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representations in artificial agents
Andrea Banino1,2,3,5*, Caswell Barry2,5*, Benigno Uria1, Charles Blundell1, timothy Lillicrap1, Piotr Mirowski1, Alexander Pritzel1, 
Martin J. Chadwick1, thomas Degris1, Joseph Modayil1, Greg Wayne1, Hubert Soyer1, Fabio Viola1, Brian Zhang1, ross Goroshin1, 
Neil rabinowitz1, razvan Pascanu1, Charlie Beattie1, Stig Petersen1, Amir Sadik1, Stephen Gaffney1, Helen King1,  
Koray Kavukcuoglu1, Demis Hassabis1,4, raia Hadsell1 & Dharshan Kumaran1,3*

Deep neural networks have achieved impressive successes in fields 
ranging from object recognition to complex games such as Go1,2. 
Navigation, however, remains a substantial challenge for artificial 
agents, with deep neural networks trained by reinforcement 
learning3–5 failing to rival the proficiency of mammalian spatial 
behaviour, which is underpinned by grid cells in the entorhinal 
cortex6. Grid cells are thought to provide a multi-scale periodic 
representation that functions as a metric for coding space7,8 and 
is critical for integrating self-motion (path integration)6,7,9 and 
planning direct trajectories to goals (vector-based navigation)7,10,11. 
Here we set out to leverage the computational functions of 
grid cells to develop a deep reinforcement learning agent with 
mammal-like navigational abilities. We first trained a recurrent 
network to perform path integration, leading to the emergence of 
representations resembling grid cells, as well as other entorhinal 
cell types12. We then showed that this representation provided an 
effective basis for an agent to locate goals in challenging, unfamiliar, 
and changeable environments—optimizing the primary objective of 
navigation through deep reinforcement learning. The performance 
of agents endowed with grid-like representations surpassed that of 
an expert human and comparison agents, with the metric quantities 
necessary for vector-based navigation derived from grid-like 
units within the network. Furthermore, grid-like representations 
enabled agents to conduct shortcut behaviours reminiscent of those 
performed by mammals. Our findings show that emergent grid-like 
representations furnish agents with a Euclidean spatial metric and 
associated vector operations, providing a foundation for proficient 
navigation. As such, our results support neuroscientific theories 
that see grid cells as critical for vector-based navigation7,10,11, 
demonstrating that the latter can be combined with path-based 
strategies to support navigation in challenging environments.

The ability to self-localize in the environment and to update one’s 
position on the basis of self-motion are core components of naviga-
tion13. We trained a deep neural network to path integrate within a 
square arena (2.2 m × 2.2 m), using simulated trajectories modelled on 
those of foraging rodents (see Methods). The network was required to 
update its estimate of location and head direction using translational 
and angular velocity signals, mirroring those available to the mam-
malian brain12,14,15 (see Methods; Fig. 1a, b). Velocity was provided as 
input to a recurrent network with a long short-term memory (LSTM) 
architecture, which was trained using backpropagation through time 
(see Methods and Supplementary Discussion), allowing the network 
to dynamically combine current input signals with activity patterns 
reflecting past events (see Methods; Fig. 1a). The LSTM projected to 
place and head direction units via a linear layer—units with activ-
ity defined as a simple linear function of their input (see Extended 
Data Fig. 1 for architecture). Importantly, the linear layer was subject 
to regularization, in particular dropout16, such that 50% of the units 

were randomly silenced at each time step. The vector of activities 
in the place and head direction units, corresponding to the current 
position, was provided as a supervised training signal at each time 
step (see Methods; Extended Data Fig. 1). This form of supervision  
follows evidence that in mammals, place and head direction rep-
resentations exist in close anatomical proximity to entorhinal grid 
cells12 and emerge in rodent pups before the appearance of mature 
grid cells17,18. Equally, in adult rodents, entorhinal grid cells are known 
to project to the hippocampus and appear to contribute to the neural 
activity of place cells19.

As expected, the network was able to path integrate accurately in 
this setting involving foraging behaviour (mean error after 15 s tra-
jectory was 16 cm versus 91 cm for an untrained network, effect size 
2.83, 95% confidence interval (CI) 2.80–2.86; Fig. 1b, c). Strikingly, 
individual units within the linear layer of the network developed 
stable spatial activity profiles similar to those of neurons within the 
entorhinal network6,12 (Fig. 1d, Extended Data Fig. 2). Specifically, 
129 of the 512 linear layer units (25.2%) resembled grid cells, exhib-
iting significant hexagonal periodicity (gridness20) versus a null 
distribution generated by a conservative field shuffling procedure 
(see Methods). The scale of the grid-patterns, measured from the 
spatial autocorrelograms of the activity maps20, varied between units 
(range 28 cm to 115 cm, mean 66 cm) and followed a multi-modal dis-
tribution, consistent with empirical results from rodent grid cells21,22 
(Fig. 1e). To assess these clusters, we fit mixtures of Gaussians, finding 
the most parsimonious number by minimizing the Bayesian informa-
tion criterion (BIC). The distribution was best fit by three Gaussians 
(means 47 cm, 70 cm, and 106 cm), indicating the presence of scale 
clusters with a ratio between neighbouring clusters of approximately 
1.5, closely matching theoretical predictions23 and also lying within 
the range reported for rodents21,22 (Fig. 1e, Extended Data Fig. 3). 
The linear layer also exhibited units resembling head direction cells 
(10.2%), border cells (8.7%), and a small number of place cells12 
as well as conjunctions of these representations20,24 (Fig. 1d, f, g, 
Extended Data Fig. 2).

To ascertain how robust these representations were, we retrained the 
network 100 times, in each instance finding similar proportions of grid-
like units (mean 23%, s.d. 2.8%, units with significant gridness scores) 
and other spatially modulated units (Extended Data Fig. 3). Conversely, 
grid-like representations did not emerge in networks without regular-
ization (for example, dropout, see Methods; also see ref. 25, Extended 
Data Fig. 4). Therefore, the use of regularization, including dropout 
(which has been viewed to be a parallel of noise in neural systems16), was 
critical to the emergence of entorhinal-like representations. Notably, 
therefore, our results show that grid-like representations reminiscent 
of those found in the mammalian entorhinal cortex emerge in a generic 
network trained to path integrate, contrasting with previous approaches 
using pre-configured grid cells26 (see Supplementary Discussion).  
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Furthermore, our results are consistent with the view that grid cells 
represent an efficient and robust basis for a location code updated by 
self-motion cues6–9.

Next, we sought to test the hypothesis that the emergent representa-
tions provide an effective basis function for goal-directed navigation in 
novel challenging and changeable environments, when trained through 
deep reinforcement learning. Entorhinal grid cells have been proposed 
to provide a Euclidean spatial metric and thus to support the calculation 
of goal-directed vectors, enabling animals to follow direct routes to a 
remembered goal, a process known as vector-based navigation7,10,11. 
Theoretically, the advantage of decomposing spatial location into a 
multi-scale periodic code, as provided by grid cells, is that the relative 
positions of two points can be retrieved by examining the difference in 
the code at the level of each scale—combining the modulus remainders 
to return the true vector7,11 (Fig. 2a). However, despite the obvious util-
ity of such a framework, experimental evidence for the direct involve-
ment of grid representations in goal-directed navigation is still lacking.

To develop an agent with the potential for vector-based navigation, 
we incorporated the ‘grid network’ described above into a larger archi-
tecture that was trained using deep reinforcement learning (Fig. 2d, 
Extended Data Fig. 5). As before, the grid network was trained using 
supervised learning but, to better approximate the information available 
to navigating mammals, it now received velocity signals perturbed with 
random noise as well as visual input. Experimental evidence suggests 

that place cell input to grid cells corrects for drift and anchors grids to 
environmental cues21. To parallel this, visual input was processed by a 
‘vision module’ consisting of a convolutional network that produced 
place and head direction cell activity patterns that were provided as 
input to the grid network 5% of the time—akin to a moving animal 
making occasional, imperfect observations of salient environmental 
cues27 (see Methods; Fig. 2b, c and Extended Data Fig. 5). The output of 
the linear layer of the grid network, corresponding to the agent’s current 
location, was provided as input to the ‘policy LSTM’, a second recur-
rent network that both controls the agent’s actions and outputs a value 
function. Additionally, whenever the agent reached the goal, the ‘goal 
grid code’—activity in the linear layer—was subsequently provided to 
the policy LSTM during navigation as an additional input.

We first examined the navigational capacities of the agent in a 
simple setting inspired by the classic Morris water maze (Fig. 2b, c; 
2.5 m × 2.5 m square arena; see Methods and Supplementary Results). 
Notably, the agent was still able to self-localize accurately in this more 
challenging setting, where ground truth information about location 
was not provided and velocity inputs were noisy (mean error after 15-s 
trajectory, 12 cm versus 88 cm for an untrained network; effect size, 
2.82; 95% CI, 2.79–2.84; Fig. 2e). Furthermore, the agent exhibited 
proficient goal-finding abilities, typically taking direct routes to the 
goal from arbitrary starting locations (Fig. 2h). Performance exceeded 
that of a control place cell agent (Fig. 2f, see Supplementary Results and 
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Fig. 1 | Entorhinal-like representations emerge in a network trained 
to path integrate. a, Schematic of network architecture (see Extended 
Data Fig. 1). b, Example trajectory (15 s); self-location decoded from 
place cells (dark blue) resembles actual path (light blue). c, Accuracy 
of decoded location before (blue) and after (green) training. d, Linear 
layer units exhibit spatially tuned responses resembling grid, border, 
and head direction cells. Top, ratemap shows activity over location; 
middle, spatial autocorrelogram of ratemap with gridness indicated; 
bottom, polar plot show activity versus head direction. e, Spatial scale 
of grid-like units (n = 129) is clustered. Distribution is more discrete 

than by chance (effect size, 2.98; 95% CI, 0.97–4.91) and best fit by a 
mixture of three Gaussians (centres 0.47, 0.70 and 1.06 m, ratios are 
1.49 and 1.51). f, Directional tuning of the most strongly directional 
units (n = 52). Lines indicate length and orientation of resultant vector 
(see Methods), exhibiting six-fold clustering reminiscent of conjunctive 
grid cells. g, Distribution of gridness and directional tuning. Dashed 
lines indicate 95% confidence interval from null distributions (based on 
500 data permutations); 14 (11%) grids exhibit directional modulation 
(see Methods). Similar results were seen in a circular environment 
(Extended Data Fig. 3).
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Methods), chosen because place cells provide a robust representation 
of self-location but are not thought to provide a substrate for long-
range vector calculations11. We examined the units in the linear layer, 
again finding a heterogeneous population resembling those found in 
entorhinal cortex, including grid-like units (21.4%) as well as other 
spatial representations (Fig. 2g, Extended Data Fig. 6)—paralleling the 
dependence of mammalian grid cells on self-motion information15,28 
and spatial cues6,21.

We next turn to our central claim, that grid cells endow agents with 
the ability to perform vector-based navigation, enabling downstream 
regions to calculate goal-directed vectors by comparing current activ-
ity with that of a remembered goal7,10,11. In the agent, we expect these 
calculations to be performed by the policy LSTM, which receives the 
current activity pattern over the linear layer (termed ‘current grid code; 
Fig. 2d and Extended Data Fig. 5) as well as that present the last time 
the agent reached the goal (termed ‘goal grid code’) and uses them to 
control movement. Hence we performed several manipulations, which 
yielded four lines of evidence in support of the vector-based navigation 
hypothesis (see Supplementary Results).

First, to demonstrate that the goal grid code provided sufficient 
information to enable the agent to navigate to an arbitrary location, 
we substituted it with a ‘fake’ goal grid code sampled randomly from a 
location in the environment (see Methods). The agent followed a direct 
path to the newly specified location, circling the absent goal (Fig. 2i)—
similar to rodents in probe trials of the Morris water maze (escape 
platform removed). Second, we demonstrated that withholding the goal 

grid code from the policy LSTM of the grid cell agent had a strikingly 
deleterious effect on performance (Extended Data Fig. 6c). Third, we 
demonstrated that the policy LSTM of the grid cell agent contained  
representations of key components of vector-based navigation (Fig. 2j, k),  
and that both Euclidean distance (difference in r = 0.17; 95% CI, 
0.11–0.24) and allocentric goal direction (difference in r = 0.22; 95% 
CI, 0.18–0.26) were represented more strongly than in the place cell 
agent. Notably, a neural representation of goal distance has recently 
been reported in the mammalian hippocampus29. Finally, we provide 
evidence consistent with a prediction of the vector-based navigation 
hypothesis, namely that a targeted lesion (that is, silencing) to the most 
grid-like units within the goal grid code should have a greater adverse 
effect on performance and the representation of vector-based metrics 
(for example, Euclidean distance) than a sham lesion (that is, silencing 
of non-grid units; see Supplementary Results).

Having demonstrated the effectiveness of grid-like representations in 
optimizing one-shot goal learning in a simple square arena, we assessed 
the agent’s performance in two challenging, procedurally generated 
multi-room environments, referred to as ‘goal-driven’ and ‘goal-doors’ 
(see Methods). Notably, these environments are challenging for deep 
reinforcement learning agents with external memory (Extended Data 
Fig. 7e, f, h, i and Supplementary Results). Again, the grid cell agent 
exhibited high levels of performance, was strikingly robust across 
a range of network hyperparameters (Extended Data Fig. 7a–c), 
and reached the goal more frequently than either control agents or 
a human expert—a typical benchmark for the performance of deep 
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Fig. 2 | One-shot open field navigation to a hidden goal. a, Schematic of 
vector-based navigation. b, Overhead view of typical environment (icon 
indicates agent and facing direction). c, Agent view of b. d, Schematic of 
deep reinforcement learning architecture (Extended Data Fig. 5). PCP, 
place cell predictions; HDP, head direction cell predictions. e, Accuracy 
of self-location decoded from place cell units. f, Performance of grid cell 
agent and place cell agent (y axis shows reward obtained within a single 
episode, 10 points per goal arrival, grey band displays the 68% confidence 
interval based on 5,000 bootstrapped samples). g, As in Fig. 1, the linear 
layer develops spatial representations similar to entorhinal cortex. Left 

to right, two grid cells, one border cell, and one head direction cell. 
h, On the first trial of an episode, the agent explores to find the goal and 
subsequently navigates directly to it. 'S' denotes the starting location.  
i, After successful navigation, the policy LSTM was supplied with a ‘fake’ 
goal grid-code, directing the agent to this location where no goal was 
present. j, k, Decoding of goal-directed metric codes (that is, Euclidean 
distance and direction) from the policy LSTM of grid cell and place cell 
agents. The bootstrapped distribution (1,000 samples) of correlation 
coefficients are each displayed with a violin plot overlaid on a Tukey 
boxplot.
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reinforcement learning agents in game playing scenarios2 (Fig. 3e, f; 
see Supplementary Results). Furthermore, when agents were tested 
without retraining in environments considerably larger than those 
seen previously, only the grid cell agent was able to generalize effec-
tively (Fig. 3g, h; see Supplementary Results). Despite the complexity 
of the ‘goal-driven’ environment, we could still decode the key metric 
codes from the grid agent policy LSTM with high accuracy during 
the initial period of navigation, and decoding accuracy was substan-
tially higher in the grid cell agent than in both the place cell and deep 
reinforcement learning control agents (Fig. 3j, k and Supplementary 
Results; see Extended Data Figs. 8, 9 for control agent architectures).

Finally, a core feature of mammalian spatial behaviour is the ability 
to exploit novel shortcuts and traverse unvisited portions of space, a 
capacity thought to depend on vector-based navigation9,11. Strikingly, 
the grid cell agent—but not comparison agents—robustly demonstrated 
these abilities in specifically designed neuroscience-inspired mazes, 
taking direct routes to the goal as soon as they became available (Fig. 4, 
Extended Data Fig. 10 and Supplementary Results).

Conventional simultaneous localization and mapping (SLAM) tech-
niques typically require an accurate and complete map to be built, with 
the nature and position of the goal externally defined30. By contrast, 
the deep reinforcement learning approach described in this work has 
the ability to learn complex control policies end-to-end from a sparse 
reward, taking direct routes involving shortcuts to goals in an automatic 
fashion—abilities that exceed previous deep reinforcement learning 
approaches3–5, and that would have to be hand-coded in any SLAM 
system.
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Our work, in demonstrating that grid-like representations provide 
an effective basis for flexible navigation in challenging novel environ-
ments, supports theoretical models of grid cells in vector-based naviga-
tion that were previously lacking strong empirical support7,10,11. We also 
show that vector-based navigation can be effectively combined with a 
path-based barrier avoidance strategy to enable the exploitation of opti-
mal routes in challenging multi-compartment environments. In sum, 
we argue that grid-like representations furnish agents with a Euclidean 
geometric framework—paralleling their proposed computational role 
in mammals as an early-developing Kantian-like spatial scaffold that 
serves to organize perceptual experience17,18.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
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MEthodS
Path integration: supervised learning experiments. Simplified 2D environment. 
Simulated rat trajectories of duration T were generated in square and circular envi-
ronments with walls of length L (diameter in the circular case). The simulated rat 
started at a uniformly sampled location and facing angle within the enclosure. A 
rat-like motion model31 was used to obtain trajectories that uniformly covered 
the whole environment by avoiding walls (see Supplementary Methods Table 1 
for the model’s parameters).
Ground truth place cell distribution. Place cell activations, → ∈c [0, 1]N , for a given 
position → ∈x R2 were simulated by the posterior probability of each component 
of a mixture of two- dimensional isotropic Gaussians,
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where Rμ→ ∈i
c( ) 2 , the place cell centres, are N two-dimensional vectors chosen 

uniformly at random before training, and σ(c), the place cell scale, is a positive 
scalar fixed for each experiment.
Ground truth head-direction cell distribution. Head-direction cell activations, →

∈h [0, 1]M , for a given facing angle ϕ were represented by the posterior proba-
bility of each component of a mixture of Von Mises distributions with concentra-
tion parameter κ(h),
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where the M head direction centres μ π π∈ −[ , ]i
h( )   are chosen uniformly at random  

before training, and κ(h), the concentration parameter, is a positive scalar fixed for 
each experiment.
Supervised learning inputs. In the supervised setup the grid cell network receives, 
at each step t, the egocentric linear velocity R∈vt  and the sine and cosine of its 
angular velocity ϕt.
Grid cell network architecture. The grid cell network architecture (Extended Data 
Fig. 1) consists of three layers: a recurrent layer, a linear layer, and an output layer. 
The single recurrent layer is an LSTM (long short-term memory32) that projects 
to place and head direction units via the linear layer. The linear layer implements 
regularization through dropout16. The recurrent LSTM layer consists of one cell 
of 128 hidden units, with no peephole connections. Input to the recurrent LSTM 
layer is the vector ϕ ϕv sin cos[ , ( ), ( )]t t t . The initial cell state and hidden state of the 
LSTM, 

��
l0 and � ��m0, respectively, are initialized by computing a linear transformation 

of the ground truth place and head-direction cells at time 0,
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The parameters of these two linear transformations (W(cp), W(cd), W(hp) and W(hd)) 
were optimized during training. The output of the LSTM, � ��mt is then used to pro-
duce predictions of the place cells ��yt

 and head direction cells ��zt  by means of a 
linear decoder network.

The linear decoder consists of three sets of weights and biases. The first set 
consists of the weights and biases that map from the LSTM hidden state � ��mt to the 
linear layer activations R∈

��gt
512 . The other two sets of weights map from the 

linear layer activations ��gt
 to the predicted head directions, ��zt and predicted place 

cells, ��yt
, respectively, via softmax functions33. Dropout16 with drop probability 0.5 

was applied to each ��gt
 unit. Note that there is no intermediary nonlinearity in the 

linear decoder.
Supervised learning loss. The grid cell network is trained to predict the place and 
head-direction cell ensemble activations, ��ct and 

��
ht, respectively, at each time step 

t. During training, the network was trained in a single environment where the place 
cell centres were constant throughout. The parameters of the grid cell network are 
trained by minimizing the cross-entropy between the network place cell predic-
tions, ��yt

, and the synthetic place-cells targets, ��ct , and the cross-entropy between 
head-direction predictions, ��zt, and their targets, 

��
ht ,
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Gradients of this loss function with respect to the network parameters were calcu-
lated using backpropagation through time34, unrolling the network into blocks of 
100 time steps. The network parameters were updated using stochastic-gradient 

descent (RMSProp35), with weight decay36 for the weights projecting from the 
dropout linear layer, ��gt

, to the place and head-direction cell predictions, ��yt
 and ��zt. 

Hyperparameter values used for training are listed in Supplementary Methods 
Table 1.
Gradient clipping. In our simulations, gradient clipping was used for parameters 
projecting from the dropout linear layer, ��gt

, to the place and head-direction cell 
predictions ��yt

 and ��zt. Gradient clipping clips each element of the gradient vector 
to lie in a given interval [−gc, gc], and is an important tool for optimization in deep 
and recurrent artificial neural networks, where it helps by preventing exploding 
gradients37. Gradient clipping also introduces distortions into the weight updates, 
which help to avoid local minima38.
Navigation through deep reinforcement learning. Environments and task. We 
assessed the performance of agents on three environments seen by the agent from 
a first-person perspective in the DeepMind Laboratory39 platform.
Custom environment: square arena. This comprised a 10 × 10 square arena, which 
corresponds to 2.5 × 2.5 m arena assuming an agent speed of 15 cm/s (Fig. 2b, c). 
The arena contained a single, coloured, intra-arena cue whose position and colour 
changed on each episode, as did the texture of the floor, the texture of the walls and 
the goal location. As in the goal-driven and goal-door environments described 
below, there were a set of distal cues (that is, buildings) that paralleled the design 
of virtual reality environments used in human experiments40. These distal cues 
were rendered at infinity—so as to provide directional but not distance informa-
tion—and their configuration was consistent across episodes. At the start of each 
episode the agent (described below) started in a random location and was required 
to explore in order to find an unmarked goal, paralleling the task of rodents in the 
classic Morris water maze. The agent always started in the central 6 × 6 grids (that 
is, 1.5 × 1.5 m) of the environment. Noise in the velocity input ��ut  was applied 
throughout training and testing (that is, Gaussian noise ε, with μ = 0 and σ = 0.01). 
The action space is discrete (six actions) but affords fine-grained motor control 
(that is, the agent could rotate in small increments, accelerate forwards, backwards 
or sideways, or effect rotational acceleration while moving).
DeepMind laboratory environments: goal-driven and goal-doors. Goal-driven and 
goal-doors are challenging, visually rich multi-room environments (Fig. 3a–d). 
Mazes were formed within an 11 × 11 grid, corresponding to 2.7 × 2.7 m (see below 
for definition of larger 11 × 17 mazes). Mazes were procedurally generated at the 
beginning of each episode; thus, the layout, wall texture, landmarks (intra-maze 
cues on walls) and goal location were different for each episode but consistent 
within an episode. Distal cues, in the form of buildings rendered at infinity, were 
as described above for the square arena.

The critical difference between goal-driven and goal-doors tasks is that the 
latter had the additional challenge of stochastic doors within the maze. Specifically, 
the state of the doors (open or closed) changed randomly during an episode each 
time the agent reached the goal. This meant that the optimal path to the goal from 
a given location changed during an episode, requiring the agent to recompute 
trajectories.

In both tasks, the agent starts at a random location within the maze and its task 
is to explore to find the goal. The goal in both levels was always represented by the 
same object (Fig. 3c). After getting to the goal the agent received a reward of 10 
points, after which it was teleported to a new random location within the maze. 
In both levels, episodes lasted a fixed duration of 5,400 environment steps (90 s).
Generalization on larger environments. We tested the ability of agents trained on 
the standard environment (11 × 11) to generalize to larger environments (11 × 17, 
corresponding to 2.7 × 4.25 m). The procedural generation and composition of 
these environments was done as for the standard environments. Each agent was 
trained in the 11 × 11 goal-doors maze for a total of 109 environment steps, and 
the best performing replica (highest asymptotic performance averaged over 100 
episodes in 11 × 11) was selected for evaluation in the larger maze. Note that the 
weights of the agent were frozen during evaluation on the larger maze. Evaluation 
was over 100 episodes of fixed duration 12,600 environment steps (210 s).
Probe mazes to assess shortcut behaviour. To test the agent’s ability to follow novel, 
goal- directed routes, we created a series of environments inspired by mazes 
designed to test the shortcut abilities of rodents.

The first maze is a linearized version of Tolman’s sunburst maze (Fig. 4a) used 
to determine whether the agent was able to follow an accurate heading towards the 
goal when a path became available (see Supplementary Methods). In this maze, 
after reaching the goal, the agent was teleported to the original position with the 
same heading orientation. Agents were trained in the goal-doors maze and network 
weights were frozen during testing—all the agents were tested for 100 episodes, 
each one lasting for a fixed duration of 5,400 environment steps (90 s).

The second environment, the double E-maze (Fig. 4d, Extended Data Fig. 10), 
was designed to test the agent’s ability to traverse an entirely new portion of space 
(see Supplementary Methods). In this maze we had both training and testing con-
ditions. Both training and testing were conducted within the maze but at test time 
weights were frozen. The agent always started in the central room (for example, 
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see Fig. 4d). The maze had stochastic doors with two different configurations, 
one for the training phase and one for testing phase. During training, the state of 
the doors (open or closed) randomly changed during an episode each time the 
agent reached the goal. Critically, during training the corridors presenting the 
shortest route to the goal (that is, the ones closer to the central room) were closed 
at both ends, preventing access to or observation of the interior. At test time, after 
the agent had reached the goal for the first time, all doors were opened. All the 
agents were tested for 100 episodes, each one lasting for a fixed duration of 5,400 
environment steps (90 s).
Agent architectures. Architecture for the grid cell agent. The agent architecture 
(Extended Data Fig. 5) was composed of a visual module, the grid cell network 
(described above), and an actor–critic learner41. The visual module was a neural 
network with input consisting of a three-channel (RGB) 64 × 64 image φ ∈ [−1, 
1]3×84×84. The image was processed by a convolutional neural network (see 
Supplementary Methods for details), which produced embeddings, →e , which in 
turn were used as input to a fully connected linear layer trained in a supervised 
fashion to predict place and head-direction cell ensemble activations, →c  and 

→
h  

(as specified above), respectively. The predicted place and head direction cell activity  
patterns were provided as input to the grid network 5% of the time on average, akin 
to occasional imperfect observations made by behaving animals of salient envi-
ronmental cues27. Specifically, the output of the convolutional network →e  was then 
passed through a masking layer which zeroed the units with a probability of 95%.

The grid cell network of the agent was implemented as in the supervised learn-
ing set up except that the LSTM (‘grid LSTM’) was not initialized with ground truth 
place cell activations but instead set to zero. The inputs to the grid cell network 
were the two translation velocities, u and v, as in DeepMind Laboratory it is pos-
sible to move in a direction different from the facing direction; the sine and cosine 
of the angular velocity, ϕ., (these velocities are provided by DeepMind Laboratory); 
and the →y  and →z  output by the vision module. In contrast to the supervised 
learning case, here the grid cell network had to use →y  and →z  to learn how to reset 
its internal state each time it was teleported to an arbitrary location in the environ-
ment (for example, after visiting the goal). As in the supervised learning experi-
ments described above, the configuration of place fields (that is, location of place 
field centres in the 11 × 11 environments, goal-driven and goal-doors, 10 × 10 
square arena, and 13 × 13 double E-maze) were constant throughout training (that 
is, across episodes).

For the actor–critic learner, the input was a three-channel 64 × 64 image φt ∈ 
[−1, 1]3×84×84, which was processed by a convolutional neural network followed 
by a fully connected layer (see Supplementary Methods for details). The output of 
the fully connected layer of the convolutional network ′

��
e  was then concatenated 

with the reward rt, the previous action at−1, the current grid code ��gt
, and the goal 

grid code 
∗

��g  (that is, linear layer activations observed last time the goal was 
reached)—or zeros if the goal had not yet been reached in the episode. Note we 
refer to these linear layer activations as ‘grid codes’ for brevity, even though units 
in this layer also comprise units resembling head direction cells and border cells 
(Extended Data Fig. 6a). This concatenated input was provided to an LSTM with 
256 units. The LSTM had two different outputs. The first output, the actor, is a 
linear layer with six units followed by a softmax activation function, which repre-
sents a categorical distribution over the agent’s next action. The second output, the 
critic, is a single linear unit that estimates the value function. Note that we refer to 
this as the ‘policy LSTM’ for brevity, even though it also outputs the value function.
Comparison agents. We compared the performance of the grid cell agent against 
two agents specifically because they use a different representational scheme for 
space (that is, place cell agent, place cell prediction agent), and relate to theoretical 
models of goal-directed navigation from the neuroscience literature (for exam-
ple42,43). We also compared the grid cell agent against a baseline deep reinforcement 
learning agent, Asynchronous Advantage Actor–Critic (A3C)41.
Place cell agent. The place cell agent architecture is shown in Extended Data Fig. 8b, 
and described in more detail in Supplementary Methods. In contrast to the grid 
cell agent, the place cell agent used ground truth information: specifically, the 
ground-truth place, ��ct, and head-direction,

��
ht, cell activations (as described above). 

These activity vectors were provided as input to the policy LSTM in an analogous 
way to the provision of grid codes in the grid cell agent.

Specifically, the output of the fully connected layer of the convolutional network ��et was concatenated with the reward rt, the previous action at−1, the ground-truth 
current place code, ��ct, and the current head-direction code, 

��
ht, together with the 

ground truth goal place code, ∗
��c , and ground truth head direction code, ∗

��
h , 

observed last time the goal was reached—or with zeros if the goal had not yet been 
reached in the episode (Extended Data Fig. 8b). The convolutional network had 
the same architecture as described for the grid cell agent.
Place cell prediction agent. The architecture of the place cell prediction agent (Extended 
Data Fig. 9a) is similar to that of the grid cell agent described above: the key difference 
is the nature of the input provided to the policy LSTM as described below. The place 
cell prediction agent had a grid cell network with the same parameters  

as that of the grid cell agent. However, instead of using grid codes from the linear 
layer of the grid network →g  as input for the policy LSTM (as in the grid cell agent), 
we used the predicted place cell population activity vector →y  and the predicted 
head direction population activity vector →z  (the activations present on the output 
place and head direction unit layers of the grid cell network at each timestep; see 
Supplementary Methods).

The critical difference between the place cell agent and the place cell prediction 
agent (see Extended Data Figs. 8b and 9a, respectively) is that the former used 
ground truth information (place and head direction cell activations for current 
location and goal location), whereas the latter used the population activity pro-
duced across the output place and head direction cell layers (for current location 
and goal location) by the linear layer of the same grid network as used by the grid 
cell agent.

A3C. We implemented the asynchronous advantage actor–critic architecture41 
with a convolutional network having the same architecture as described for the 
grid cell agent (Extended Data Fig. 8a).
Other agents. We also assessed the performance of two deep reinforcement learning 
agents with external memory (Extended Data Fig. 9b), which served to establish 
the challenging nature of the multi-compartment environments (goal-doors and 
goal-driven). First, we implemented a memory network agent (NavMemNet) con-
sisting of the FRMQN architecture3 but instead of Q-learning we used the A3C 
algorithm described below. Furthermore, the input to memory was generated as an 
output from the LSTM controller (Extended Data Fig. 9b), rather than constituting 
embeddings from the convolutional network (that is, as in ref. 3). The convolu-
tional network had the same architecture as described for the grid cell agent and 
the memory was formed of two banks (keys and values), each one with 1,350 slots.

Second, we implemented a differentiable neural computer (DNC) agent that 
uses content-based retrieval and writes to the most recently used or least recently 
used memory slot44.
Training algorithms. We used the A3C algorithm41, which implements a  
policy π (a|s, θ) and an approximation to its value function V (s, θ) using a neural 
network parameterised by θ. A3C adjusts the network parameters using n-step 
lookahead values, ∑ γ γ θ= +

= … −
+ +R r V sˆ ( , )t
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i
t
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 where LH  is a policy entropy regularization term 
(see Supplementary Methods for details of the reinforcement learning approach). 
The grid cell network and the vision module were trained with the same loss 
reported for the supervised learning: → → → →

= − ∑ −=L y z c h c y( , , , ) log( )i
N

i i1  
∑ = h zlog( )j

N
j j1 .

Agent training details. We followed closely a previously described approach41. Each 
experiment used 32 actor–critic learner threads running on a single CPU machine. 
All threads applied updates to their gradients every four actions (that is, action 
repeat of 4) using RMSProp with shared gradient statistics41. All the experiments 
were run for a total of 109 environment steps.

In architectures where the grid cell network and the vision module were present, 
we used a shared buffer45,46 in which we stored the agent’s experiences at each 
time-step, et = (φt, ut, vt), collected over many episodes. All the 32 actor–critic 
workers were updating the same shared buffer which had a total size of 20 × 106. 
The vision module was trained with mini batches of size 32 frames (φ

→
) sampled 

randomly from the replay buffer. The grid cell network was trained with mini 
batches of size 10, randomly sampled from the buffer, each one comprising a 
sequence of 100 consecutive observations, φ

→ → →u v[ , , ] . These mini batches were 
first forwarded through the vision module to get →c , and 

→
h , which were then 

passed through a masking layer that masked them to 0 with a probability of 95% 
(as described above in section on grid cell architecture). The output of this mask-
ing layer was then concatenated with ϕ ϕ→ → ° °

� ���� � ����
u v sin cos, , , , which were then used as 

inputs to the grid network, as previously described (see Extended Data Fig. 5 for 
details). Both networks were trained using one single thread, one to train the vision 
module and another to train the grid network (so in total we used 34 threads). Also, 
there was no gradient sharing between the actor–critic learners, the vision module 
and the grid network.

The hyperparameters of the grid cell network were kept fixed across all the 
simulations and were derived from the best performing network in the super-
vised learning experiments. For the hyperparameter details of the vision module,  
the grid network and the actor–critic learner, see Supplementary Table 2 in 
Supplementary Methods. For each of the agents in this paper, 60 replicas were 
run with hyperparameters sampled from the same interval and different initial 
random seeds.
Details of lesion experiment. To conduct a lesioning experiment in the agent, we 
trained the grid cell agent with dropout applied on the goal grid code input ��gt

. 
Specifically, every 100 training steps we generated a random mask to silence 20% 
of the units in the goal grid code (

∗
��g )—that is, units were zeroed. This procedure 

was implemented to ensure that the policy LSTM would become robust through 
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training to receiving a lesioned input (that is, would not catastrophically fail), and 
still be able to perform the task.

We then selected the agent with the best performance over 100 episodes, and 
we computed the grid score of all units found in →g . The critical comparison to test 
the importance of grid-like units to vector-based navigation was as follows. In one 
condition we ran 100 testing episodes where we silenced the 25% units in 

∗
��g  with 

the highest grid scores. In the other condition, we ran 100 testing episodes with 
the same agent with 25% random units in 

∗
��g  silenced. In this second case, we 

ensured that head direction cells with a resultant vector length of more than 0.47 
were not silenced, to preserve crucial head direction signals. We then compared 
the performance, and the representation of metrics relating to vector-based navi-
gation, of the agents under these two conditions.
Details of experiment using ‘fake’ goal grid code. To demonstrate that the goal grid 
code provided sufficient information to enable the agent to navigate to an arbitrary 
location, we took an agent trained in the square arena, froze the weights, and ran 
it in the same square arena for 5,400 steps. Critically, after the sixth time the agent 
reached the goal, we sampled the grid code from a random point that the agent 
visited in the environment (the fake goal grid code). We then substituted the true 
goal grid code with this fake goal grid code, to show that this would be sufficient 
to direct the agent to a location where there was no actual goal.
Agent performance. To evaluate agent performance during training (as in Figs. 2f, 
3e, f) we selected the 30 replicas (out of 60) with the highest average cumulative 
reward across 100 episodes. We also assessed the robustness of the architecture 
over different initial random seeds and the hyperparameters in Supplementary 
Methods Table 2 by calculating the area under the curve (AUC). To plot the AUC 
we ran 60 replicas with hyperparameters sampled from the same interval (see 
Supplementary Table 2 in Supplementary Methods) and different initial random 
seeds (Extended Data Fig. 7a–c).
Neuroscience-based analyses of network units. Generation of activity maps. 
Spatial (ratemaps) and directional activity maps were calculated for individual 
units as follows. Each point in the trajectory was assigned to a specific spatial 
and directional bin according to its location and the direction in which it faced. 
Spatial bins were defined as a 32 × 32 square grid spanning each environment and 
directional bins as 20 equal width intervals. Then, for each unit, the mean activity 
over all the trajectories points assigned to that bin was found. These values were 
displayed and analysed further without additional smoothing.
Inter-trial stability. For each unit, the reliability of spatial firing between baseline 
trials was assessed by calculating the spatial correlation between pairs of rate maps 
taken at two different logging steps in training (t = 2 × 105; t′ = 3 × 105). The total 
training time was 3 × 105, so the points were selected with enough time difference 
to minimize the chances of finding random correlations. The Pearson product 
moment correlation coefficient was calculated between equivalent bins in the two 
trials and unvisited bins were excluded from the measure.
Quantification of spatial activity. Where possible, we assessed the spatial modula-
tion of units using measures adopted from the neuroscience literature. The hex-
agonal regularity and scale of grid-like patterns were quantified using the gridness 
score18,20 and grid scale20, measures derived from the spatial autocorellogram20 of 
each unit’s ratemap. Similarly, the degree of directional modulation exhibited by 
each unit was assessed using the length of the resultant vector47 of the directional 
activity map. Finally, the propensity of units to fire along the boundaries of the 
environment was quantified using the border score48.

The gridness and border scores exhibited by units in the linear layer were 
benchmarked against the 95th percentile of null distributions obtained using a 
permutation procedure (spatial field shuffle49) applied to each unit’s ratemap. This 
shuffling procedure aimed to preserve the local topography of fields within each 
ratemap while distributing the fields themselves at random49. The means, over 
units, of the thresholds obtained were gridness >0.37 and border score >0.50. 
Units exceeding these thresholds were considered to be grid-like and border-like, 
respectively. To identify directionally modulated cells, we applied Rayleigh tests of 
directional uniformity to the binned directional activity maps. A unit was consid-
ered to be directionally modulated if the null hypothesis of uniform was rejected 
at the α = 0.01 level, corresponding to units with resultant vector length in excess 
of 0.47 (see Supplementary Methods).
Clustering of scale in grid-like units. To determine whether grid-like units exhibited 
a tendency to cluster around specific scales, we applied two methods. First, to 
determine whether the scales of grid-like units (gridness > 0.37, 129/512 units) 
followed a continuous or discrete distribution, we calculated the discreteness 
measure22 of the distribution of their scales (see Supplementary Methods). The 
discreteness score of the real data was found to exceed that of all of the 500 shuffles. 
Second, to characterize the number and location of scale clusters, the distribution 
of scales from grid-like units was fit with Gaussian mixture distributions, and 

three components were found to provide the most parsimonious fit, indicating the 
presence of three scale clusters (See Supplementary Methods).
Multivariate decoding of representation of metric quantities within LSTM. To test 
whether the grid agent learns to use the predicted vector based navigation (VBN) 
metric codes, we recorded the activation from the hidden units of the policy 
LSTM layer while the agent navigated 200 episodes in the land maze. We used 
L2-regularized (ridge) regression to decode Euclidean distance and allocentric 
direction to the goal (see Supplementary Methods for full decoding details). 
We specifically focused on twelve steps (steps 9–21) during the early portion of 
navigation, but after the agent has had time to accurately self-localize. It is this 
early period after the agent has reached the goal for the first time in which a 
VBN strategy should be most effective. We conducted the same analysis on the 
place cell agent control, which is not predicted to use vector-based navigation 
as efficiently. The decoding accuracy was measured as the correlation between 
predicted and actual metric values in held-out data. Decoding accuracy was 
compared across different agents by assessing the difference in decoding corre-
lations between the agents. A bootstrap method (using 10,000 samples) was used 
to compute a 95% confidence interval on this correlation difference, and these 
are reported for each comparison. The same approach was used to decode and 
compare these two metrics in the lesioned grid agents on the land maze. Finally, 
to explore VBN metrics in a more complex environment, the same method was 
applied to the goal-driven task. In this case we also investigated metric decoding 
in the control A3C agent.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Data availability statement. All reinforcement learning tasks described through-
out the paper were built using the publicly available DeepMind Laboratory plat-
form (https://github.com/deepmind/lab). Both the goal driven and goal doors 
tasks are included as part of the latest release, named explore_goal_locations, and 
explore_obstructed_goals, respectively.
Code availability statement. We will release the code for the supervised learning 
experiments within the next six months. The codebase for the deep reinforce-
ment learning agents makes use of proprietary components, and we are unable to 
publicly release this code. However, all experiments and agents are described in 
sufficient detail to allow independent replication.
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Extended Data Fig. 1 | Network architecture in the supervised learning 
experiment. The recurrent layer of the grid cell network is an LSTM with 
128 hidden units. The recurrent layer receives as input the vector 

ϕ ϕ→ ° °v[ , sin( ), cos( )] . The initial cell state and hidden state of the LSTM, 
��
l0 

and � ��m0, respectively, are initialized by computing a linear transformation 
of the ground truth place ��c0 and head-direction activity 

��
h0 at time 0. The 

output of the LSTM is followed by a linear layer on which dropout is 
applied. The output of the linear layer, ��gt

, is linearly transformed and 
passed to two softmax functions that calculate the predicted head direction 
cell activity, ��zt , and place cell activity, ��yt

. We found evidence of grid-like 
and head direction-like units in the linear layer activations ��gt

.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 2 | Linear layer spatial activity maps from the 
supervised learning experiment. Spatial activity plots for all 512 units in 
the linear layer ��gt

. Units exhibit spatial activity patterns resembling grid 

cells, border cells, and place cells. Head direction tuning was also present 
but is not shown.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 3 | Characterization of grid-like units in square 
environment and circular environment. a, The scale (assessed from the 
spatial autocorrelogram of the ratemaps) of grid-like units exhibited a 
tendency to cluster at specific values. The number of distinct scale clusters 
was assessed by sequentially fitting Gaussian mixture models with one to 
eight components. In each case, the efficiency of the fit (likelihood versus 
number of parameters) was assessed using Bayesian information criterion 
(BIC). BIC was minimized with three Gaussian components, indicating 
the presence of three distinct scale clusters. b, Spatial stability of units in 
the linear layer of the supervised network was assessed using spatial 
correlations— bin-wise Pearson product moment correlation between 
spatial activity maps (32 spatial bins in each map) generated at two 
different points in training, t = 2 × 105 and t′ = 3 × 105 training steps (two-
thirds of the way through training and at the end of training, respectively). 
This separation was imposed to minimize the effect of temporal 
correlations and to provide a conservative test of stability. Grid-like units 
(gridness > 0.37), blue; directionally modulated units (resultant vector 
length > 0.47, green. Grid-like units exhibit high spatial stability, while 
directionally modulated units do not. c, Robustness of the grid 

representation to starting conditions. The network was retrained 100 times 
with the same hyperparameters but different random seeds controlling the 
initialization of network weights, →c  and 

→
h . Populations of grid-like units 

(gridness > 0.37) were found to appear in all cases, with the average 
proportion of grid-like units being 23% (s.d. 2.8%). d, The supervised 
network was also trained in a circular environment (diameter 2.2 m). As 
before, units in the linear layer exhibited spatially tuned responses 
resembling grid, border, and head direction cells. Eight units are shown. 
Top, ratemap displaying activity binned over location. Middle, spatial 
autocorrelogram of the ratemap; gridness20 is indicated above. Bottom, 
polar plot of activity binned over head direction. e, Spatial scale of grid-
like units (n = 56 (21.9%)) is clustered. Distribution is best fit by a mixture 
of two Gaussians (centres 0.58 and 0.96 m, ratio 1.66). f, Distribution of 
directional tuning for 31 most directionally active units; single line for 
each unit indicates length and orientation of resultant vector47. 
g, Distribution of gridness and directional tuning. Dashed lines indicate 
95% confidence interval derived from shuffling procedure (500 
permutations); five grid units (9%) exhibit significant directional 
modulation.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 4 | Grid-like units did not emerge in the linear 
layer when dropout was not applied. Linear layer spatial activity maps 
(n = 512) generated from a supervised network trained without dropout. 

The maps do not exhibit the regular periodic structure diagnostic of grid 
cells.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 5 | Architecture of the grid cell agent. The 
architecture of the supervised network (grid network, light blue dashed) 
was incorporated into a larger deep reinforcement learning network, 
including a visual module (green dashed) and an actor–critic learner 
(based on A3C41; dark blue dashed). In this case the supervised learner 
does not receive the ground truth ��c0 and 

��
h0 to signal its initial position, 

but uses input from the visual module to self-localize after placement at a 
random position within the environment. Visual module: since 
experimental evidence suggests that place cell input to grid cells functions 
to correct for drift and anchor grids to environmental cues21,27, visual 
input was processed by a convolutional network to produce place cell (and 
head direction cell) activity patterns which were used as input to the grid 
network. The output of the vision module was only provided 5% of the 
time to the grid network (see Methods for implementational details), akin 
to occasional observations of salient environmental cues made by 

behaving animals27. The output of the vision module was concatenated 
with ϕ ϕ→ → ° °

� ���� � ����
u v sin cos, , ,  to form the input to the grid LSTM, which is the 

same network as in the supervised case (see Methods and Extended Data 
Fig. 1). The actor–critic learner (light blue dashed) receives as input the 
concatenation of ′

��
et  produced by a convolutional network with the reward 

rt, the previous action at−1, the linear layer activations of the grid cell 
network ��gt

 (current grid-code), and the linear layer activations observed 
last time the goal was reached, 

∗
��g (goal grid-code), which is set to zero if 

the goal has not been reached in the episode. The fully connected layer was 
followed by an LSTM with 256 units. The LSTM has two different outputs. 
The first output, the actor, is a linear layer with six units followed by a 
softmax activation function, which represents a categorical distribution 
over the agent’s next action π��t . The second output, the critic, is a single 
linear unit that estimates the value function vt.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 6 | Characterization of grid-like representations 
and robustness of performance for the grid cell agent in the square  
land maze environment. a, Spatial activity plots for the 256 linear layer 
units in the agent exhibit spatial patterns similar to grid, border, and  
place cells. b, Cumulative reward indexing goal visits per episode  
(goal, 10 points) when distal cues are removed (dark blue) and when 
distal cues are present (light blue). Performance is unaffected, hence 
dark blue largely obscures light blue. Average of 50% best agent replicas 
(n = 32) plotted (see Methods). The grey band displays the 68% CI based 
on 5,000 bootstrapped samples. c, Cumulative reward per episode when 

no goal code was provided (light blue) and when goal code was provided 
(dark blue). When no goal code was provided the agent performance 
fell to that of the baseline deep reinforcement learning agent (A3C) 
(100 episodes average score no goal code, 123.22 versus A3C, 112.06; 
effect size, 0.21; 95% CI, 0.18–0.28). Average of 50% best agent replicas 
(n = 32) plotted (see Methods). The grey band displays the 68% CI based 
on 5,000 bootstrapped samples. d, After locating the goal for the first time 
during an episode, the agent typically returned directly to it from each 
new starting position, showing decreased latencies for subsequent visits, 
paralleling the behaviour exhibited by rodents.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Letter reSeArCH

Extended Data Fig. 7 | Robustness of grid cell agent and performance of 
other agents. a–c, AUC performance gives robustness to hyperparameters 
(that is, learning rate, baseline cost, entropy cost; see Supplementary 
Table 2 in Supplementary Methods for details of the range) and 
seeds (see Methods). For each environment we run 60 agent replicas 
(see Methods). Light purple is the grid agent, blue is the place cell agent 
and dark purple is A3C. a, Square arena. b, Goal-driven. c, Goal doors. 
In all cases the grid cell agent shows higher robustness to variations in 
hyperparameters and seeds. d–i, Performance of place cell prediction, 

NavMemNet and DNC agents (see Methods) against grid cell agent. 
Dark blue is the grid cell agent (Extended Data Fig. 5), green is the place 
cell prediction agent (Extended Data Fig. 9a), purple is the DNC agent, 
light blue is the NavMemNet agent (Extended Data Fig. 9b). The grey 
band displays the 68% CI based on 5,000 bootstrapped samples. d–f, 
Performance in goal-driven. g–i, Performance in goal-doors. Note that the 
performance of the place cell agent (Extended Data Fig. 8b, lower panel) is 
shown in Fig. 3.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 8 | Architecture of the A3C and place cell agent. 
a, The A3C implementation is as described41. b, The place cell agent was 
provided with the ground-truth place, ��ct , and head-direction, 

��
ht , cell 

activations (as described above) at each time step. The output of the fully 
connected layer of the convolutional network ��et  was concatenated with the 

reward rt, the previous action at−1, the ground-truth current place code, ��ct , 
and current head-direction code, 

��
ht , together with the ground truth goal 

place code, ∗
��c , and ground truth head direction code, ∗

��
h , observed the last 

time the agent reached the goal (see Methods).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 9 | Architecture of the place cell prediction agent 
and of the NavMemNet agent. a, The architecture of the place cell 
prediction agent is similar to the grid cell agent, having a grid cell network 
with the same parameters as that of the grid cell agent. The key difference 
is the nature of the input provided to the policy LSTM. Instead of using 
grid codes from the linear layer of the grid network →g , we used the 
predicted place cell population activity vector →y , and the predicted head 
direction population activity vector →z , (the activations present on the 
output place and head direction unit layers of the grid cell network, 
corresponding to the current and goal position, respectively) as input for 

the policy LSTM. As in the grid cell agent, the output of the fully 
connected layer of the convolutional network, →e , the reward rt, and the 
previous action at−1, were also input to the policy LSTM. The 
convolutional network had the same architecture as described for the grid 
cell agent. b, NavMemNet agent. The architecture implemented is as 
described3, specifically FRMQN, but the A3C algorithm was used in place 
of Q-learning. The convolutional network had the same architecture 
described for the grid cell agent and the memory was formed of two banks 
(keys and values), each composed of 1,350 slots.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Fig. 10 | Flexible use of shortcuts. a, Overhead view of 
the linear sunburst maze in initial configuration, with only door 5 open. 
Example trajectory from grid cell agent during training (green line, icon 
indicates start location). b, Test configuration with all doors open; grid 
cell agent uses the newly available shortcuts (multiple episodes shown). 
c, Histogram showing proportion of times the agent uses each of the 
doors during 100 test episodes. The agent shows a clear preference for the 
shortest paths. d, Performance of grid cell agent and comparison agents 

during test episodes. e, f, Example grid cell agent (e) and example place 
cell agent (f) trajectory during training in the double E-maze (corridor 
1 doors closed). g, h, In the test phase, with all doors open, the grid cell 
agent exploits the available shortcut (g), while the place cell agent does 
not (h). i, j, Performance of agents during training (i) and test (j). k, l, The 
proportion of times the grid (k) and place (l) cell agents used the doors 
on the first to third corridors during test. The grid cell agent shows a clear 
preference for available shortcuts, while the place cell agent does not.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Score comparisons for the agent: 
For this analysis no a priori power calculations were conducted, as there is no substantive 
prior evidence to predict the effect sizes. So we ran 100 testing episodes, to ensure sufficient 
variability in the configuration of the environment -- in line with current practice for agent 
evaluation. Effect size are  reported. 
 
Metric code decoding analysis: 
For this analysis no a priori power calculations were conducted, as there is no substantive 
prior evidence to suggest the effected effect sizes. However, we note that for a correlation 
analysis, a sample size of 100 would be sufficient for an expected Pearson coefficient of 0.3 
or above (given alpha of 0.05, and beta of 0.2). 
 
Assessment of grid regularity (gridness) and grid scale: 
For this analysis no a priori power calculations were conducted. All units in the linear dropout 
layer of the 'grid cell network' were assessed to determine their gridness. Only units with 
gridness greater than the 99th percentile of a shuffled distribution (described in methods) 
were deemed to be 'grid-like' - following the procedure described in Barry et al, 2017 and 
other standard procedure (e.g. Yartsev et al., 2011)

2.   Data exclusions

Describe any data exclusions. Score comparisons for the agent: 
no data were excluded 
 
Metric code decoding analysis: 
No data were excluded. 
 
Assessment of grid regularity (gridness) and grid scale: 
All linear layer units were assessed for gridness - none were excluded. Assessment of grid 
scale was limited to units determined to be grid-like.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Supervised Learning experiments demonstrating grid-like representations: 
We ran 100 experiments using different network initializations showing the effect to be 
robust 
 
Deep reinforcement learning experiments: Agent Performance 
For all agents we ran many replicas and seeds in all environments to show that performance 
was robust. 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Score comparisons for the agent: 
Given the specific analysis there was no need to allocate the samples into different group 
 
Metric code decoding analysis: 
We compared three types of artificial agent. For each agent we were interested in mapping 
various metrics to the internal state on different episodes. There was therefore no allocation 
of samples into discrete groups.  
 



2

nature research  |  life sciences reporting sum
m

ary
N

ovem
ber 2017

Assessment of grid regularity (gridness) and grid scale: 
Given the specific analysis there was no need to allocate the samples into different group.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Score comparisons for the agent: 
No group allocation was involved.  
 
Metric code decoding analysis: 
No group allocation was involved.  
 
 
Assessment of grid regularity (gridness) and grid scale: 
No group allocation was involved.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Metric code decoding analyses were implemented using the Python toolbox Sklearn. 
Assessment of gridness and grid scale was conducted with bespoke code written in Matlab 
2016b. Agent comparison were conducted using Python

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used in the study.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in the study.
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in the study.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in the study.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used in the study.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used in the study.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used in the study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants
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