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Abstract. Certain remarkable invariances have long been known in comparative neuroanatomy, such as the pro-
portionality between neuronal density and the inverse of the cubic root of brain volume or that between the square
root of brain weight and the cubic root of body weight. Very likely these quantitative relations reflect some general
principles of the architecture of neuronal networks. Under the assumption that most of brain volume is due to fibers,
we propose four abstract models: I, constant fiber length per neuron; II, fiber length proportionate to brain diameter;
III, complete set of connections between all neurons; IV, complete set of connections between compartments each
containing the square root of the total number of neurons. Model I conforms well to the cerebellar cortex. Model II
yields the observed comparative invariances between number of neurons and brain size. Model III is totally unre-
alistic, while Model IV is compatible with the volume of the hemispheric white substance in different mammalian
species.
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1. Introduction

Brains of different animals have much in common.
For one thing, they are essentially composed of neu-
rons, cells specialized in producing long filiform ap-
pendages that mediate the connections between them
(and make up most of the volume of the brain). All
mammalian brains are of comparable size, if we take
relative measures and allow for dependances other than
simple proportionality between body and brain weight.
In fact, animals of different sizes have brain weights
roughly proportionate to the surface, not to the vol-
ume of their bodies (Jerison, 1973). Some more in-
variants or quasi-invariants that hold across a variety
of animal species were discovered by comparative neu-
roanatomists. The density of neurons in the nerve tissue

of different species decreases with the size of the brain
(and of the animal), being inversely proportionate to
the cubic root of the volume of the brain (Shariff, 1953;
Tower, 1954; Bok, 1959). Correspondingly, the length
of the processes emanating from one neuron increases
with the cubic root of brain size (Bok, 1959).

These quantitative relationships invite speculation.
In some cases an explanation is at hand, as for the two-
thirds-power law relating brain size and body size: it
is mostly surfaces that mediate the contacts between
the animal and the world and therefore command the
brain’s attention (Jerison, 1973). In other cases the ex-
planations are not so straightforward. Why should a
larger version of a smaller brain have a cell density as if
it was stretched in one direction only (that is, inversely
proportionate to one of its diameters) rather than
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inversely proportionate to its volume, as you would
expect if it were simply blown up proportionately in
every direction? Worse still, why should the density of
neurons be inversely proportionate to the cubic root of
the surface of the animal’s body (that is, to the cubic
root of brain volume), which is, all told, the minus 2/9
power of the animal’s weight?

Not every quantitative relationship lends itself to a
reasonable interpretation, and we must select the right
ones. We may take hints from idealized situations that
we construct out of very schematic neurons, deliber-
ately ignoring factors known to affect various measures
in the brain, such as the amount of glia and other non-
neural tissue elements, as well as the obvious variations
in the fine structure of neurons and in the pattern of their
connections. We shall assume that the entire volume of
the brain is given by the sum of the volumes of the
fibers (cell processes, including dendrites and axons),
with a negligible contribution from the neural cell bod-
ies. We also shall assume that all fibers have the same
thickness.

2. Four Models

I. Brains of Different Sizes Composed
of Standard Neurons of Uniform Size

This is the simplest case, so simple that it would hardly
seem to correspond to anything in nature. However, it
does have at least one application, as we shall see.

If N is the number of neurons in a brain, andf
(µm) is the sum of the lengths of all dendrites and
axons belonging to each neuron, the volume of the brain
will be simply V =Naf (in cubicµm). The constant
a represents the (average) cross-sectional area of cell
process, which for convenience we put equal to 1 (one
square micron would be a reasonable assumption for
real brains). The densityD = N/V of neurons in the
tissue is 1/a f , the same for brains of all sizes.

II . Length of Cell Processes Proportionate
to the Diameter of the Brain

It may be reasonably assumed that neurons communi-
cate with each other over a distance that varies with the
size of the brain. Let us assume for simplicity thatf
is equal tod, the linear dimension of a brain that we
imagine to have the shape of a cube.

We have then

V = N f a= N V1/3 (since f 3 = d3 = V, anda = 1)

N = V2/3

V = N3/2.

The neural density turns out to be

D = N/V = N/N3/2 = 1/N1/2

—that is, inversely proportionate to the square root of
the number of neurons.

The density as a function of brain volume is

D = N/V = V2/3/V = 1/V1/3

—that is, inversely proportionate to the cubic root of
the volume.

III . Complete Set of Connections Between Neurons

If every neuron were connected to each of the other neu-
rons in the brain, the number of the connecting fibers
would beN2− N (which we may take asN2 for large
N), and their length would vary according to the rela-
tive position of the neurons, fromf = very small, to
f = d. Takingr = 0.5d as an approximation to their
average length (for a sphere with radiusr , Perelmouter,
2000, calculates an average length of 1.067r ), we get
a volume

V = raN2

and, sinced = 2r = V1/3, anda = 1,

2V/V1/3 = 2V2/3 = N2

N = 21/2 V1/3

V = 2−3/2 N3.

In this case, the neural density

D = N/V = N/2−3/2N3 = 23/2N−2

varies inversely with the square of the number of
neurons, or, as a function of volume:

D = N/V = 21/2 V1/3/V = 21/2 V−2/3.
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IV . Fully Connected Square Root Compartments

If the problem is to connect every part of the brain
with every other part without incurring in impossibly
large numbers of connections (and, therefore, impossi-
bly large volumes), a reasonable strategy would be to
subdivide the brain into compartments and allow for
a complete set of connections between compartments.
A realistic scheme for a brain containingN neurons
would be a parcellation inton = N1/2 compartments
each containingn = N1/2 neurons, so that the neu-
rons of a compartment can each send one fiber to one
of the other compartments (Braitenberg, 1978). Disre-
garding the connections between neurons within a com-
partment, one would then obtainn2= N connections,
again of lengthr = 1/2d = 0.5V1/3 and a volume

V = 1/2 N V1/3a (a = 1)

V/V1/3 = V2/3 = 1/2N

V = (1/2N)3/2 = 0.35N3/2

—that is, proportionate to the cube of the square root
of N, as in case II above.

The neural density is then

D = N/V = 0.5−3/2N−1/2

inversely proportionate to the square root ofN, again
as in case II, or, as a function of volume

D = N/V = 2 V−1/3.

3. Real Brains

Unashamedly unrealistic as our schemes I to IV may
seem, they do yield some values that are remarkably
close to measurements on real brains.

Case Ipredicts a uniform density of tissue elements
in brains of different sizes. This is not the case for
the brain as a whole but may hold for some parts of
the brain that, as brains get bigger in evolution, sim-
ply grow by apposition of new tissue without essential
changes in the already existing structure. This could
be expected in a nerve net with only local interactions
whose range does not depend on the size of the whole
structure and therefore on the size of the animal. The
cerebellar cortex comes close to this. Most of its vol-
ume is provided by the so-called parallel fibers, which
run in a laterolateral direction as the T-shaped branches

Figure 1. Granular cell density in the granular cell layer of the
cerebellar cortex as a function of the volume of the entire cerebellum,
plotted on log-log coordinates for five mammalian species. The solid
line is the regression line; the three dotted lines indicate the expected
dependences for our schemes I, II, and III. Data from Andersen et
al. (1992), Caddy and Biscoe (1979), Korbo and Andersen (1995),
Korbo et al. (1993), Nairn et al. (1989), and Sultan and Braitenberg
(1993). Figure 1 courtesy of Dr. Fahad Sultan, T¨ubingen.

of the axons of granular cells, by far the most numerous
cell type in the cerebellum (and, in higher vertebrates,
in the whole brain as well). The length of the individ-
ual parallel fiber is remarkably constant (a few mil-
limeters in each direction) in brains of different sizes
(Mugnaini, 1983; Harvey and Napper, 1988), spanning
the whole width of the cerebellum in the smallest speci-
mens and a fraction of its lateral extension in the bigger
ones (Braitenberg, 1977). Also, their thickness does not
seem to vary much, so that the contribution of the indi-
vidual granular cell to the cerebellar volume is roughly
constant.

In Fig. 1 granular cell density (number of cells per
unit volume of the granular cell layer) is plotted against
the size of the entire cerebellum for five different mam-
malian species.In log-log coordinates the relation ap-
pears fairly flat, conforming to our case I. The solid
line is the regression line, while the three dashed lines
show the expected dependency of cell density on vol-
ume according to our hypothetical cases I, II, and III.

It should be noted, however, that Purkinje cells, the
other striking neuronal population in the cerebellum
(even if several thousand times less numerous than
granular cells), follow a different rule. Their density
decreases with larger cerebella, and their number is
proportionate to the 0.627th power of cerebellar vol-
ume (Mwamengele et al., 1993). Thus in the cerebellar
cortex our two cases I and II coexist, being represented
by two different neuronal populations.
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Case IIpredicts quantitative relations between num-
ber of neurons and neural density, as well as between
number of neurons and brain volume that have long
since been established in the comparative anatomi-
cal literature. Shariff (1953), Tower (1954), and Bok
(1959)—all quoted in Jerison (1973)—found a pro-
portionality between neuronal density in the cerebral
cortex (number of neuronal cell bodies per unit vol-
ume) and the inverse of the cubic root of brain weight
(volume), just as predicted by our model.

The proportionality between the number of neurons
and the 2/3 power of brain weight, being a mathematical
consequence of this, was also established experimen-
tally (Shariff, 1953; Jerison, 1963).

In Fig. 2 brain volume is plotted against total num-
ber of neurons for five mammalian species, the same as
on Fig. 1. The total number of neurons was computed
from available data on neuronal density and volume of
the grey substance (Sholl, 1956; Cragg, 1967; Blinkov
and Glezer, 1968; Frahm et al., 1982; Sch¨uz and Palm,
1989; Braitenberg and Sch¨uz, 1998). Quite convinc-

Figure 2. Brain weight plotted against total number of neurons for
five mammalian species (the same as on Fig. 1). Except for the human
brain, the others comply to the proportionality between volume and
the 3/2 power the total number of neurons. The number of neurons
was computed from available data on neuronal density and volume
of the cortex, multiplied by a factor of 4 to accommodate the neurons
in the basal ganglia, in the brain stem, and especially in the cerebellar
cortex, which together we estimate to be three times as numerous as
the cortical neurons. Data from Sholl (1956), Cragg (1967), Blinkov
and Glezer (1968), Frahm et al. (1982), and Braitenberg and Sch¨uz
(1998).

ingly, the measured data in subhuman mammals fol-
low the 3/2-power dependence predicted by our case
II. Only the human brain appears to excel among the
others with a number of neurons in excess of what the
general law would assign to it.

It is interesting to test our scheme against reality in
absolute values. With 1010 neurons such as a large pri-
mate might have, our formula yields a volume of 1015

µm3= 106 mm3, corresponding to a linear dimension
of 10 cm, quite in accordance with reality. With the 108

neurons of the rat, the volume turns out to be 1012µm3

= 103 mm3, corresponding to a side of 1 cm, again
quite close to reality.

Our case III is unrealistic. The dependence of brain
volume on the third power of the number of neurons
leads to impossibly large volumes even if very conser-
vative estimates are made on the thickness of the fibers.
With the cross-sectional area of all fibersa= 1 µm2,
which we had assumed, and a number of neurons of
the order of 1010, as in humans, we get a brain volume
of 350 cubic kilometers. Even in the mouse with its
10 million neurons, the volume of a complete set of
connections between neurons would occupy about 350
cubic meters. It is doubtful whether perhaps some small
piece of nerve tissue somewhere in some brain is built
according to the scheme of complete neuron-to-neuron
connections, but if such an organ exists, it must be very
small indeed. One thousand neurons, fully connected,
would occupy a volume of 0.35 cubic millimeter, a
reasonable size for a small ganglion.

Case IVwas proposed originally (Braitenberg, 1978;
Braitenberg and Sch¨uz, 1998) as a remedy against the
obvious pathology of case III as applied to the cere-
bral cortex. The idea of square root compartments is
appealing for various reasons. First of all, the size of
these compartments (portions of the cortex containing
N1/2 neurons, about 1 mm in humans and 0.17 mm
in the mouse) is similar to the size of compartments
that were described as “cortical columns” by physiol-
ogists on the basis of their responses to sensory stim-
uli. Also, the dendritic spread of the largest neurons
corresponds well to the size of square root compart-
ments both in the human and the mouse brain. Finally,
a rough estimate of the volume of the white substance
underlying the human, monkey, and mouse cortex was
well compatible with the supposition of a complete
set of connections between compartments in all three
species (Braitenberg, 1978). This is astonishing, espe-
cially in view of the fact that the hemispheric white sub-
stance is organized in rather well-defined bundles that
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do not seem to conform to a scheme of homogeneous
all-to-all connections. Possibly, the bundling of fibers
that have a similar origin and destination into macro-
scopic “fiber tracts” is a secondary effect, more related
to processes of growth than to the statistics of cortico-
cortical connections.

It should be noted that the idea of square root com-
partments in our previous publications, and also in
the form presented here, leads to an estimate of the
number and length of cortico-cortical connections—
that is, to the volume of the hemispheric white sub-
stance, disregarding the volume of the fiber felt within
the compartments. In a review of data derived from
59 mammalian species, Zhang and Sejnowski (2000)
showed that the volume of the cortex is proportional to
the 3/4 power of the volume of the hemispheric white
substance across the entire range from the shrew to
the elephant. Together with the 3/2 power dependence
of the volume of the white substance on the number
of neurons that we postulate here, this yields a 9/8
power dependence of cortical volume on the number
of neurons. Translated into ordinary neuroanatomy, this
means that the grey substance of the cortex stays behind
the overall increase of brain volume with increasing
number of neurons: the contribution of cortical neu-
rons to brain volume is mainly in their long-distance
axons.

4. Discussion

This is not the place to embark on a discussion of the
reliability of comparative anatomical data. Measure-
ments of brain weight are often flawed by different
methods of fixation, by different anatomical definitions
(such as brain with or without brain stem), and by un-
specified ages of the animals. Even more problematic
are the estimates of numbers of neurons, since to go
from counts of neurons in microscopic sections to their
number in the volume requires sophisticated methods
that have not always been respected in the past. How-
ever, when the aim is to arrive at dependences in the
form of “power laws” appearing as straight lines on
log-log plots such as our Figs. 1 and 2, much of the ex-
perimental uncertainty usually fades in the face of the
overall rule. This has been convincingly demonstrated
in the masterful monograph by H.J. Jerison (1973),
which we take as our lead. As an inexhaustible source
of comparative material, Blinkov and Glezer (1968)
should also be recommended.

The most astonishing fact in the comparison of our
abstract models with reality is their good fit in spe-
cial cases, in spite of the very rough approximations
they are based on. The quite arbitrary assumption of
an overall fiber thickness of 1µ together with the
total neglect of the contribution of neural cell bod-
ies, glia, and blood vessels to brain volume seem to
add up to a reasonable compromise. If fibers on an av-
erage are less than 1µ thick in real brains, as they
certainly are, it seems that the supporting tissue ele-
ments, including neural cell bodies, add a volume pro-
portionate to their length, so that the total volume
comes out to be that of a system of naked fibers of
about 1µ thickness. The real contributions of neural
cell bodies, axons, dendrites, glia, and blood vessels to
the volume of the gray substances can be assessed on
electronmicrographs—for instance, in the cerebral cor-
tex of the mouse (Braitenberg and Sch¨uz, 1998). The
measured volumes are: axons 29.3%, dendrites 30.2%,
dendritic spines 12.06% (sum of “fibers” in the sense
of this article 72%), glia 9.5%, cell bodies and blood
vessels 13.8%, and extracellular space 5.2%.

Our schemes I, II, and IV have their counterparts in
different parts of real brains and therefore presumably
indicate different kinds of information handling. Some
very general statements can be made about them.

Scheme Iis compatible with local interactions be-
tween neighboring elements, without any contribution
from the activity of more distant elements. One expects
and indeed finds (for example, in the visual ganglia of
insects) such networks in the proximity of some input
layer, where they act as the first filter performing homo-
geneous local transformations on the input. Why such
a scheme is also realized in the cerebellar cortex, what
the elementary transformation is, and on what input-
space neighbourhood is defined there are still matters
of debate (Braitenberg et al., 1997).

Scheme IIdescribes a situation in which every neu-
ron can in principle receive information by direct fibers
from every part of the brain, but the probability of a di-
rect connection between any pair of neurons decreases
with the size of the brain. This implies that relevant
patterns of activity (that is, such patterns as can prop-
agate) must involve more neurons in larger brains. In
the light of a theory of cell assemblies (Hebb, 1949),
we expect neuronal assemblies (that is, sets of neurons
which tend to fire together and represent the units of
information transmission) to be composed of a larger
number of neurons in larger brains. Larger brains han-
dle more complex internal objects or concepts.
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Scheme IVis quantitatively similar to scheme II,
with the difference that the relevant units of activity
are housed in separate “compartments.” One would
then expect a certain degree of homogeneity of the re-
sponses of single neurons within a compartment, and
this is indeed what led physiologists to the idea of “cor-
tical columns” in the first place, making the identifi-
cation of our abstract compartments with the physi-
ological columns quite tempting. In general terms of
brain semantics, the idea of compartments implies a
two-stage definition of meaning in the brain, within
compartments and between compartments. In reality,
it may be a three-stage process if we consider “corti-
cal areas,” the well-known subdivisions of the cortex
defined by their different sensory input or by the dif-
ferent context in which they analyze the same input
(specialized areas for the detection of visual form or
visual movement, for acoustic analysis in the context
of language, and so on). These areas in humans have a
size of a few centimeters, intermediate, on a geometric
scale, between cortical columns (millimeters) and the
whole cortex (decimeters).

A generalization of the idea of compartments to a
hierarchy ofk levels, each level containingN1/k com-
partments of the next lower level, was proposed by
Perelmouter (2000). Withk= 4, the volume of the con-
necting fibers masses turns out quite realistically to be
proportionate to the 3/2 power ofN.

Final comment: The assumption of a constant aver-
age thickness, and hence constant average conduction
velocity of the fibers in brains of different sizes, implies
an increase of conduction times in larger brains. This
may well be compensated by thicker, faster-conducting
fibers, which will in turn contribute more strongly to
brain volume. This is an important point raised by
Ringo (1991, 1994) and fits some data on the distri-
bution of fiber diameters in the corpus callosum of
mouse and monkey (Sch¨uz and Preissl, 1996). We have
disregarded these considerations in our crude models,
mainly because the average caliber of the fibers does
not seem to vary much between animals of different
sizes. Also, the increase in the times of neuronal pro-
cessing, which should be proportionate to the diameter
of the brain—that is to the 2/3-power of the length of
the body (the volume of the brain being proportionate
to the surface of the body)—could be partly compen-
sated by the increase of the mechanical time constants
of movements, which may be assumed to vary as the pe-
riod of a pendulum (that is, proportionate to the square
root of the length).
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