
consent was not required as the EEG data are standard
measurements recorded as part of standard anesthesia care
in our institution. We fit the state-space model to the patient’s
binary time-series derived from the scalp EEG recorded from
a Sedline (Masimo, Irvine, CA) monitor with its standard
six-electrode montage during the transition into hypothermia
(figure 4(A)). The entire data set consisted of 208-min of
EEG recordings. We analyzed the patient’s 45-min transition
into the isoelectric state (figure 4(A)) using the BSP filter
(figures 4(C) and (D), black curve). The patient was in a
standard state of general anesthesia appropriate for surgery
from minute 0 until minute 8. As part of the procedure to
induce total circulatory arrest, hypothermia was initiated at
minute 8 to cool the patient to 19 ◦C. During approximately the
next 25 min, the EEG evolved from that observed in a standard
surgical state of general anesthesia through burst suppression
(figure 4(A), minutes 8–37). Between minutes 37–45, the EEG
was isoelectric. These transitions observed in the raw EEG
were also evident in the binary time-series (figure 4(B)).

To emulate real-time analysis, we analyzed these data
with the BSP filter algorithm (11–14) (figures 4(C) and
(D), black curve) and with 4 one-sided BSR filters: 15-s
one-sided filter with no overlap (figure 4(C), green curve);
15-s one-sided filter with 14-s overlap (figure 4(C), red
curve); 60-s one-sided filter with no overlap (figure 4(D),
green curve); and 60-s one-sided filter with 59-s overlap
(figure 4(D), red curve). We fit the BSP model to the binary
observations in 64-s. The BSP filter (figures 4(C) and (D),
black curve) showed quantitatively that as the temperature
dropped, the EEG transitioned gradually into a deeper state
of burst suppression. Between minutes 10 and 15, the BSP
increased almost monotonically from 0 to approximately 0.8,
indicating that the patient rapidly reached a deep level of
burst suppression. The remaining transition between minutes
15 and 37 to an isoelectric state occurred with a series of
what resemble logarithmic increases with rapid decreases that
became progressively smaller. The dynamics in the time course
of the BSP agreed closely with the patterns in the raw EEG
(figure 4(A)) and the binary time-series (figure 4(B)).

Both 15-s BSR filters oscillated almost between 0 and
1 continually during the transition into the isoelectric state
(figure 4(C)), giving the impression that the patient’s brain’s
electrical activity moved back and forth across the entire
dynamic range of burst suppression. The 60-s BSR filters
agreed closely with the BSP between minute 10 and minute
14 (figure 4(D)). Between minute 14 and minute 35, these
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(A)

(B)

(C)

(D)

Figure 4. A. The EEG recorded in a patient undergoing controlled hypothermia. B. The binary time-series associated with A. C. The BSP
filter estimate (black curve), the one-sided BSR estimate computed using 15-s intervals with no overlap (green curve), and the one-sided,
15-s BSR estimate with 14-s overlap (red curve). D. The BSP filter estimate (black curve), the one-sided BSR estimate computed using 60-s
intervals with no overlap (green curve), and the one-sided, 60-s BSR estimate with 59-s overlap (red curve).

BSR filters showed an oscillatory pattern that resembled
the BSP but with wider excursions. As in the previous
example, the excursions of the overlapping 60-s BSR filter
were greater than those of the non-overlapping 60-s filter. The
overlapping filter (figure 4(D), red curve) estimated that the
patient was intermittently in an isoelectric state (i.e. BSP =
1) for 15–30 s from minute 17 on. The non-overlapping filter
estimated that the patient was in an isoelectric state between
minutes 16 and 21. Following this point, this filter tracked
the BSP. The 60-s BSR filter estimates agreed with the BSP
estimates more closely than the 15-s BSR filters. However,
the BSP filter provided the more informative characterization
of the dynamics of the patient’s burst suppression during the
transition into an isoelectric state induced by hypothermia.

Our analysis demonstrates that given estimates of the
state-space model parameters, the BSP filter can be used
in real-time to track burst suppression dynamics with a 1-s
resolution.

5. Discussion

Burst suppression is a state of profound brain inactivation
that appears in several drug-induced and pathological
conditions. We have formulated the problem of analyzing
burst suppression as a dynamic signal processing question
and presented a state-space model to characterize its temporal
evolution. The observation model is a binomial process (1)
and the state equation is a Gaussian random walk model (3).
We introduced the concept of the BSP (2) as a principled
way to define the instantaneous probability of the EEG being
suppressed.

We estimated the state and model parameters by
modifying the approximate EM algorithm for state-space
estimation for binary and point processes developed in [32]
to include a gamma prior distribution on the inverse of the
state variance (21–22). Our approach allows us to estimate
the BSP on a second-to-second time scale and to make
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formal statistical comparisons of burst suppression activity at
different time points by computing confidence intervals and/or
empirical Bayes posterior probabilities. We illustrated our new
BSP algorithms in comparison to the BSR algorithms in one
experimental and one clinical application.

Our state-space model approach offers several advantages
over current methods for analyzing burst suppression. First,
the state-space model provides a clear definition of the
BSP as the instantaneous probability of being suppressed
(2). Second, the BSR does not have a principled method
for selecting the bandwidth and degree of overlap for its
filters. We used 15-s and 60-s windows to compute the
BSR because these non-overlapping filters had been used in
previous reports [15, 18]. In addition, we computed the BSR
estimates with overlap to provide BSR updates that matched
the 1-s updates we computed from our BSP algorithms. We
further constructed both symmetric and one-sided versions
of both BSR algorithms to compare directly with our BSP
smoothing and filter algorithms respectively. Although BSR
estimates computed in 4-s intervals have also been reported
[24], we did not show analyses with those estimates because
they did not differ appreciably from the binary time-series. As
we demonstrated, it is possible to compute smoother (rougher)
estimates of the BSR by taking longer (shorter) computation
windows and/or by not allowing (allowing) adjacent windows
to overlap. A bandwidth selection procedure may offer one
solution to guide these decisions [40].

Third, our state-space framework addresses these issues
by using the state-model to impose a temporal continuity
constraint on the relation of the BSP values at nearby time
points. The state-space variance σ 2

ε governs the degree of
smoothing in the BSP estimates. Larger (smaller) values of
σ 2

ε allow for less (more) smoothness in the BSP time course.
Placing a prior distribution on σ 2

ε places a constraint on the
degree of smoothness that can be imposed by this parameter.

Although our BSP algorithm uses an empirical Bayes’
procedure to choose σ 2

ε , the algorithm’s local prediction-and-
correction scheme is another important feature that helps
explain its good performance. Equation (13) shows that the
update xi|i is computed based on the previous update xi−1|i−1

so that when the update interval is small, xi−1|i−1 gives a good
guess of where the next state estimate is likely to be. This is the
algorithm’s prediction term. The binomial innovations term,
bi − npi|i, is the difference between the number of suppression
events that is observed and the number that would be expected
in the current observation interval based on the current estimate
of pi|i. This term is bounded between −n and n. The left
extreme occurs if the BSP is close to one and no suppression is
observed, whereas the right extreme occurs if the BSP is close
to 0 and n suppressions are observed. These rare events provide
the maximum possible innovation or local correction to the
new state estimate. The closer (more distant) the observed
number of suppression events is from the prediction, the less
(greater) the correction that is made to xi−1|i−1 to compute xi|i.

The term σ 2
i|i−1, which is the gain in the BSP filter, governs

how much the innovation is weighted in computing the new
update. Because σ 2

i|i−1 is the one-step prediction variance, the
greater (less) this variance is, the greater (less) the innovation

is weighted. Under our Gaussian approximation to the state,
the FIS algorithm (15–17) provides an approximately optimal
strategy for computing from the filter estimates state estimates
that depend on all of the binary observations [32]. These
local adaptive features of the BSP algorithms, which are
characteristic of Kalman filter-like algorithms [41], are another
reason that these BSP algorithms could be expected to perform
better than the BSR methods that use only elementary filtering
strategies. We have previously demonstrated that our binary
smoothing algorithm performs better than ad hoc smoothing
methods [33], and as well as or better than more elaborate
smoothing algorithms that have an automatic bandwidth
selection criterion [42].

Fourth, a significant benefit of our framework is the ability
to use the model to make statistical inferences about the
character of burst suppression being studied. This is especially
important in studies such as the rat example in which key
questions are measuring the second-to-second arousal effect
of physostigmine on burst suppression and comparing the level
of burst suppression before and after drug administration. Our
state-space modeling framework provides an empirical Bayes’
estimate of the joint posterior distribution of the BSP estimates
across time. Using Monte Carlo methods we can easily
compute confidence statements (figure 3(A)) and posterior
probabilities (figure 3(C)) for any functions of interest. For
example, if in the physostigmine experiment we wanted to
compare BSP in a pre-treatment interval with the BSP in a
post-treatment interval, we can use the Monte Carlo algorithm
to make pairwise comparisons of points chosen at random from
the two intervals. The posterior probability that the BSP on the
pre-treatment interval is greater than the BSP on the post-
treatment interval is the fraction on the pairwise comparisons
in which the pre-treatment point exceeded the post-treatment
point. Because our inferences are based on an estimate of the
joint posterior distribution of the state variables, we obviate
the problems of multiple comparisons that are common to
hypothesis-testing approaches in multivariate analyses.

We demonstrated how local 95% confidence intervals
can be computed from the BSR estimates using the well-
known Gaussian approximation to the binomial [32]. Such
intervals have not been previously reported. Because these
confidence intervals, unlike those computed from our BSP
algorithm, are local they do not use all of the data. Moreover,
because they assume that the observations are independent
the BSR confidence intervals understate the uncertainty in
the BSR estimates. In contrast, the BSP algorithm reports
wider confidence intervals because the state-space formulation
models the temporal dependence in the binary time-series.

Finally, our last example shows that given estimates of
the model parameters, the BSP filter algorithm could be
combined with a thresholding and segmenting algorithm to
track burst suppression in patients in real-time. In this situation
the model parameter estimation would be conducted either
off line or on a slower time scale than that for updating the
BSP estimates. Possible applications of such a real-time BSP
algorithm include tracking burst suppression during surgery
[13] as well as monitoring the state of medically-induced
coma in patients in the intensive care unit [8, 9]. We were
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unable to compare our BSP filter algorithm directly with the
BSR algorithms used in current depth-of-anesthesia monitors
because they are proprietary [13]. Our results suggest that our
algorithm should compete favorably with these procedures.

In summary our state-space paradigm for the analysis of
burst suppression could be applied in research and clinical
analyses of this important brain state. Studies using our
paradigm to track burst suppression in real-time in the
operating room and in the ICU, to study the efficacy of
physostigmine and other stimulants in inducing emergence
from burst suppression, to track the state of the brain in
postasphytic neonates, to track the state of burst suppression
in patients receiving anesthetics for maintenance of medical
coma [43–45] will be the topics of future reports.
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[6] Löfhede J 2009 The EEG of the Neonatal Brain: Classification
of Background Activity (Göteborg: Chalmers University of
Technology)

[7] Van De Velde M 2000 Signal Validation in
Electroencephalography Research (Eindhoven: Technische
Universiteit Eindhoven)

[8] Rossetti A O, Reichhart M D, Schaller M D, Despland P A
and Bogousslavsky J 2004 Propofol treatment of refractory
status epilepticus: a study of 31 episodes Epilepsia
45 757–63

[9] Doyle P W and Matta B F 1999 Burst suppression or
isoelectric encephalogram for cerebral protection: evidence
from metabolic suppression studies Br. J. Anaesth. 83 580–4

[10] Stecker M M 2007 Neurophysiology of surgical procedures
for repair of the aortic arch J. Clin. Neurophysiol. 24 310–5
(PMID: 17938599)

[11] Stecker M M, Cheung A T, Pochettino A, Kent G P,
Patterson T, Weiss S J and Bavaria J E 2001 Deep
hypothermic circulatory arrest: II. Changes in
electroencephalogram and evoked potentials during
rewarming Ann. Thorac. Surg. 71 22–8

[12] Soehle M, Ellerkmann R K, Grube M, Kuech M, Wirz S,
Hoeft A and Bruhn J 2008 Comparison between bispectral
index and patient state index as measures of the
electroencephalographic effects of sevoflurane
Anesthesiology 109 799

[13] Bruhn J, Bouillon T W and Shafer S L 2000 Bispectral index
(BIS) and burst suppression: revealing a part of the BIS
algorithm J. Clin. Monit. Comput. 16 593–6

[14] Hartikainen K M, Rorarius M, Peräkylä J J, Laippala P J
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