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1 - Supplementary Results for Vector-based Navigation using Grid-like Representations in Ar-645

tificial Agents.646

1a - Assessing path integration and goal-finding in a square arena To better understand the647

advantage conveyed by a grid-like representation, we trained the agent to navigate to an unmarked648

goal in a simple setting inspired by the classic Morris water maze (Fig. 2b&c; 2.5m⇥2.5m square649

arena; see Methods). The agent was trained in episodes to ensure it was able to generalize to650

arbitrary open field enclosures, each episode consisted of 5, 400 steps — corresponding to ap-651

proximately 90 s in total — after which the goal location, floor texture, and cue location were652

randomized. An episode started with the agent in a random location, requiring it to first explore653

in order to find an unmarked goal. Upon reaching the goal the agent was teleported to another654

random location and continued to navigate with the aim of maximising the number of times it655

reached the goal before the episode ended. In this setting self-localisation was more challenging.656

Previously, in experiment described above, information about the ground truth initial location was657

provided to initialise the LSTM, here the grid network learned to use visual information to de-658

termine the agent’s starting location and to correct for drift resulting from noise introduced to the659

velocity inputs (see Methods). Despite these differences the grid network continued to self-localize660

accurately, outputting place cell predictions consistent with the agent’s location (Fig. 2e).661

After locating the goal for the first time during an episode, the agent typically returned directly to it662

from each new starting position, showing decreased latencies for subsequent visits (average score663

for 100 episodes: grid cell agent = 289 vs place cell agent = 238, effect size = 1.80, 95% CI [1.63,664

1.99], Fig. 2h, Extended Data Figure 6d). Performance of the grid cell agent was substantially665
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better than that of a control place cell agent with homogeneous place fields tuned to maximize666

performance (see Supplemental Methods). Further, to additionally control for differences in the667

number and area of spatial fields between agents, we also generated two place cell agents – incor-668

porating 256 and 660 heterogeneously sized place fields – that were explicitly matched to the grid669

cell agent (see Supplemental Methods for details). Again, the performance of the grid cell agent670

was found to be considerably better than these additional place cell agents (Average score over 100671

episodes: grid cell agent = 289 vs. best place agent with 660 heterogeneous fields = 212, effect672

size = 3.93, 95% CI [3.54, 4.31]; best place agent with 256 heterogeneous fields = 225, effect size673

= 3.52, 95% CI [3.18, 3.87]).674

1b - Experimental manipulations to test the Vector-Based navigation hypothesis First, to675

demonstrate that the goal grid code provided sufficient information to enable the agent to navigate676

to an arbitrary location, we substituted it with a ”fake” goal grid code sampled randomly from a677

location in the environment (see Methods). The agent followed a direct path to the newly specified678

location, circling the absent goal (Fig. 2i) — similar to rodents in probe trials of the Morris water679

maze (escape platform removed). As a second test, we trained a grid cell agent without providing680

the goal grid vector to the policy LSTM, effectively ”lesioning” this code. Performance of the grid681

agent drops to that of the baseline deep RL agent (A3C - a standard deep RL architecture, trained682

without any grid or place cell input), confirming that the goal grid code is critical for vector based683

navigation (see Extended Data Fig. 6c). Thirdly, to confirm the presence of a goal-directed vector,684

we attempted to decode the scalar quantities composing the vector from the policy LSTM. Rea-685

soning that the goal directed vector would be particularly important at the start of a trajectory, we686
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focused on the initial portion of navigation after the agent had reached the goal and was teleported687

to a new location. We found that the policy LSTM of the grid cell agent contained representations688

of two key components of vector-based navigation (Euclidean distance, and allocentric goal direc-689

tion), and that both were more strongly present than in the place cell agent (Euclidean distance690

difference in r = 0.17; 95% CI [0.11, 0.24]; Goal direction difference in r = 0.22; 95% CI [0.18,691

0.26]; Figure 2j&k). Notably, a neural representation of goal distance has recently been reported692

in mammalian hippocampus29 (also see 49). To determine the behavioral relevance of these two693

metric codes, we examined the goal-homing accuracy in each episode over several steps immedi-694

ately following the period of metric decoding. We found that variation in both Euclidean distance695

(r = 0.22, 95% CI [-0.32, -0.09]) and allocentric goal direction (r = 0.22, 95% CI [-0.38, -0.15])696

decoding error correlated with subsequent behavioral accuracy. This suggests that stronger metric697

codes are indeed important for accurate goal-homing behavior.698

Finally, to determine the specific contribution of the grid-like units, we made targeted lesions to the699

goal grid code and reexamined performance and representation of the goal directed vector. When700

25% of the most grid-like units were silenced (see Methods), performance was worse than lesion-701

ing 25% at random (average score for 100 episodes: 126.1 vs. 152.5, respectively; effect size =702

0.38, 95% CI [0.34, 0.42]). Further, as expected, goal-directed vector codes were more strongly703

degraded (Euclidean distance: random lesions decoding accuracy r = 0.45, top-grid lesions de-704

coding accuracy r = 0.38, difference in decoding accuracy = 0.08, 95% CI [0.03, 0.13]). We also705

performed an additional experiment where the effect of the targeted grid lesion was compared to706

that of lesioning non-grid units with patchy firing (see Supplemental Methods - section 3d for the707
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details of the procedure). Our results show that the targeted grid cell lesion had a greater effect708

than the patchy non-grid cell lesion (average score for 100 episodes: 126.1 vs. 151.7, respectively;709

effect size = 0.38, 95% CI [0.34, 0.42]). These results support a role for the grid-like units in710

vector-based navigation, with the relatively mild impact on performance potentially accounted for711

by the difference in lesioning networks as compared to animals. Specifically, the procedure for712

lesioning networks differs in important respects from experimental lesions in animals — which713

bears upon the results observed. Briefly, networks have to be trained in the presence of an in-714

complete goal grid code and thus have the opportunity to develop a degree of robustness to the715

lesioning procedure – which would otherwise likely result in a catastrophic performance drop (see716

Methods). This opportunity is not typically afforded to experimental animals. This, therefore, may717

explain the significant but relatively small performance deficit observed in lesioned networks.718

1c - Comparison of grid cell agent with other agents in challenging, procedurally-generated719

multi-room environments Our comparison agents for the grid cell agent included an agent specif-720

ically designed to use a different representational scheme for space (i.e. place cell agent, see Ex-721

tended Data Figure 8b and see Methods), and a baseline deep RL agent (A3C 40, see Extended Data722

Figure 8a). The place cell agent relates to theoretical models of goal-directed navigation from the723

neuroscience literature (e.g.41, 42). A key difference between grid and place cell based models is724

that the former are proposed to enable the computation of goal-directed vectors across large-scale725

spaces7, 10, 11and50, whereas place cell based models are inherently limited in terms of navigational726

range (i.e. to the largest place field) and do not support route planning across unexplored spaces11.727

First, we test these three agents in the “goal-driven” maze (see Methods). The grid-cell agent ex-728
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hibited high levels of performance, and over the course of 100 episodes, attained an average score729

of 346.5 (video: https://youtu.be/BWqZwLQfwlM), beating both the place cell agent (average730

score 258.76; contrast effect size = 1.98, 95% CI [1.79, 2.18]) and the A3C agent (average score731

137.00; contrast effect size = 14.31, 95% CI [12.91, 15.71]). The grid cell agent showed markedly732

superior performance compared to the other agents in the “goal-doors” maze (average score over733

100 episodes: grid cell agent = 284.30 vs place cell agent = 90.53, effect size = 7.86, 95% CI734

[7.09, 8.63]; A3C agent = 48.69, effect size = 7.73, 95% CI [6.97, 8.48]) (video of grid cell agent:735

https://youtu.be/BWqZwLQfwlM). Interestingly, therefore, the enhanced performance of the grid736

cell agent was particularly evident when it was necessary to recompute trajectories due to changes737

in the door configuration, highlighting the flexibility of vector-based navigation in exploiting ad738

hoc short-cuts (Fig. 3f).739

The grid cell agent exhibited stronger performance than a professional human player in both “goal-740

driven” (average score: grid cell agent = 346.50 vs. professional human player = 261, effect size741

= 4.00, 95% CI [3.50, 4.52]) and “goal-doors” (average score: grid cell agent = 284.30 vs. profes-742

sional human player = 240.5, effect size = 2.49, 95% CI [2.18, 2.81]). The human expert received743

10 episodes worth of training in each environment before undergoing 20 episodes of testing. This744

is considerably less training than that experienced by the network. Importantly, however, the mam-745

malian brain has evolved to path integrate and naturally the human expert had a lifetimes worth of746

relevant navigational experience. Hence, although directly drawing concrete conclusions from rel-747

ative performance of human and agents is necessarily difficult, providing human-level performance748

is useful as a broad comparison and represents a commonly used benchmark in similar papers44.749
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We also tested the ability of agents trained on the standard environment (11⇥ 11) to generalise to750

larger environments (11 ⇥ 17, corresponding to 2.7 ⇥ 4.25 meters) (see Methods). The grid cell751

agent exhibited strong generalistion performance compared to the control agents (average score752

over 100 episodes grid cell agent = 366.5 vs place cell agent = 175.7, effect size = 4.60, 95% CI753

[4.16, 5.06]; A3C agent = 219.4, effect size = 3.78, 95% CI [3.41, 4.15]).754

We assessed the performance of two deep RL agents with external memory3,43 (see Extended Data755

Figure 9b). Whilst these agents were trained purely using RL — that is, they did not utilize super-756

vised learning implemented by the grid cell agent — their relatively poor performance illustrates757

the challenge posed by the environments used (i.e. goal-driven and goal-doors) and shows that is758

not readily solved by the use of external memory alone. Importantly, this also serves to highlight759

the substantial advantage afforded to agents that can exploit vector-based mechanisms grounded760

in a grid-cell based Euclidean framework of space — and the potential for future work to examine761

the combination of such navigational strategies with more memory-intensive approaches. We also762

compare the grid cell agent with a variation of the place cell agent which used the predicted place763

cell and head direction cell as input to the Policy LSTM instead of the ground truth information764

(see Extended Data Figure 9a and Supplementary Methods). This agent exhibited substantially765

poorer performance than the grid agent.766

Further, decoding accuracy was substantially and significantly higher in the grid cell agent than767

both the place cell (Euclidean distance difference in r = 0.44; 95% CI [0.37, 0.51]; Goal direction768

difference in r = 0.52; 95% CI [0.49, 0.56]) and deep RL (Euclidean distance difference in r =769

0.57; 95% CI [0.5, 0.63]; Goal direction difference in r = 0.66; 95% CI [0.62, 0.70]) control agents770
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(Figure 3j&k).771

1d - Probe mazes assessing ability to take novel shortcuts A core feature of mammalian spatial772

behaviour is the ability to exploit novel shortcuts and traverse unvisited portions of space9, a capac-773

ity thought to depend on vector-based navigation9, 11. To assess this, we examined the ability of the774

grid cell agent and comparison agents to use novel shortcuts when they became available in specif-775

ically configured probe mazes (see Methods for details). First, agents trained in the goal-doors776

environment were exposed to a linearized version of Tolman’s sunburst maze. The grid cell agent,777

but not comparison agents, was reliably able to exploit shortcuts, preferentially passing through778

the doorways that offered a direct route towards the goal (Fig. 4a-c, and Extended Data Figure 10).779

The average testing score of the grid cell agent was higher than that of the place agent (124.1 vs780

60.9, effect size = 1.46, 95% CI [1.32, 1.61]) and of the A3C agent (124.1 vs. 59.7, effect size =781

1.51, 95% CI [1.36, 1.66]).782

Next, to test the agents’ abilities to traverse a previously unvisited section of an environment,783

we employed the “double-E shortcut” maze (Fig. 4d-f, and Extended Data Figure 10e-l). During784

training, the corridor presenting the shortest route to the goal was closed at both ends, preventing785

access or observation of the interior. In this simple configuration the grid and place cell agents786

performed similarly, exceeding the RL control agent (Extended Data Figure 10i). However, at test,787

when the doors were opened, the grid cell agent was able to exploit the short-cut corridor, whereas788

the control agents continued to follow the longer route they had previously learnt (Extended Data789

Figure 10j-l). In the “double-E shortcut” maze performance does not significantly differ between790

the grid and place cell agents, but both are significantly better than the A3C control (grid cell791
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agent vs. place cell agent, effect size = 0.27, 95% CI [0.24, 0.29]; grid cell agent vs. A3C agent,792

effect size = 2.99, 95% CI [2.69, 3.29]; place cell agent vs. A3C agent, effect size = 2.92, 95%793

CI [2.63, 3.21]). When shortcuts become available in the test phase, the grid cell agent performs794

significantly better than the place agent (grid cell agent vs. place cell agent, effect size = 1.89, 95%795

CI [1.69, 2.09]; grid cell agent vs. A3C agent, effect size = 12.77, 95% CI [11.48, 14.07]; place796

cell agent vs. A3C agent, effect size = 14.87, 95% CI [13.35, 16.38]).797

2 - Supplementary Discussion for Vector-based Navigation using Grid-like Representations in798

Artificial Agents.799

2a - Backpropagation through time (BPTT) Whilst backpropagation provides a powerful mech-800

anism for adjusting the weights within hierarchical networks analogous to those found in the brain801

(e.g. the ventral visual stream), it has long been thought to be biologically implausible for several802

reasons: for example, it requires access to information that is non-local to a synapse (i.e. informa-803

tion about errors many layers downstream). However, recent research in several directions have804

provided fresh new insights into how a process akin to backpropagation may be implemented in805

the brain 51. Whilst less research has been conducted into how BPTT could be implemented in the806

brain, recent work points to potentially promising avenues that deserve further exploration 52.807

2b - Relationship to previous models of grid cells Our work contrasts with previous approaches808

where grid cells have been hard-wired53–56and57, derived through eigendecomposition of place809

fields58, 59, or arisen through self organization in the absence of an objective function60. It is worth810

noting that our experiments were not designed to provide insights into the development of grid811
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cells in the brain — due to the limitations of the training algorithm used (i.e. backpropagation) in812

terms of biological plausibiliy (although see 61). More generally, however, our findings accord with813

the perspective that the internal representations of individual brain regions such as the entorhinal814

cortex arise as a consequence of optimizing for specific ethologically important objective functions815

(e.g. path integration) — providing a parallel to the optimization process in neural networks62.816
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3 - Supplementary Methods for Vector-based Navigation using Grid-like Representations in817

Artificial Agents.818

3a - Navigation through Deep RL819

Probe mazes to test for shortcut behavior The first maze used to test shortcut behaviour was a820

linearized version of Tolman's sunburst maze63 (Fig. 4a). The maze was used to determined if the821

agent was able to follow an accurate heading towards the goal when a path became available. The822

maze was size 13⇥13 and contained 5 evenly spaced corridors, each of which had a door at the823

end closest to the start position of the agent. The agent always started on one side of the corridors824

with the same heading orientation (North; see Fig 4a) and the goal was always placed in the same825

location on the other side of the corridors. Until the agent reached the goal the first time only one826

door was open (door 5, Fig. 4a), but after that all the doors were opened for the remainder of the827

episode. After reaching the goal, the agent was teleported to the original position with the same828

heading orientation. This maze was used to test the shortcut capabilities of agents that had been829

previously trained in the ”goal doors” environment. All the agents were tested in the maze for 100830

episodes, each one lasting for a fixed duration of 5, 400 environment steps (90 seconds).831

The second maze, termed double E-maze, was designed to test the agents abilities to traverse832

a previously unvisited section of an environment. The maze was size 12⇥13 and was formed833

of 2 symmetric sides each one with 3 corridors. The goal location was always on the bottom834

right or left, and the location was randomized over episodes. During training, the left and right835

corridors closest to the bottom (i.e. those providing the shortest paths to the goals) were always836
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closed from both sides to avoid any exploration down these corridors (see Extended Data Figure837

10e&f). This ensured any subsequent shortcut behavior had to traverse unexplored space. Of the838

remaining corridors, at any time, on each side only one was accessible (top or middle, randomly839

determined). Each time the agent reached the goal, the doors were randomly configured again840

(with the same constraints). The agent always started in a random location in the central room841

with a random orientation. At test time, after the agent reached the goal for the first time, all842

corridors were opened, allowing potential shortcut behavior (see Extended Data Figure 10g&h).843

During the test phase, the agent always started in the center of the central room facing north. Each844

agent was trained for 1e9 environment step divided into episodes of 5, 400 steps (90 seconds), and845

subsequently tested for 100 episodes, each one lasting for a fixed duration of 5, 400 environment846

steps (90 seconds).847

3b - Additional information about Agent Architectures848

Details of vision module in the grid cell agent The convolutional neural network had four con-849

volutional layers. The first convolutional layer had 16 filters of size 5⇥5 with stride 2 and padding850

2. The second convolutional layer had 32 filters of size 5 ⇥ 5 with stride 2 and padding 2. The851

third convolutional layer had 64 filters of size 5⇥ 5 with stride 2 and padding 2. Finally, the fourth852

convolutional layer with 128 filters of size 5 ⇥ 5 with stride 2 and padding 2. All convolutional853

hidden layers were followed by a rectifier nonlinearity. The last convolution was followed by a854

fully connected layer with 256 hidden units. The same convolutional neural network was used for855

the actor-critic learner. The weights of the two network were not shared.856
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Further details about the place cell agent Place cell agent with homogeneously sized place857

fields: we tested agents with fields — modelled as regular 2D Gaussians — having standard devi-858

ations of 7.5cm, 25cm, and 75cm bins. The agent with fields of size 7.5cm was found to perform859

best (highest cumulative reward on the Morris water maze task; see Supplemental Results) and860

hence was chosen as the primary place cell control agent (see main text for score comparisons).861

Place cell agent with heterogeneously sized place fields: to control for differences in the num-862

ber and area of spatial fields between agents, we also generated two further place cell agents that863

were explicitly matched to the grid cell agent. Specifically, we used a watershedding algorithm64
864

to detect 660 individual grid fields in the grid-like units of the grid cell agent. The distribution865

of the areas of these fields were found to exhibit 3 peaks — based on a Gaussian fitting proce-866

dure — having means equivalent to 2D Gaussians with standard deviations of 8.2cm, 15.0cm, and867

21.7cm. Hence we generated a further control agent having 395 place cells of size 8.2cm, 198868

of size 15.0cm, and 67 of 21.7cm — 660 place cells in total, the relative numbers reflecting the869

magnitudes of the Gaussians fit to the distribution. A final control agent was also generated having870

256 place cell units in total — the same number of linear layer units as the grid agent — distributed871

across the same three scales in a similar ratio. Additionally, we note that from a machine learn-872

ing perspective, the place cell and grid cell agents with the same number of linear layer units are873

in principle well matched since they are provided with the same input information and have an874

identical number of parameters.875

Place cell prediction agent. The architecture of the place cell prediction agent (Extended Data876

Figure 9a) is similar to the grid cell agent described in the Methods : the key difference is the877
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nature of the input provided to the policy LSTM as described below. Specifically, the output of the878

fully connected layer of the convolutional network, ~et, was concatenated with the reward rt, the879

previous action at � 1, the current predicted place cell activity vector, ~yt, and the current predicted880

head direction cell activity vector ~ht — and the goal predicted place cell activity vector , ~y⇤, and881

goal head direction activity vector, ~h⇤, observed the last time the agent had reached the goal — or882

zeros if the agent had not yet reached the goal within the episode. The convolutional network had883

the same architecture described for the grid cell agent.884

3c - Training algorithms885

We assume the standard reinforcement learning setting where an agent interacts with an environ-886

ment over a number of discrete time steps. As previously defined the at time t the agent receives887

an observation ot along with a reward rt and produces an action at. The agent’s state st is a func-888

tion of its experience up until time t, st = f(o1, r1, a1, ..., ot, rt) (The specifics of ot are defined889

in the architecture section). The n-step return Rt:t+n at time t is defined as the discounted sum of890

rewards, R̂t =
P

i=0...n�1
�
i
rt+i + �

n
V (st+n, ✓). The value function is the expected return from891

state s, V ⇡(s) = E[Rt:1|st = s, ⇡], under actions selected accorded to a policy ⇡(a|s). See main892

methods for the details of the loss functions.893

3d - Neuroscience-based analyses of units894

Gridness score and grid scale calculation Following 20 and 18 spatial autocorrelograms of895

ratemaps were used to assess the gridness and grid scale of linear layer units. First, for each unit,896

the spatial autocorrelogram was calculated as defined in 20. To calculate gridness20, a measure897
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of hexagonal periodicity, we followed the ’expanding gridness’ method introduced by 18. Briefly,898

a circular annulus centred on the origin of the autocorrelogram was defined, having radius of 8899

bins and with the central peak excluded. The annulus was rotated in 30� increments and, at each900

increment, the Pearson product moment correlation coefficient with the unrotated version of itself901

found. An interim gridness value was then defined as the highest correlation obtained from ro-902

tations of 30, 90 and 150� subtracted from the lowest at 0, 60 and 120�. This process was then903

repeated, each time expanding the annuls by 2, up to a maximum of 20. Finally, the gridness value904

was taken as the highest interim score.905

Grid scale20, a simple measure of the wavelength of spatial periodicity, was defined from the906

autocorrelogram as follows. The six local maxima closest to but excluding the central peak were907

identified. Grid scale was then calculated as the median distance of these peaks from the origin.908

Directional measures Following46 the degree of directional modulation exhibited by each unit909

was assessed using the length of the resultant vector of the directional activity map. Vectors corre-910

sponding to each bin of the activity map were created:911

ri =

2

664
�i cos↵i

�i sin↵i

3

775 , (6)

where ↵ and � are, respectively, the centre and intensity of angular bin i in the activity map. These

vectors were averaged to generate a mean resultant vector:

~r =

PN
n=1

riPN
n=1

�i

, (7)

and the length of the resultant vector calculated as the magnitude of ~r. We used 20 angular bins.912
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Border score To identify units that were preferentially active adjacent to the edges of the enclo-

sure we adopted a modified version of the border score47. For each of the four walls in the square

enclosure, the average activation for that wall, bi, was compared to the average centre activity c

obtaining a border score for that wall, and the maximum was used as the border-score for the unit:

bs = max
i2{1,2,3,4}

bi � c

bi + c
(8)

where bi is the mean activation for bins within db distance from the i-th wall and c the average913

activity for bins further than db bins from any wall. In all our experiments 20 by 20 bins where914

used and db took value 3.915

Threshold setting for gridness, border score, and directional measures The hexagonality of916

the spatial activity map (gridness), directional modulation (length of resultant vector), and propen-917

sity to be active against environmental boundaries (border scale) exhibited by units in the linear918

layer were benchmarked against null distributions obtained using permutation procedures6548.919

For the gridness measure and border score, null distributions were constructed using a ’field920

shuffle’ procedure equivalent to that specified by48. Briefly, a watershedding algorithm64 was ap-921

plied to the ratemap to segment spatial fields. The peak bin of each field was found and allocated922

to a random position within the ratemap. Bins around each peak were then incrementally replaced,923

retaining as far as possible their proximity to the peak bin. This procedure was repeated 100 times924

for each of the units present in the linear layer and the gridness and border score of the shuffled925

ratemaps assessed as before. In each case the 95th percentile of the resulting null distribution was926

found and used as a threshold to determine if that unit exhibited significant grid or border-like927
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activity.928

To validate the thresholds obtained using shuffling procedures we calculated alternative null929

distributions by analysing the grid and border responses of linear units from 500 untrained net-930

works. Again, in each case, a grid score and border score for each unit was calculated, these were931

pooled, and the 95th percentile found. In all cases the thresholds obtained by the first method were932

found to be most stringent and these were used for all subsequent analyses933

To establish a significance threshold for directional modulation we calculated the length of934

the resultant vector that would demonstrate statistically significance under a Rayleigh test of direc-935

tional uniformity at ↵ = 0.01. The resultant vector was calculated by first calculating the average936

activation for 20 directional bins. A threshold length of 0.47 for the resultant vector was obtained.937

The most stringent of these two thresholds was used.938

Clustering of scale in grid-like units To determine if grid-like units exhibited a tendency to939

cluster around specific scales we applied two methods.940

First, following 22, to determine if the scales of grid-like units (gridness > 0.37, 129/512941

units) followed a continuous or discrete distribution we calculated the ’discreteness measure’22
942

of the distribution of their scales. Specifically, scales were binned into a histogram with 13 bins943

distributed evenly across a range corresponding to scales 10 to 36 spatial bins. ’Discreteness’944

was defined as the standard deviation of the counts in each bin. Again following22, statistical945

significance for this value was obtained by comparing it to a null distribution generated from a946

shuffled version of the same data. Specifically, shuffles were generated as follows: For each unit, a947
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random number was drawn from a flat distribution between -1/2 and +1/2 of the smallest grid scale948

in this case between -7 and +7 spatial bins. The random number was added to the grid scales,949

the population was binned as before, and the discreteness score calculated. This procedure was950

completed 500 times. The discreteness score of the real data was found to exceed that of all the951

500 shuffles (p< 0.002).952

Second, to characterise the number and location of scale clusters, the distribution of scales953

from grid-like units was fit with Gaussian mixture distributions containing 1 to 8 components.954

Fits were made using an Expectation-Maximization approach implemented with fitgmdist (Matlab955

2016b, Mathworks, MA). The efficiency of fits made with different numbers of components was956

compared using Bayesian Information Criterion (BIC)66 the model (3 components) with the lowest957

BIC score was selected as the most efficient.958

Lesioning experiment: comparison of targeted grid unit lesion vs lesion of patchy non-grid959

units We lesioned a random subset of patchy multi-field spatial cells that were non-grid units (i.e.960

grid score lower than 0.37 threshold). The units chosen had a head-direction score lower than 0.47961

and the number of spatial fields was in the same range as grid-like units (3 to 13). The number962

of fields in each ratemap was calculated by applying a watershedding algorithm64 to their ratemap963

– ignoring fields with area smaller than 4 bins. This procedure identified 174 units as multi-964

field patchy spatial cells (out of 256 units in the linear layer). We then selected 64 random units965

from these 174 and we ran 100 episodes in which these units were silenced (see Supplemental966

Results section 1b). We also ran another variant of the experiment where we ran 100 episodes967

and in each episode we selected a different subset of 64 random units from the 174 identified by968
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the watershedding procedure, and these units were silenced. The results were not qualitatively969

different from the former experiment (data not shown).970

3e - Multivariate decoding of representation of metric quantities within LSTM971

A key prediction of the vector-based navigation hypothesis is that grid codes should allow down-972

stream regions to compute a set of metric codes relevant to accurate goal-directed navigation.973

Specifically, Euclidean distance and allocentric direction to the goal should both be computed by974

an agent using vector-based navigation (see Fig. 2j&k also 3i-k). To test whether the same rep-975

resentations can be found in the grid cell agent, and thereby provide additional evidence that it is976

indeed using a vector-based navigation strategy, we recorded the activity in the policy LSTM of977

the grid cell agent while it navigated in the land-maze and goal-driven environments. For each en-978

vironment and agent, we collected data from 200 separate episodes. In each episode, we recorded979

data from the time period following the first time the agent reached the goal and was teleported to980

a new location in the maze. After an initial period to allow self-localization (8 steps), we exam-981

ined the representation of the metric quantities over the next 12 steps, where the LSTM activity982

was sampled at 4 even points over those steps. We focussed on this time period because the agent983

potentially has knowledge of the goal location, but has not yet been able to learn the optimal path984

to the goal. Thus it is this initial period of time where the computation of the vector-based naviga-985

tion metrics should be most useful, as this allows accurate navigation right from the start of being986

teleported to a new location. In the land maze task, we additionally collected the same data from a987

place cell agent control, and the two lesioned grid cell agents. In the goal driven task, we collected988

data from the place cell agent and A3C. For each agent, we applied a decoding analysis to the989
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LSTM dictating the policy and value function. We ran two separate decoding analyses, looking990

for evidence of each of the two metric codes (i.e. Euclidean distance, allocentric goal direction).991

For each decoding analysis we trained a L2-regularized (ridge) regression model on all data apart992

from the first 21 time-steps of each episode. The model was then tested on the four early sampling993

steps of interest, where accuracy was assessed as the Pearson correlation between the predicted994

and actual values over the 200 episodes. The penalization parameter was selected by randomly995

splitting the training data into internal training and validation sets (90% and 10% of the episodes996

respectively). The optimal parameter was selected from 30 values, evenly spaced on a log scale997

between 0.001 and 1000, based on the best performance on the validation set. This parameter was998

then used to train the model on the full training set, and evaluated on the fully independent test set.999

As the allocentric direction metric is circular, we decomposed the vector into two target variables:1000

the cosine and sine of the polar angle. All reported allocentric decoding results are the average1001

of the cosine and sine results. For the purpose of comparing decoding accuracy across agents,1002

we report the difference in accuracy, along with a 95% bootstrapped confidence interval on this1003

difference, based on 10,000 samples.1004

3f - Statistical reporting1005

We followed the guidelines outlined by67. Specifically reporting effect sizes and confidence in-

tervals. Unless otherwise stated, the effect sizes are calculated using the following formula:

effect size =
µgroup1 � µgroup2

�pooled
, (9)
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and the �pooled was calculated accordingly to68 using:

�pooled =

s
(Ngroup1 � 1)⇥ �

2

group1 + (Ngroup2 � 1)⇥ �
2

group2

Ngroup1 +Ngroup2 � 2
(10)

The confidence interval for the effect size was calculated accordingly to69 using:

cieffectsize =

s
Ngroup1 +Ngroup2

Ngroup1 ⇥Ngroup2
+ +

effect size2

2⇥ (Ngroup1 +Ngroup2)
. (11)
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Parameter name Value Description

T 15 Duration of simulated trajectories (seconds)

L 2.2 Width and height of environment, or diameter for circular environment (meters)

d 0.03 Perimeter region distance to walls (meters)

�
(v) 0.13 Forward velocity Rayleigh distribution scale (m/sec)

µ
(�) 0 Rotation velocity Gaussian distribution mean (deg/sec)

�
(�) 330 Rotation velocity Gaussian distribution standard deviation (deg/sec)

⇢RH
0.25 Velocity reduction factor when located in the perimeter

�RH
90 Change in angle when located in the perimeter (deg)

�t 0.02 Simulation-step time increment (seconds)

N 256 Number of place cells

�
(c) 0.01 Place cell standard deviation parameter (meters)

M 12 Number of target head direction cells


(h) 20 Head direction concentration parameter

gc 10�5 Gradient clipping threshold

minibatch size 10 Number of trajectories used in the calculation of a stochastic gradient

trajectory length 100 Number of time steps in the trajectories used for the supervised learning task

learning rate 10�5 Step size multiplier in the RMSProp algorithm

momentum 0.9 Momentum parameter of the RMSProp algorithm

L2 regularisation 10�5 Regularisation parameter for linear layer

parameter updates 300000 Total number of gradient descent steps taken

Table 1: Supervised learning hyperparameters.
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Parameter name Value Description

Learning rate [0.000001, 0.0002] Step size multiplier in the shared RMSProp algo-

rithm

of the actor-critic learner with a break

Gradient momentum 0.99 Momentum parameter of the shared RMSProp algorithm

Baseline cost [↵] [0.48, 0.52] Cost applied on the gradient of v

Entropy regularisation [�] [0.00006, 0.0001] Entropy regularization term with respect

to the policy parameters

Discount 0.99 Discount factor gamma used in the value function estimation

Back-propagation step in the actor-critic learner 100 Number of backpropagation step used to unroll the LSTM

Action repeat 4 Repeat each action selected bu the agent this many times

Learning rate grid network 0.001 Step size multiplier in the

RMSProp algorithm of the supervised learner

�(c) 40 Place cell scale

M 12 Number of target head direction cells

(h) 20 Head direction concentration parameter

Back-propagation step in the supervised learner 100 Number of time steps in

the trajectories used for the supervised learning

task

L2 regularization 0.0001 Regularization parameter for linear layers in bottleneck

Gradient momentum 0.9 Momentum parameter of the RMSProp

algorithm in the supervised learner

Table 2: Hyperparameters of all the agents presented. Values in square bracket are sampled from a

categorial distribution in that range
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