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Multi-agent reinforcement learning for wall
modeling in LES of flow over periodic hills

By D. Zhou†, M. P. Whitmore, K. P. Griffin AND H. J. Bae†

We develop a wall model for large-eddy simulation (LES) that takes into account
various pressure-gradient effects using multi-agent reinforcement learning (MARL). The
model is trained using low-Reynolds-number flow over periodic hills with agents dis-
tributed on the wall along the computational grid points. The model utilizes a wall
eddy-viscosity formulation as the boundary condition, which is shown to provide better
predictions of the mean velocity field, rather than the typical wall-shear stress formu-
lation. Each agent receives states based on local instantaneous flow quantities at an
off-wall location, computes a reward based on the estimated wall-shear stress, and pro-
vides an action to update the wall eddy viscosity at each time step. The trained wall
model is validated in wall-modeled LES (WMLES) of flow over periodic hills at higher
Reynolds numbers, and the results show the effectiveness of the model on flow with pres-
sure gradients. The analysis of the trained model indicates that the model is capable of
distinguishing between the various pressure gradient regimes present in the flow.

1. Introduction

LES is an essential technology for the simulation of turbulent flows. The basic premise
of LES is that energy-containing and dynamically important eddies must be resolved
everywhere in the domain. This requirement is hard to meet in the near-wall region, as the
stress-producing eddies become progressively smaller. The cost involved in resolving the
near-wall region has motivated the development of WMLES, which utilizes a wall model
to account for the effect of the energetic near-wall eddies. Because of such characteristics,
wall modeling has been accepted as the next step to enable the increased use of high-
fidelity LES in realistic engineering and geophysical applications.
Recently, Bae & Koumoutsakos (2022) demonstrated the efficacy of MARL as a de-

velopment tool for wall models in zero-pressure-gradient flat-plate flow. In that work,
a series of learning agents are distributed along the computational grid points, with
each agent receiving local states and rewards then providing local actions at each time
step. The MARL model is able to achieve these results by training in situ on moderate-
Reynolds-number flows with a reward function only based on the mean wall-shear stress.
Therefore, the trained models do not require any higher-fidelity simulation data and are
data efficient, unlike supervised learning. Furthermore, MARL can develop novel mod-
els that are optimized to accurately reproduce the quantities of interest by discovering
dominant patterns in flow physics rather than using a-priori parameterization.
In the present study, we extend the methodology of Bae & Koumoutsakos (2022) for

pressure-gradient flows and apply it to the flow over periodic hills, training on low-
Reynolds-number cases and testing on higher-Reynolds-number flows. Our objective is
to develop a wall model for LES based on MARL that is robust to pressure-gradient
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Case Mesh size (Nx ×Ny ×Nz) xsep/H xrea/H

RLWM 128× 64× 64 -0.03 3.91
RLWM, coarse mesh 64× 32× 32 0.36 4.16
RLWM, fine mesh 128× 128× 72 0.21 3.85
EQWM 128× 64× 64 0.57 3.05
DNS (Krank et al. 2018) 896 × 448 × 448 0.20 4.51
WRLES (Gloerfelt & Cinnella 2019) 512 × 256 × 256 -0.11 4.31

Table 1. Simulation cases in comparison to reference data, including mesh size, mean
separation location xsep, and mean reattachment location xrea at ReH = 10595.

effects in a data-efficient way. The remainder of this report is organized as follows. In
Section 2, the setup of the flow simulation and reinforcement learning are introduced.
In addition, an investigation of two candidate wall boundary conditions is presented. In
Section 3, tests of the wall model are presented for flow over periodic hills at various
Reynolds numbers. Finally, conclusions are drawn in Section 4.

2. Methodology

2.1. Flow simulation

For the flow solver, we utilize a finite volume, unstructured-mesh incompressible LES
code (You et al. 2008). The subgrid-scale (SGS) stress is modeled using the dynamic
Smagorinsky model (Germano et al. 1991; Lilly 1992).

For training the wall model, a flow configuration that (i) has widely available wall-shear
stress profiles for several Reynolds numbers and (ii) does not require tuning of the inlet
profile or other boundary conditions is chosen. The flow over periodically arranged hills in
a channel (Mellen et al. 2000) has well-defined boundary conditions, can be computed at
affordable costs, and constitutes a canonical smooth-body separation and reattachment,
which is representative of many aerodynamic applications. Furthermore, the flow does not
require reconfiguration of the inlet boundary condition for different grid resolutions and
wall models, which may be necessary for nonperiodic flows. This configuration has become
a popular benchmark test case for validating computational fluid dynamics codes, since
numerous experimental and high-fidelity numerical references exist (e.g., Krank et al.

2018; Gloerfelt & Cinnella 2019) that provide extensive data on a wide range of Reynolds
numbers covering 700 ≤ ReH ≤ 37000, where ReH = UbH/ν, H is the hill height, and
Ub is the bulk velocity at the top of the hill. The periodic-hill configuration has the
dimensions of 9H × 3.035H × 4.5H in the streamwise (x), vertical (y), and spanwise
(z) directions, respectively. In the simulations of the present study, periodic boundary
conditions are applied in streamwise and spanwise boundaries, and the equilibrium stress-
balance wall model (EQWM; Kawai & Larsson 2012) is employed at the top wall. To
maintain constant bulk velocity in time, the flow is driven by time-varying body force
(Balakumar et al. 2014). A set of three meshes with increasing resolution are used in the
present study. More details of the grids utilized are listed in Table 1. The grid is evenly
spaced in the z direction and is slightly non-uniform in both the x and y directions. A
CFL number of 1 is used for all simulations.
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2.2. Reinforcement learning architecture

The MARL architecture of wall-model training in the study is based on Bae & Koumoutsakos
(2022). During model training, the agents distributed above the wall receive states based
on local instantaneous flow information and a reward based on the estimated wall-shear
stress, then provide local actions to update the wall boundary condition at each time
step. The agents infer a single optimized policy through their repeated interactions
with the flow field to maximize its cumulative long-term reward. To utilize MARL as
a model development tool for wall models, an open-source reinforcement learning (RL)
toolbox smarties (Novati & Koumoutsakos 2019) is coupled with the flow solver. The
coupling is validated using the same training configuration as the preliminary study of
Bae & Koumoutsakos (2022).

2.3. Boundary conditions for wall modeling

Previous studies show that how the wall-shear stress is applied affects the mean quantities
(Balakumar et al. 2014). We test two formulations of the boundary condition, namely the
wall-shear stress and the wall eddy-viscosity formulations, to determine the appropriate
action for the wall model. Two simulations for the flow over periodic hills at ReH =
10595 are conducted using the same mesh (Nx × Ny × Nz = 128 × 64 × 64) but with
the two different boundary conditions. For the wall-shear stress formulation, the wall-
shear stress τw is set to the mean wall-shear stress from WRLES (Gloerfelt & Cinnella
2019). For the wall eddy-viscosity formulation, the wall-shear stress is calculated as τw =
(ν + νt,w)(∂us/∂n)w, where us is the wall-parallel velocity, n denotes the wall-normal
direction pointing toward the interior, and the subscript w denotes quantities evaluated
at the wall. The wall eddy viscosity νt,w(x) is obtained from the interpolated mean-flow
field and mean skin friction of WRLES (Gloerfelt & Cinnella 2019). Similar boundary
conditions for wall modeling have been used in the past (Bae & Lozano-Durán 2021).
The mean skin friction coefficients of the two simulations are compared in Figure 1(a).

The skin friction coefficient is defined as Cf = 〈τw〉/(0.5ρU
2
b ), where ρ is the density

and 〈·〉 denotes the averaging in both time and spanwise direction. The Cf of the wall-
shear stress formulation is equal to that from WRLES (Gloerfelt & Cinnella 2019) by
design, whereas the wall eddy-viscosity formulation deviates slightly, with some differ-
ences observed near the hill peak and on the leeward side of the hill. Despite the similar
predictions of Cf , the velocity fields of the two simulations are different [Figure 1(b)].
The size of the separation bubble behind the hill is largely underpredicted in the wall-
shear stress formulation, whereas the prediction from the wall eddy-viscosity formulation
agrees reasonably well with the WRLES results (see Figure 2).
The underprediction of the separation bubble in the wall-shear stress formulation can

be explained by the directional inconsistency of the us at the wall-adjacent cell and τw.
When the direction of the τw is different from us at the wall-adjacent cell, the forces
acting on the control volume of the wall-adjacent cell will push the us in the incorrect
direction in a positive feedback loop, leading to an inaccurate prediction of the separation
bubble. We find that the wall eddy-viscosity formulation is a more robust method for
WMLES of such flows and will utilize it for the remainder of the paper.

2.4. Training of the wall model

The model training is carried out based on the LES of periodic-hill channel flow at
ReH = 10595 using the baseline mesh (Nx ×Ny × Nz = 128× 64 × 64). A total of 512
agents are uniformly distributed along the bottom wall, and the wall-normal locations of
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Figure 1. (a) Mean skin friction coefficient along the bottom wall at ReH = 10595; ,
LES using wall eddy-viscosity formulation; , LES using wall-shear stress formulation. (b)
Contours of the mean streamwise velocity and the streamlines at ReH = 10595: (left) LES using
wall eddy-viscosity formulation and (right) LES using wall-shear stress formulation.

the agents hm are randomly selected between 0.01H and 0.09H at each agent location. For
each agent, we set three local flow quantities as states: (i) the instantaneous wall-parallel
velocity us; (ii) the wall-normal location of the agent yn = hm; and (iii) the turbulence
strain rate S12 = (∂us/∂n+∂un/∂s)/2, where s denotes the wall-parallel direction point-
ing toward the positive x-direction. Moreover, to increase the applicability of the wall
model for a wide range of flow parameters, the states are nondimensionalized using kine-
matic viscosity ν and the instantaneous composite friction velocity uτp = (u2

τ + u2
p)

1/2,

where up = |(ν/ρ)(∂pw/∂s)|
1/3, pw is the pressure on the bottom wall, and uτ is the fric-

tion velocity based on the instantaneous modeled wall-shear stress. Nondimensionalized
quantities are denoted by superscript ∗. Each agent acts to adjust the local wall eddy
viscosity νt,w at each time step through a multiplication factor νt,w(ti+1) = aνt,w(ti),
where a ∈ [1− α∆TUb/∆x, 1 + α∆TUb/∆x], ∆T is the action time step, ∆x is the grid
size in x direction, and α is a constant that is selected to be 0.001. The local wall-shear
stress can be calculated by the formula τw = ν(1 + ν∗t,w)(∂us/∂n)w. The reward r is

calculated based on r(ti) = [|τrefw − τw(ti)| − |τrefw − τw(ti−1)|]/τ
ref
w,rms at each location,

where τrefw and τrefw,rms are the mean and root-mean-square wall-shear stress from ref-
erence simulation, respectively. The reward is proportional to the improvement in the
modeled wall-shear stress compared to the one obtained in the previous time step, and
an extra reward of 0.1 is added when the modeled τw is within 10% of the reference value.
During model training, each iteration is initialized with the normalized wall eddy

viscosity ν∗t,w that is randomly selected from (0, 6]. To generate the initial condition for
training, the simulation is started from a flow field generated by the EQWM and run
with the given initial νt,w for 20 flow-through times (FTTs) to remove numerical artifacts.
Each iteration of the model training simulation is conducted for 5 FTTs, and to increase
the data efficiency, the νt,w is updated every 100 time steps.
The model policy is learned based on a neural network with two hidden layers of 128

units each with a soft sign activation function. The parameters of the neural network are
identical to those used in Bae & Koumoutsakos (2022). The model training is advanced
for 1.6 million policy gradient steps.

3. Results

3.1. Testing for flow over periodic hills at ReH = 10595

To evaluate the performance of the trained wall model (RLWM), three simulations for the
periodic-hill channel flow at ReH = 10595 are carried out using meshes with different
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Figure 2. Contours of the velocity in x direction and the streamlines at ReH = 10595: (top left)
RLWM; (top right) RLWM, coarse mesh; (bottom left) EQWM; and (bottom right) WRLES
(Gloerfelt & Cinnella 2019).
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Figure 3. (a) Mean skin friction coefficient and (b) mean pressure coefficient along the bottom
wall at ReH = 10595. Lines indicate , RLWM; , RLWM, coarse mesh; , RLWM, fine
mesh; , EQWM; ◦, DNS (Krank et al. 2018).

resolutions. The details of the simulation cases are listed in Table 1. The number of
agents on the bottom wall is consistent with the number of mesh cells on the wall. The
wall-normal matching location of the agents was chosen to be within the first off-wall
cell. The wall eddy viscosity νt,w is updated based on the model action at every time
step. All simulations are run for about 60 FTTs after transients. The flow statistics of
all simulations are averaged over spanwise direction and time. For comparison, an LES
using EQWM is conducted and results from two high-fidelity reference databases for this
flow (Krank et al. 2018; Gloerfelt & Cinnella 2019) are included.
Figure 2 shows the contours of the mean velocity in x direction and the mean-flow

streamlines. The flow separates on the leeward side of the hill due to a strong adverse
pressure gradient (APG), and a shear layer is generated near the top of the hill. The flow
reattaches in the middle section of the channel, and as the flow approaches the windward
side of the downstream hill, it is subjected to a strong favorable pressure gradient (FPG)
and accelerates rapidly. The simulations with RLWM successfully capture the separation
bubble on the leeward side of the hill and yield more accurate results than the EQWM
(see Table 1 for quantitative comparison).
The predictions of Cf and the mean pressure coefficient Cp are shown in Figure 3. The

mean pressure coefficient is defined as Cp = (〈pw〉−〈pref 〉)/(0.5ρU
2
b ), where the pressure

at x/H = 0 on the top wall is chosen as reference pressure pref (Krank et al. 2018).
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Regarding Cf , the results from RLWM simulations are in reasonable agreement with the
direct numerical simulation (DNS) data, with large deviations found only near the top of
the hill where the skin friction reaches its maximum value and then rapidly decreases to
a negative value. As the mesh resolution increases, it yields a more accurate prediction
of skin friction on the leeward side, but the maximum value of the skin friction on the
windward side of the hill still is overpredicted. However, the results are better than the
EQWM simulation, which largely underpredicts the skin friction on the windward side
and overpredicts the skin friction on the leeward side. Furthermore, the mean locations
of the separation and reattachment points (listed in Table 1) are better predicted by the
RLWM, consistent with the streamline shown in Figure 2. Additionally, note that the
separation bubble size changes as the mesh resolution increases or decreases from the
baseline, and more details about the velocity field will be discussed later in this section.
All simulations capture the qualitative trend of the mean Cp on the bottom wall in-

cluding the APG and FPG regimes, but relatively larger deviations among the simulation
cases are visible near the top of the hill (x/H ≥ 8.5 or x/H ≤ 0.5) where the pressure
sees a sudden change from strong FPG to strong APG and the flow separation emerges.
Overall, the RLWM provides more accurate predictions of Cf and Cp than the EQWM.
Quantitative comparison of mean velocity and Reynolds stress components at five

streamwise locations (x/H = 0.05, 2, 4, 6, and 8) are shown in Figure 4. The results
of the mean velocity profiles and Reynolds stress profiles from the RLWM simulations
agree reasonably well with each other and with the reference DNS data. The discrepancies
are visible for the regions near channel center. Note that the prediction of the velocity
field depends not only on the wall boundary conditions but also on the SGS model,
and the varying performance of the SGS model in different meshes may contribute to
the inconsistency of those three RLWM simulations. Furthermore, the prediction from
EQWM simulation is less ideal, particularly for the mean streamwise velocity 〈ux〉/Ub.
To better understand the mechanism of the trained model, we examine the state-action

maps, which are the probability density functions (PDFs) of the likelihood that the model
takes a particular action conditioned on the occurrence of positive rewards. Figure 5
shows the maps based on instantaneous states and actions at three streamwise positions
x/H = 0.025, 2, and 8.3 which are located at the top of the hill, within the separation
bubble, and the windward side of the hill, respectively. Overall, the action contour lines
for increasing and decreasing νt,w are well separated with respect to the mean quantities
obtained from the WRLES simulation (Gloerfelt & Cinnella 2019), which illustrates that
the model is able to distinguish flow states and provide appropriate actions. Some minor
overlaps of the contour lines not clearly separated by the mean relation from WRLES are
visible at the top of the hill [see Figures 5(a,d)] where the APG is strong. This implies
that the capability of the trained model to robustly adjust the wall-shear stress through
appropriate actions is less ideal within this regime.

3.2. Testing for flow over periodic hills at higher Reynolds numbers

In this section, the RLWM is applied to a WMLES of periodic-hill channel flow at
ReH = 19000 and 37000. The simulations are conducted by using the baseline mesh
(128× 64× 64) and the coarse mesh (64 × 32× 32), and the implementation of RLWM
is similar to the simulations at ReH = 10595. All simulations are run for about 60
FTTs after transients. The results from EQWM with baseline mesh and the WRLES
(Gloerfelt & Cinnella 2019) are included for comparison.
The mean skin friction coefficients along the bottom wall at ReH = 19000 and 37000

are shown in Figure 6(a,b). The distributions of Cf at higher Reynolds numbers have
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Figure 4. Mean velocity and Reynolds stress components at ReH = 10595: (a) streamwise
velocity, (b) vertical velocity, (c) streamwise Reynolds stress, (d) vertical Reynolds stress, and
(e) Reynolds shear stress. Lines indicate , RLWM; , RLWM, coarse mesh; , RLWM,
fine mesh; , EQWM; ◦, DNS (Krank et al. 2018).

a similar shape as the one shown in Figure 3(a). As the Reynolds number increases,
the maximum value of the Cf on the windward side of the hill decreases. The results
from the two RLWM simulations are in reasonable agreement with the WRLES results.
Regarding the separation point, the predicted locations from the RLWM simulations
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Figure 5. PDFs of states for RLWM conditioned to events with r > 0.1 and a < 0.9996 (blue)
or a > 1.0004 (red) at (a,d) x/H = 0.025, (b,e) x/H = 2, and (c,f) x/H = 8.3 at ReH = 10595:
PDFs of states (a–c) u∗

s and y∗

n and (d–f) S∗

12 and u∗

s . The black line is the mean relation of
the states from WRLES (Gloerfelt & Cinnella 2019). Contour levels are 25, 50, and 75% of the
maximum value.
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Figure 6. Mean skin friction coefficient along the bottom wall at (a) ReH = 19000 and (b)
ReH = 37000. Lines indicate , RLWM; , RLWM, coarse mesh; , EQWM; , WR-
LES (Gloerfelt & Cinnella 2019).

are further downstream than that of the WRLES. The predicted reattachment location
from the RLWM simulation with baseline mesh is slightly downstream from that of the
WRLES, but the prediction from the RLWM simulation with coarse mesh is further
upstream. Compared to the EQWM simulation, where the separation bubble size is
largely underpredicted and the maximum value of Cf on the windward side of the hill is
much smaller than the value of WRLES, RLWM is more accurate.
Figure 7 shows the profiles of streamwise components of mean velocity and Reynolds

stress at five streamwise stations (x/H = 0.05, 2, 4, 6, and 8) for ReH = 19000 and
37000. The deviations among the profiles from RLWM simulations and the WRLES pro-
files grow as the Reynolds number increases, albeit slightly, which implies the degradation
of performance in the RLWM. Particularly for the Reynolds stress, the EQWM outper-
forms the RLWM even though the prediction of Cf is inaccurate, as shown in Figure 6.
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Figure 7. Mean velocity and Reynolds stress components at (a,b) ReH = 19000 and (c,d)
ReH = 37000: (a,c) mean streamwise velocity and (b,d) streamwise Reynolds stress. Lines
indicate , RLWM; , RLWM, coarse mesh; , EQWM; , WRLES (Gloerfelt & Cinnella
2019).

Furthermore, at ReH = 19000 the coarse-mesh RLWM simulation results agree better
with the WRLES results than the baseline results. However, the performance of the SGS
model affects the velocity field away from the wall more than the wall model, and this
could be an indication that a better SGS model is necessary.

4. Conclusions

In this work, a wall model that can adapt to various pressure-gradient effects is devel-
oped for turbulent flow over periodic hills using multi-agent reinforcement learning. The
model behaves as a control policy for wall eddy viscosity to predict the correct wall-shear
stress. The optimized policy of the wall model is learned through the training process
based on LES of low-Reynolds-number flow over periodic hills with cooperating agents
using the recovery of the correct wall-shear stress as a reward.
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The developed wall model is first validated in the LES of the periodic hill configu-
ration at the same Reynolds number of model training. The wall model provides good
predictions of mean wall-shear stress, mean wall pressure, and the mean velocity as well
as Reynolds stress in the flow field. The test results also show that the developed model
outperforms the EQWM. The performance of the developed model is further evaluated at
ReH = 19000 and 37000. Good predictions are obtained for the mean wall-shear stress.
Overall, we have extended the MARL-based wall modeling paradigm and demonstrated

that it is robust in flows with pressure gradients. Additional investigations into the gen-
eralizability of the developed wall model for different geometries and flow configurations
need to be carried out, and the grid sensitivity of the model needs to be further analyzed.
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