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following cleaning-procedure implementation 2769. Although
intermittent turbulent flow is observed near the end of the cone, no
propagating turbulent bursts are visible during the experiment. The
location of the FLDI is marked with an “X” at 718 mm from the tip.
The boundary-layer edge conditions for these two shots are recorded
in Table 1.
In test 2702 with a dirty shock tube, a turbulent spot is observed to

propagate downstream, crossing the location of the FLDI sensor at
the same time the broadband response is observed in the spectrogram
for test 2702 (Figs. 2a and 3 at∼1250–1350 s). This spot is generated
independently of the other transition events that are typically
observed in natural transition, and is therefore believed to be the
result of particulate impact on the boundary layer during the test time,
following the mechanism outlined by Fedorov [22]. The large
amplitude of the FLDI signal correlates with elevated heat transfer as
the turbulent spot passes the thermocouples nearest the FLDI
sensitive region, as shown in Fig. 5, lending confidence to the
conclusion that the FLDI and heat-flux gauges are measuring the
same turbulent spot.
In contrast, in test 2769 with a clean shock tube, no turbulent spots

are observed near the FLDI during the test time, although intermittent
turbulent flow typical of natural modal transition is observed near the
end of the cone. This observation is consistent with the lack of
broadband response observed in the spectrogram for test 2769
(Figs. 2b and 4). The spot in test 2702 is first observed at a location on
the cone where stability computations [43] find that N ≈ 4, which
indicates that it is unlikely to be the result of modal transition,
whereas the natural transition front in test 2769 is observed at a
location where N ≈ 10.

V. Transition Onset Correlations

To test our hypothesis of tunnel cleaning improving transition
location repeatability, we carried out a statistical analysis of a total
of 74 tests before (n � 40) and after (n � 34) improvements in the
cleaning regimen. Evidence of correlation between transition
location, tunnel parameters, and tunnel cleanliness is sought using
reverse-stepwise regression [44] as implemented in MATLAB [45].

The p value required to remove a parameter from the regression
is 0.1.
The predictor parameters chosen to seek correlationwith transition

Reynolds numbers are reservoir pressurePres; reservoir enthalpyhres;
and x3, which is a cleaning status indicator variable consisting of a

vector of ones and zeros, where one and zero designate an experiment

performed before and after the cleaning procedurewas implemented,
respectively. The three predictor values, as well as the three cross

terms, are included in themodel’s initial state. If the cleaning variable,

or a cross term with the cleaning variable, remains in the final model
after reverse-stepwise regression, this is a statistically significant

indication that the cleaning procedure affects the resulting response

variables, which are ReTr and Re�Tr. ReTr and Re�Tr are the edge
Reynolds numbers at the transition onset location and the Reynolds

number evaluated at reference conditions at the transition onset
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Fig. 4 Heat-flux spatial distributions, test 2769. Intermittent turbulent bursts, but no propagating spots, are observed. “X” indicates FLDI location.

Table 1 Summary of edge conditions for tests 2702 and 2769 in air

Test hres,MJ∕kg Pres, MPa Ue, m∕s Pe, kPa Te, K Tve, K ρe, kg=m
3 Me Unit Ree, 1∕m

2702 8.45 49.9 3680 36.9 1420 1420 0.090 4.84 6.34 × 106

2769 10.5 60.8 4030 47.1 1830 1830 0.092 4.66 6.00 × 106

e, edge; v, vibrational.
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Fig. 5 Interpolated heat-flux from test 2702 compared to FLDI. A
turbulent spot at 1.3 ms elevates local heat transfer and broadband
density disturbance.
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location, respectively. Stepwise regression is performed twice: once
with each transition Reynolds number as the response variable.
The reverse-stepwise regressionmodel forReTr retainedPres, hres,

and x3, as well as thePres · x3 andhres · x3 cross terms, indicating that
the null hypothesis of a zero coefficient is rejected for pressure,
enthalpy, and tunnel cleanliness. The rearward-stepwise regression
model for Re�Tr retained Pres, hres x3, and the hres · x3 cross term,
indicating that the null hypothesis of a zero coefficient is rejected for
pressure, enthalpy, and tunnel cleanliness. In both cases, the pressure
and enthalpy cross term is excluded from the final model, which
indicates that reasonable linear models for both transition Reynolds
numbers may be constructed using only the pressure and enthalpy
parameters if the data are divided into precleaning regimen and post-
cleaning regimen data subsets to eliminate the influence of x3 and the
two x3 cross terms.
The coefficient of determination of correlation between the tunnel

parameters and the transition Reynolds number was used as a metric
of repeatability within each data subset. A higher coefficient of
determination indicates higher repeatability. Jewell et al. [26,46]
showed that the tunnel parameters hres (reservoir enthalpy) and Pres

(reservoir pressure) could be used as predictor variables to construct
statistically significant linear models of the transition Reynolds
number ReTr for both the present datasets and the historical T5
transition data ofGermain andHornung [17] andAdam andHornung
[18] for air,CO2, andN2. In the present work, only air transition data
are considered. These linear models take the form

ReTr�Pres; hres� � Reintercept � CPres
Pres � Chreshres

Here, the constant coefficients that define the regression plane,
CPres

, Chres , and the Reynolds number intercept are computed via
multivariable-linear regression as implemented in MATLAB. The
complete model results for the data acquired before the implemen-
tation of new shock-tube cleaning procedures are recorded in Table 2,
and the results for the data acquired after the implementation of the
cleaning procedures are recorded in Table 3. Both the ReTr and Re

�
Tr

models have normally distributed errors, and each set of residuals
exhibits limited heteroskedasticity.
The position of the best-fit Reynolds number plane computed

relative to the hres-Pres plane (i.e, the intercept) is 5.90 × 105 for the
dirty tunnel data and 1.83 × 106 for the clean tunnel data. The larger
intercept value for the clean results is an indication that the tunnel
cleaning procedure tends to increase the transition onset Reynolds
number. Moreover, the clean tunnel results show less dispersion than
the dirty results, which is consistent with the stochastic effect that
would be expected in dirty flow from an unknown and probably
inconsistent variation in particle size and number density. Linear

regression analysis performed using the tunnel parameters, reservoir
enthalpy hres, and reservoir pressure Pres, as the predictor variables
and the edge Reynolds number at the transition onset location ReTr
as the response variable had a modeled R2 value of 0.50 for the
experiments before cleaning procedure implementation and an R2

value of 0.80 subsequent to the implementation of the cleaning
procedure. When the same regression analysis is performed using
the Reynolds number calculated at reference conditions at the
transition onset location Re�Tr, R

2 � 0.70 before cleaning procedure
implementation and R2 � 0.86 subsequently.
Transition onset measurements, the full details of which were

described by Jewell [26] and Jewell and Shepherd [43], were more
consistent in experiments after the shock-tube cleaning procedures
described in Sec. III were implemented (n � 34) than in those prior
(n � 40). Reservoir temperatures were similar for each subset of the
data. The 34 tests after the implementation of the cleaning procedure
had calculated reservoir temperatures ranging from 3380 to 6410 K,
with a median of 5520 K and a mean of 5490 K. The 40 tests before
the implementation of the cleaning procedure had calculated
reservoir temperatures ranging from 4010 to 6930 K, with a median
of 5510 K and a mean of 5520 K.

VI. Conclusions

It was shown that an improved cleaning procedure in a
hypervelocity shock tunnel improves the repeatability of transition
measurements, demonstrating the need for researchers using impulse
facilities for hypervelocity boundary-layer instability and transition
research to operate the facility in a manner least likely to introduce
particulate to the test flow.
FLDI (boundary-layer density disturbances) and heat transfer

(surface-mounted heat transfer thermocouples) results were com-
pared before and after a stringent cleaning regimenwas implemented.
Before the implementation of the cleaning regimen, unpredictable
turbulent spots were observed in both FLDI and thermocouple data at
locations uncharacteristic of natural transition; it is believed that it is
likely these turbulent spots are the result of bypass transition initiated
by particulate striking the model surface.
A statistical analysis of the correlation of tunnel parameters to

transition location indicates that the coefficient of determination was
significantly increased after the implementation of the cleaning
regimen. This increase in the coefficient of determination is consis-
tent with more repeatable transition locations and flow quality. The
new cleaning regimen makes it possible to systematically charac-
terize transition locations on the test article in a repeatable manner by
carefully selecting run conditions.R2 values forReTr,Re

�
Tr, and theN

factor increase significantly with the introduction of a more stringent
cleaning procedure. This ability to repeat transition locations

Table 2 Multivariable linear regression analyses with ReTr
(R2 � 0.50) and Re�Tr (R

2 � 0.70) as the response variables for
“dirty” tunnel results (n � 40) acquired before the

implementation of the new cleaning regimena

ReTr Re�Tr
Reintercept 5.90 × 105 −1.38 × 106b

p value 0.37394 0.00834
Standard error 6.55 × 105 4.95 × 105

CPres
4.82 × 104b 3.54 × 104b

p value 2.18 × 10−4 2.99 × 10−4

Standard error 1.18 × 104 8.87 × 103

Chres 9.18 × 105 2.98 × 105b

p value 0.34578 2.12 × 10−4

Standard error 9.61 × 104 7.26 × 104

Model F statistic 18.4 43.4
Model p value 2.82 × 10−6 1.99 × 10−10

aWe use a significance level of 5% (i.e., requiring a p value less than 0.05 to

reject the null hypothesis that a given coefficient is zero).
bCoefficients found to be statistically significant under this criterion.

Table 3 Multivariable linear regression analyses with
ReTr (R

2 � 0.80) and Re�Tr (R
2 � 0.86) as the response

variables for “clean” tunnel results (n � 34) acquired
after the implementation of the new cleaning regimen

ReTr Re�Tr
Reintercept 1.83 × 106 a −1.08 × 105

p value 6.86 × 10−5 0.73991
Standard error 3.99 × 105 3.23 × 105

CPres
7.20 × 104 a 3.54 × 104 a

p value 2.30 × 10−10 1.29 × 10−9

Standard error 7.84 × 103 6.34 × 103

Chres −2.01 × 105 a 3.39 × 104

p value 0.00718 0.55180
Standard error 6.97 × 104 5.64 × 104

Model F statistic 61.9 95.1
Model p value 1.49 × 10−11 5.94 × 10−14

aCoefficients found to be statistically significant (p < 0.05).
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facilitates fundamental hypervelocity boundary-layer stability and
transition research.
The measurement of the time and size distribution of particulate

matter in shock tunnel experiments warrants further study, and it
could aid in future experimental–computational comparisons.
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