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We examine the role of anisotropic subgrid-scale (SGS) stress in wall-modeled large-9
eddy simulation (WMLES) of flow over a spanwise-uniform Gaussian-shaped bump, with10
emphasis on predicting flow separation. The simulations show that eddy-viscosity-based11
SGS models often yield non-monotonic predictions of the mean separation bubble size12
on the leeward side under grid refinement, whereas models incorporating anisotropic SGS13
stress produce more consistent results. To identify where SGS anisotropy is most critical,14
we introduce anisotropic SGS stress in selected regions of the domain. The results reveal15
that the windward side, where a strong favorable pressure gradient (FPG) occurs, is crucial16
in determining downstream separation. Analysis of the Reynolds stress transport equation17
shows that fluctuations of anisotropic SGS stress modify SGS dissipation and diffusion in18
this region, thereby altering the Reynolds stress and the onset of separation. Examination of19
the mean streamwise momentum equation indicates that at coarse resolutions, the mean SGS20
shear stress dominates, and the differences between the eddy-viscosity-based and anisotropic21
models remain minor. With grid refinement, resolved Reynolds stresses increasingly govern22
the near-wall momentum transport, and the influence of SGS stress fluctuations grows as they23
determine the SGS dissipation and diffusion of Reynolds stresses. Component-wise analysis24
of the SGS stress tensor further shows that the improvement arises mainly from including25
significant normal stress contributions. An a priori study using filtered direct numerical26
simulation of turbulent Couette-Poiseuille flow confirms that wall-bounded turbulence under27
FPG is highly anisotropic and that anisotropic SGS models provide a more realistic SGS28
stress representation than eddy-viscosity-based models.29
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1. Introduction31

Complex turbulent flows with separation are commonplace in various aerodynamic and32
hydrodynamic vehicles, significantly influencing their performance and stall characteristics.33
The ability to accurately predict such flows is therefore crucial for the design and assessment34
of these systems. A potentially suitable and feasible tool for this purpose is wall-modeled35
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large-eddy simulation (WMLES) (Larsson et al. 2016; Park 2017; Bose & Park 2018), as it36
resolves the energy-containing and dynamically important scales of turbulence away from37
the wall while employing a reduced-order model to account for the effects of energetic38
near-wall eddies. Compared with classical wall-resolved large-eddy simulation (WRLES),39
WMLES not only significantly reduces the grid resolution requirement but also allows for40
a larger time-step sizes; therefore, it is computationally more efficient. Recent studies (Choi41
& Moin 2012; Yang & Griffin 2021) have shown that the computational cost of WMLES42
is one to two orders of magnitude smaller than that for the WRLES in attached flow over a43
finite aspect-ratio wing at varying Reynolds numbers. Because of these advantages, WMLES44
has been anticipated as the next step toward the broader use of high-fidelity simulation in45
realistic engineering applications. In recent years, WMLES has been applied to complex46
flow configurations in practical engineering contexts (Lehmkuhl et al. 2018; Goc et al.47
2021, 2024). These simulations have highlighted the capability of WMLES in predicting48
critical flow-performance quantities, particularly in comparison with approaches based49
on Reynolds-averaged Navier–Stokes (RANS) closures. Moreover, by leveraging modern,50
massively parallel computer architectures, these simulations achieve turnaround times of51
less than a few days with modest computational resources.52

Currently, the primary challenge in applying WMLES to realistic applications lies in53
achieving both robustness and accuracy across a range of flow regimes and configurations.54
However, many existing wall models are built upon the assumption of statistically equilibrium55
wall-bounded turbulence, which applies to only a limited class of turbulent flows. To go56
beyond the equilibrium assumption, developing more capable techniques that can address57
a wider range of non-equilibrium flows has become a key focus within the wall-modeling58
community. A widely used approach has been to develop wall models based on the thin59
boundary-layer equations while incorporating some or all of the effects of unsteadiness,60
convection, and pressure gradients (Wang & Moin 2002; Kawai & Larsson 2013; Park &61
Moin 2014). An alternative approach is dynamic slip wall modeling (Bose & Moin 2014; Bae62
et al. 2019), which is derived directly from the filtered Navier–Stokes equations instead of63
relying on thin boundary-layer approximations. Despite these advancements in wall modeling64
techniques, accurate numerical prediction of complex separated flows remains a significant65
challenge for WMLES. Recent studies (Lozano-Durán & Bae 2019; Rezaeiravesh et al. 2019;66
Zhou & Bae 2024a) have demonstrated that this challenge arises not only from the less-than-67
ideal performance of wall-modeling approaches but also, and perhaps more importantly,68
from the insufficient capability of existing subgrid-scale (SGS) models in WMLES, a topic69
that has received relatively little attention. Specifically, Zhou et al. (2023) and Zhou & Bae70
(2024a) have shown that the influence of SGS models on WMLES of turbulent flow with71
separation is profound, significantly limiting the robustness and applicability of WMLES.72

In large-eddy simulations (LES), the large scales of turbulent flow are explicitly resolved,73
while the effects of small-scale motions are modeled using SGS models. It is often74
assumed that turbulence at the small, unresolved scales is largely isotropic. Based on75
this assumption, the original development of SGS models focused on WRLES using fine-76
resolution computational meshes, and the effects of SGS were modeled using simple isotropic77
models such as eddy-viscosity models. However, computational meshes with much coarser78
resolution employed in WMLES were not fully considered in the development of SGS79
models. To date, eddy-viscosity models still represent the most commonly used class of SGS80
models in LES (Moser et al. 2021; Duraisamy 2021; Choi et al. 2025). While they can provide81
a statistically accurate energy transfer rate from resolved scales to SGS (i.e., dissipation of82
kinetic energy), several studies (Clark et al. 1979; Kerr et al. 1996; Domaradzki & Saiki 1997)83
have highlighted that the output of these models is poorly correlated with the exact SGS stress84
computed from direct numerical simulation (DNS). Beyond dissipation, there are statistical85
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characteristics that the SGS model must satisfy to enable reliable simulations (Moser et al.86
2021), for example, accurately predicting the mean SGS stress. Unfortunately, investigations87
(Meneveau 1994; Jimenez & Moser 2000; Li & Meneveau 2004) have shown that eddy-88
viscosity models may not sufficiently capture both the energy transfer and SGS stress89
behaviour in turbulent flows. It has also been observed that eddy-viscosity models produce90
a non-monotonic convergence behaviour for separation bubble prediction at coarser mesh91
resolutions (Whitmore et al. 2021; Agrawal et al. 2022; Zhou & Bae 2024a). Consequently,92
they often require the LES resolution to be fine enough for the mean SGS stress to become93
negligible. This reliance on finer resolution limits their practical applicability, underscoring94
the need for SGS models compatible with WMLES that can still yield accurate predictions95
of complex turbulent flows.96

The central challenge in advancing SGS models is overcoming the so-called well-resolved97
barrier, where the majority of turbulence is adequately captured. For coarser resolutions, SGS98
models must fulfill roles beyond simple energy dissipation, as subgrid motions contribute99
increasingly to mean momentum and energy transport. Moreover, the effects of SGS100
anisotropy, both in dissipation and stress, cannot be ignored, especially at the smallest101
resolved scales that are dynamically active and energy-containing. The primary limitation of102
traditional eddy-viscosity models arises from their single degree of freedom, which restricts103
their ability to represent both stress and dissipation simultaneously. Reliable WMLES at104
coarse resolutions therefore requires enhanced formulations beyond the isotropic models105
to represent both stress and dissipation simultaneously. To achieve these goals, a variety106
of anisotropic SGS models have been proposed over the past decades, including mixed107
similarity models (Zang et al. 1993; Liu et al. 1994; Vreman et al. 1994, 1997; Horiuti108
1997; Meneveau & Katz 2000; Kobayashi & Shimomura 2001; Inagaki & Kobayashi 2020;109
Iyer & Malik 2024), algebraic models (Gatski & Jongen 2000; Marstorp et al. 2009; Rasam110
et al. 2017; Montecchia et al. 2017; Silvis & Verstappen 2019), and other nonlinear SGS111
models (Kosović 1997; Wang & Bergstrom 2005; Abe 2013, 2014; Vollant et al. 2016;112
Kobayashi 2018; Agrawal et al. 2022; Uzun & Malik 2025). These models have been shown113
to outperform traditional eddy-viscosity models in canonical turbulent flows such as channel114
flows and turbulent boundary layers (TBLs). However, their performance in more complex115
and realistic configurations remains insufficiently explored. Furthermore, despite the wide116
range of proposed models, detailed analyses of their underlying mechanisms and the effects117
of SGS anisotropy are still limited. It is therefore necessary to investigate the effects of118
anisotropic SGS stress in complex turbulent flows, particularly as model development in this119
area has progressed relatively slowly.120

Investigations into the effect of anisotropic SGS stress have recently gained momentum.121
Several studies have focused on a priori analyses (Horiuti 2003; Abe 2019; Cimarelli et al.122
2019; Inagaki & Kobayashi 2023) based on filtered DNS data, showing that SGS anisotropy123
significantly influences the evolution of Reynolds stress, vorticity, and enstrophy, particularly124
in wall-bounded turbulence. However, previous studies (Vreman et al. 1997; Park et al.125
2005; Duraisamy 2021; Choi et al. 2025) on both traditional and data-driven SGS models126
have revealed inconsistencies between the results of a priori and a posteriori evaluations.127
Specifically, models that perform poorly in a priori tests may yield excellent a posteriori128
results, and vice versa, highlighting a fundamental limitation of the a priori analysis. Given129
this gap, and to fully evaluate the effects of anisotropic SGS stress on WMLES of separated130
turbulent flows, we conduct a comprehensive a posteriori study.131

In particular, this a posteriori investigation focuses on the flow over a Gaussian-shaped132
bump at a relatively high Reynolds number (see figure 1), as proposed by Boeing Research133
& Technology (Slotnick 2019). This configuration is closely related to realistic applications,134
mimicking the smooth junctions between an aircraft wing and fuselage, where smooth-body135
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separation of a TBL occurs under the combined influence of pressure gradients and surface136
curvature. As a canonical flow configuration, it has been extensively studied, and a wealth of137
experimental data is available (Williams et al. 2020; Gray et al. 2021, 2022a,b; Gluzman et al.138
2022), establishing it as a benchmark for validating computational fluid dynamics techniques139
(Balin & Jansen 2021; Whitmore et al. 2021; Iyer & Malik 2022; Agrawal et al. 2022; Uzun140
& Malik 2022; Arranz et al. 2023; Zhou et al. 2023; Zhou & Bae 2024b; Agrawal et al. 2024;141
Iyer & Malik 2025). Computational studies have consistently emphasized the challenge of142
accurately predicting the extent and location of separation on the leeward side of the bump.143
Recent WMLES studies have shown that mean separation prediction is highly sensitive to the144
SGS model employed, affecting both accuracy and robustness (Iyer & Malik 2022; Agrawal145
et al. 2022; Zhou & Bae 2024a). Furthermore, anisotropic SGS models have been found to146
markedly improve the predictions of mean velocity field in WMLES (Agrawal et al. 2022;147
Zhou & Bae 2024a; Iyer & Malik 2024; Uzun & Malik 2025). Given the complex physics of148
smooth-body separation and the sensitivity of its separation prediction to the SGS model, the149
flow over a Gaussian-shaped bump is an ideal test case for the present a posteriori analysis.150
To avoid the complexities due to spanwise variations, this study focuses on a spanwise-151
uniform Gaussian bump with periodic boundary conditions in the spanwise direction. The152
flow configuration and simulation setup follow the hybrid DNS-WRLES study by Uzun &153
Malik (2022), which also provides high-fidelity reference data. Through this study, we aim to154
improve understanding of how anisotropic SGS models influence the statistics and dynamics155
of separated flow in WMLES, particularly the mean velocity field and the onset of smooth-156
body separation. We also seek to characterize the properties of anisotropic SGS stress and157
identify key features required of SGS models for accurate and robust WMLES in complex158
separated flows. Building on these insights, our ultimate goal is to provide guidance for future159
SGS model development and enhance the overall predictive performance of WMLES.160

The remainder of the paper is organized as follows. §2 describes the numerical approach,161
flow configuration, and simulation setup, including computational meshes and boundary162
conditions. In §3, the sensitivity of mean flow separation to the SGS models and grid163
resolution is examined through a series of WMLES, and a numerical experiment that164
introduces anisotropic SGS stress in different regions of the computational domain is165
conducted to identify where SGS anisotropy is most critical. §4 presents detailed analyses166
based on the simulation data to explain the mechanisms underlying the sensitivities of the167
flow separation prediction, as well as the role of the anisotropic SGS stress in the flow168
over the Gaussian bump. Specifically, the budgets of the mean streamwise momentum and169
Reynolds stress transport equations are examined. In §5, the properties of the SGS stress in170
these simulations are then investigated and compared with corresponding results from an a171
priori study based on filtered DNS data of a turbulent Couette–Poiseuille flow. Finally, §6172
summarizes the key findings and provides insights for further improvement of the WMLES173
technique.174

2. Computational methodology175

2.1. Numerical approach176

Flow simulations are conducted employing a finite-volume, unstructured-mesh LES code177
(You et al. 2008). The reliability of this LES code in accurately simulating turbulent flows178
has been demonstrated in various configurations, such as rough-wall TBLs (Yang & Wang179
2013), flow over an axisymmetric body of revolution (Zhou et al. 2020), and rotor interactions180
with thick axisymmetric TBL (Zhou et al. 2024). In this LES code, the spatially-filtered181
incompressible Navier-Stokes equations are solved with second-order accuracy using cell-182
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based, low-dissipative, and energy-conservative spatial discretization and a fully implicit,183
fractional-step time-advancement method with the Crank–Nicolson scheme. The Poisson184
equation for pressure is solved using the bi-conjugate gradient stabilized method (Van der185
Vorst 1992). The governing equations for LES of incompressible turbulent flows are given186
by187

𝜕𝑢̃𝑖

𝜕𝑥𝑖
= 0 , (2.1)188

and189

𝜕𝑢̃𝑖

𝜕𝑡
+ 𝑢̃ 𝑗

𝜕𝑢̃𝑖

𝜕𝑥 𝑗
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𝜏
sgs
𝑖 𝑗

, (2.2)190

where 𝑢𝑖 is the instantaneous flow velocity, 𝑝 is the instantaneous static pressure, 𝜌 is fluid191

density, 𝜈 is fluid kinematic viscosity and (̃·) denotes grid-filtering operation. SGS stress192
is given by the tensor 𝜏sgs

𝑖 𝑗
= 𝑢𝑖𝑢 𝑗 − 𝑢̃𝑖 𝑢̃ 𝑗 . The deviatoric part of the SGS stress tensor is193

modeled using an SGS model for closure of the equations, and the isotropic component of194
the SGS stress is absorbed into pressure. Without specific description, the SGS stress term in195
the following discussion denotes the deviatoric part of the corresponding SGS stress tensor.196
Additionally, in the following discussions, the tilde symbol, which denotes the grid filtering197
operation, will be omitted for the sake of simplicity. Hence, 𝑢𝑖 and 𝑝 will directly represent198
the instantaneous physical quantity of resolved flow field.199

In the current study, two SGS models are investigated. The first model is the classical200
Smagorinsky model (SM) (Smagorinsky 1963), a widely used isotropic SGS model based201
on the eddy-viscosity closure assumption. The corresponding SGS stress is given by202

𝜏
sgs
𝑖 𝑗

= 𝜏SM
𝑖 𝑗 = −2(𝐶𝑠Δ)2 |𝑆 |𝑆𝑖 𝑗 , (2.3)203

where 𝑆𝑖 𝑗 represents the strain-rate tensor, and |𝑆 | = (2𝑆𝑖 𝑗𝑆𝑖 𝑗)1/2. Furthermore, in the204
Smagorinsky model, the eddy viscosity is represented by 𝜈𝑡 = (𝐶𝑠Δ)2 |𝑆 |, where Δ denotes205
the grid filter width, typically assumed to be the geometric mean of the local grid size.206
The Smagorinsky coefficient, 𝐶𝑠, is typically between 0.1 and 0.2. In the present study, we207
use 𝐶𝑠 = 0.16, which was originally calibrated for homogeneous isotropic turbulence. The208
second SGS model is an anisotropic SGS model that consist of the isotropic term 𝜏iso

𝑖 𝑗
given209

by the SM (Smagorinsky 1963) and an additional anisotropic SGS stress term 𝜏ani
𝑖 𝑗

, such that210

𝜏
sgs
𝑖 𝑗

= 𝜏iso
𝑖 𝑗 + 𝜏ani

𝑖 𝑗 = 𝜏SM
𝑖 𝑗 + 𝜏ani

𝑖 𝑗 . (2.4)211

Specifically, we consider a modified SM (MSM), where the anisotropic SGS stress term212
is defined as 𝜏ani

𝑖 𝑗
= 𝐶𝑎Δ

2(𝑆𝑖𝑘𝑅𝑘 𝑗 − 𝑅𝑖𝑘𝑆𝑘 𝑗), 𝐶𝑎 is the corresponding coefficient and 𝑅𝑖 𝑗213

denotes the rotation-rate tensor. This anisotropic term is one of the six independent terms214
that arise when expanding the SGS stress in terms of the strain-rate and rotation-rate tensors215
(Lund & Novikov 1992; Gatski & Jongen 2000). It is explicitly incorporated in several216
recently developed anisotropic SGS models (Agrawal et al. 2022; Uzun & Malik 2025),217
which have shown promising predictions for flow over a Gaussian bump. Furthermore, this218
anisotropic term does not directly contribute to energy transfer between resolved scale and219
SGS (Lund & Novikov 1992; Silvis & Verstappen 2019; Inagaki & Kobayashi 2023), thus220
the corresponding SGS dissipation of kinetic energy is 𝜏ani

𝑖 𝑗
𝑆𝑖 𝑗 = 0. This anisotropic term221

allows us to study the physical properties of the anisotropic SGS stress in addition to the222
energy transfer. To reduce the influence of different kinetic energy dissipation from these SGS223
models, we set 𝐶𝑠 = 0.16 for the MSM as well. For the coefficient of the anisotropic stress224
term, 𝐶𝑎, we conducted a series of tests with values ranging from −1/30 to −1/6. This range225
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Figure 1: Simulation set-up for flow over a Guassian-shaped bump.

is chosen by referring to the value of the corresponding coefficient used in other anisotropic226
SGS models (Bardina 1983; Kosović 1997; Sarghini et al. 1999; Wang & Bergstrom 2005;227
Marstorp et al. 2009; Silvis & Verstappen 2019). For instance, as shown in Appendix B,228
the same term in the mixed model (Bardina 1983; Sarghini et al. 1999) is approximately229
−1/12. Across the tested range, the predicted separation bubble on the leeward side of the230
bump shows no significant change. Therefore, 𝐶𝑎 in the MSM is chosen arbitrarily as −1/30,231
which yields the smallest modification to the SM and avoids any optimization for the flow232
simulations. Moreover, it should be noted that since the current study focuses on WMLES233
with relatively coarse meshes, damping function for eddy viscosity is not employed in the234
near-wall region for neither the SM or the MSM model.235

2.2. Flow configuration and simulation set-up236

The physical conditions for the present simulations are consistent with those in the hybrid237
DNS-WRLES of Uzun & Malik (2022). The flow configuration and boundary conditions238
are shown schematically in figure 1. The geometry of the bump is given by the analytic239
function 𝑦 = 𝑓𝑏 (𝑥) = ℎ exp [− (𝑥/𝑥0)2], where 𝑓𝑏 is the surface representing the geometry240
of the wall-mounted bump, the maximum height of the bump is ℎ = 0.085𝐿, 𝑥0 = 0.195𝐿,241
and 𝐿 is the width of the bump. The Reynolds number is 𝑅𝑒𝐿 = 𝑈∞𝐿/𝜈 = 2 × 106 based242
on the free-stream velocity 𝑈∞ and the width of the bump, which is identical to that in the243
referenced DNS (Uzun & Malik 2022).244

Simulations are conducted in a rectangular domain of length 2𝐿, height 𝐿 and spanwise245
depth 0.08𝐿. The dimensions in the vertical and spanwise directions are chosen to be the246
same values as those in the DNS of Uzun & Malik (2022). For convenience, both a Cartesian247
coordinate system (𝑥-𝑦-𝑧) with velocity components (𝑢, 𝑣, 𝑤) and a localized coordinate248
system (𝑥1-𝑥2-𝑥3) with velocities (𝑢1, 𝑢2, 𝑢3) are used simultaneously in this paper, and both249
coordinates obey the right-hand rule. Specifically, the 𝑥-𝑦-𝑧 system is defined as a global250
coordinate system. The origin is placed at the base of the bump peak, which is located 0.85𝐿251
downstream from the inlet, as shown in figure 1. In the localized system, 𝑥1 is tangential252
to the bump surface in the flow direction, 𝑥2 is normal to the surface and points toward the253
flow field, and 𝑥3 is identical to the spanwise direction 𝑧. Correspondingly, 𝑢1 is the local254
streamwise velocity, 𝑢2 is the local wall-normal velocity, 𝑢3 is identical to the spanwise255
velocity 𝑢𝑧 .256

The boundary conditions consist of a TBL inflow at the inlet, free-stream condition on257
the top boundary, convective outflow condition at the exit, and periodic conditions on the258
spanwise boundaries. The TBL inflow data for the simulations of flow over Gaussian bump259
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are provided by a separate LES of flat-plate TBL using the rescale-and-recycle method of260
Lund et al. (1998). The friction Reynolds number 𝑅𝑒𝜏 of the TBL inflow is approximately261
equal to 620 and the TBL thickness is 𝛿in/𝐿 = 0.0061, which is approximately 10% larger262
than that in the DNS of Uzun & Malik (2022). The momentum thickness Reynolds number263
of the inflow is 𝑅𝑒𝜃 ≈ 1074, compared to their slightly smaller value of approximately 1035.264
More details of the TBL inflow and the corresponding simulation are refereed to our previous265
publication (Zhou & Bae 2024a). Additionally, it should be noted that the inflow-generation266
method used in the study of Uzun & Malik (2022) is different from the current method. The267
current study focuses on investigating the SGS model effect on WMLES, thus in order to268
sidestep the complexity associated with the modeling of wall-shear stress and its interaction269
with the SGS model, the physical no-slip condition at the solid surface is replaced by an ideal270
boundary condition based on the mean wall-shear stress from DNS. Specifically, it adopts a271
time-independent Neumann boundary condition given by the form272

(
𝜕𝑢1
𝜕𝑥2

)����
𝑤

=
𝜏DNS
𝑤,1

𝜌𝜈
, (2.5)273

where 𝜏DNS
𝑤,1 is the mean wall-shear stress known a priori from the DNS (Uzun & Malik274

2022), 𝜇 is the fluid dynamic viscosity, and the subscript 𝑤 denotes the quantities evaluated275
at the solid wall. This boundary condition can be treated as an idealized wall model supplying276
the exact mean wall-shear stress. The distribution of the mean skin-friction coefficient on277
the bottom solid surface can be referred to the paper of Uzun & Malik (2022). Meanwhile, a278
no-penetration condition is enforced at the solid surface for the wall-normal velocity 𝑢2.279

The computational mesh consists of structured-mesh blocks around the bottom surface280
and unstructured-mesh blocks in the outer region. To avoid resolution-induced anisotropy281
(Haering et al. 2019) and to more clearly analyse the effect of mesh resolution, we used282
isotropic computational meshes with increasing resolutions within the structured-mesh block.283
The parameters of these computational meshes are detailed in Table 1, which are identical284
to those computational meshes employed in our previous investigation (Zhou & Bae 2024a).285
Based on the TBL thickness at 𝑥/𝐿 = −0.65 from the DNS of Uzun & Malik (2022), the286
TBL is resolved by approximately 5 cells in the coarsest mesh, 9 cells in the coarse mesh,287
18 cells in the medium mesh, and 36 cells in the fine mesh. In particular, the resolution288
of the fine mesh, determined based on the mesh-cell size and the mean skin friction from289
the reference DNS (Uzun & Malik 2022), ranges from 10 to 30 wall units within regions290
of attached flow. Although this resolution is comparable to that of the standard WRLES291
mesh in the streamwise and spanwise directions, it is order of magnitude coarser in the292
wall-normal direction within the near-wall region. For the DNS computational mesh (Uzun293
& Malik 2022), the characteristic cell size Δc, which is the geometric mean of the mesh cell294
dimension, is approximately equal to 1.10 × 10−4𝐿. This estimate is derived from the mesh295
resolution at the location of the thickest separation bubble. In the outer unstructured-mesh296
blocks of the current computational meshes, the mesh cell size is smaller than 0.1𝐿, and the297
control volumes are gradually refined towards the bottom surface.298

A maximum Courant–Friedrichs–Lewy number of 1.0 is used for time advancement in all299
simulations. The simulations are first run for two flow-through times (4𝐿/𝑈∞) to wash out300
initial transients, and then another three flow-through times (6𝐿/𝑈∞) to obtain converged301
statistics.302
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Mesh label Δc/𝐿 Cell number
Coarsest mesh 1.90 × 10−3 1050 × 44 × 42 ≈ 1.94 million
Coarse mesh 9.52 × 10−4 2100 × 88 × 84 ≈ 15.5 million
Medium mesh 4.76 × 10−4 4200 × 176 × 168 ≈ 124 million
Fine mesh 2.38 × 10−4 8400 × 352 × 336 ≈ 993 million

Table 1: Parameters of the computational meshes utilizing isotropic cells.

Figure 2: Isocontours of mean velocity 𝑢𝑥/𝑈∞ from the medium-mesh simulations with
the SM (a) and MSM (b) and from the reference DNS (Uzun & Malik 2022) (c).

3. Sensitivity of mean flow separation prediction to SGS model303

3.1. Separation prediction and grid convergence test304

The flow field around the Gaussian-shaped bump, obtained using the medium mesh for the305

two SGS models, is shown in figure 2. Here, (·) denotes both temporal averaging and spatial306
averaging along the homogeneous directions. With this definition, an instantaneous quantity307
𝜑 can be decomposed as 𝜑 = 𝜑 + 𝜑′. For reference, the DNS results from Uzun & Malik308
(2022) are also included in the figure.309

In the DNS flow field, the incoming TBL accelerates upstream of the bump peak and310
then decelerates downstream under the influence of an adverse pressure gradient (APG),311
leading to rapid thickening of the boundary layer on the leeward side. Farther downstream, a312
pronounced separation bubble forms. In contrast, for the present medium-mesh WMLES, the313
predicted separation behaviour is highly sensitive to the SGS model. The simulation using314
the SM does not predict any flow separation, whereas the simulation using the MSM exhibits315
a separation bubble that is larger than the one observed in the DNS.316

The contours of the mean eddy viscosity in SGS model, denoted by 𝜈𝑡/𝜈, from the317
medium-mesh simulations in an 𝑥-𝑦 plane are shown in figure 3. For the MSM, the eddy318
viscosity arises solely through the isotropic stress term of the Smagorinsky model, as defined319
in equation (2.4). The magnitude of the eddy viscosity within the TBL is on the same order320
of magnitude as the fluid viscosity. Upstream of the bump peak, the eddy viscosity produced321
by the two SGS models are similar. However, farther downstream, noticeable differences322



9

Figure 3: Isocontours of mean eddy viscosity 𝜈𝑡/𝜈 from the medium-mesh simulations
with the SM (a) and MSM (b).
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Figure 4: Mean pressure coefficient on the bottom surface from the medium-mesh
simulations with the SM and MSM along with the reference DNS (Uzun & Malik 2022).

emerge. In particular, although the MSM uses the same model coefficient 𝐶𝑠 as the SM, the323
eddy viscosity distribution on the leeward side of the bump is significantly modified by the324
additional anisotropic stress term. The change in eddy viscosity indicates the SGS dissipation325
of kinetic energy introduced by the MSM differs substantially from that of the SM in this326
region.327

In figure 4, the distribution of the mean pressure coefficient, 𝐶𝑝 = (𝑝w − 𝑃∞)/( 1
2 𝜌𝑈

2
∞),328

on the bottom surface is compared with the DNS data (Uzun & Malik 2022). Here, 𝑝w329
denotes the instantaneous static pressure at the wall, and the reference pressure 𝑃∞ is taken330
near the top boundary at the inlet. The 𝐶𝑝 distributions obtained from the medium-mesh331
simulations show a strong favorable pressure gradient (FPG) on the windward side of the332
bump near the bump peak. Downstream of the peak, the flow experiences a strong APG,333
followed by a milder APG over the majority of the leeward side. For the two medium-mesh334
simulations, the results agree reasonably well upstream of the bump peak and in the flat335
region downstream of the bump, but clear differences appear near the peak and along the336
leeward side. The comparison indicates that the MSM provides better agreement with the337
DNS data. In particular, the MSM predicts a plateau in 𝐶𝑝 on the leeward side of the bump,338
corresponding to the presence of a separation bubble.339

A comparison of boundary layer profiles from the medium-mesh simulations with the DNS340
results of Uzun & Malik (2022) is shown in figure 5, where the mean streamwise velocity 𝑢1 is341
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Figure 5: The profiles of mean streamwise velocity at 𝑥/𝐿 = −0.7 (a), 𝑥/𝐿 = −0.2 (b),
𝑥/𝐿 = −0.1 (c), 𝑥/𝐿 = 0 (d), 𝑥/𝐿 = 0.05 (e), 𝑥/𝐿 = 0.1 (f) and 𝑥/𝐿 = 0.2 (g) for the SM,

MSM, and the reference DNS (Uzun & Malik 2022).

plotted at seven streamwise stations in the computational domain. The results capture the flow342
acceleration on the windward side of the bump, followed by deceleration and boundary-layer343
thickening or separation on the leeward side. Upstream of the bump peak, the simulations344
employing the two SGS models agree reasonably well with each other and with the DNS345
data (Uzun & Malik 2022). Downstream of the peak, however, clear differences emerge. In346
particular, the boundary layer thickens more rapidly in the MSM simulation, leading to the347
formation of a separation bubble, while the boundary layer in the SM simulation remains348
attached throughout the domain.349

Since all simulations impose a wall-shear stress matched to the local mean wall-shear350
stress from the reference DNS (Uzun & Malik 2022), the length of the predicted separation351
bubble is estimated using the mean streamwise velocity at the first off-wall cell center, as352
shown in figure 6. A closer examination of the mean velocity distributions reveals noticeable353
differences between the two medium-mesh simulations. Upstream of the bump peak, the354
mean velocity at the first off-wall cell center agrees well across all simulations. Downstream355
of the peak, however, the flow in the SM simulation approaches separation but remains356
attached, whereas the MSM simulation clearly exhibits a separation bubble.357

To quantitatively assess the effects of mesh resolution and SGS model on predicting358
the mean separation bubble size, figure 7 shows the mean horizontal length (𝐿s/𝐿) of the359
predicted separation bubble as a function of the characteristic mesh resolution (Δc/𝐿). For360
reference, the corresponding DNS data (Uzun & Malik 2022) is also included, where the361
mean horizontal length of the separation bubble is approximately 0.32𝐿. The variations in362
separation bubble length with mesh resolution show a complex trend. For the SM simulations,363
convergence with mesh refinement is non-monotonic, producing a spurious reduction of the364
separation bubble upon as the mesh is refined. Such non-monotonic convergence toward DNS365

Rapids articles must not exceed this page length
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Figure 6: Mean streamwise velocity at the first off-wall cell center from the medium-mesh
simulations with the SM and MSM, and the reference DNS results (Uzun & Malik 2022)

at the same wall-normal location. 𝑢1 = 0 is indicated by the horizontal line.
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Figure 7: Mean separation bubble length on the leeward side of the bump from the
simulations using the SM and MSM for different mesh resolutions and the reference DNS

(Uzun & Malik 2022). Symbols represent data point for each case.

or experimental results has also been reported in previous studies with various isotropic SGS366
models and wall models (Whitmore et al. 2021; Agrawal et al. 2022; Zhou & Bae 2024a),367
supporting the view that this behaviour stems from limitations in the SGS model.368

In contrast, the MSM predicts a larger separation bubble but yields results that are consistent369
across mesh resolutions, suggesting that including an anisotropic SGS stress term provides a370
beneficial effect. Similar consistency in separation-bubble prediction has also been observed371
with the mixed model (Bardina 1983; Sarghini et al. 1999), as discussed in Appendix B and372
(Zhou & Bae 2024a). Since the current MSM has not been optimized and employs fixed373
coefficients, further improvement may be achieved through dynamic coefficients or other374
optimization strategies.375

As the mesh is refined to the fine-mesh resolution, results from all simulations converge and376
approach the DNS data. This fine mesh achieves a resolution close to WRLES, particularly377
within the separation bubble, where the boundary layer thickness is resolved by more than378
150 cells. Under such resolution, the dependence of the mean flow prediction on the SGS379
model is significantly reduced.380

The results presented in this section highlight the sensitivity of the predicted mean velocity381
field in WMLES to both the SGS model and mesh resolution, consistent with observations382
from previous studies (Rezaeiravesh et al. 2019; Lozano-Durán & Bae 2019; Whitmore et al.383
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2020; Iyer & Malik 2022; Zhou & Bae 2024a). Because the mean velocity is one of the most384
important first-order statistical quantities that WMLES aims to predict, understanding the385
underlying mechanisms behind the sensitivity is essential. This leads to two key questions.386
First, why does the predicted mean velocity on the leeward side of the bump differ qualitatively387
between simulations using isotropic and anisotropic SGS models, particularly at medium388
mesh resolution? Second, why do simulations employing anisotropic SGS models yield more389
consistent predictions of the mean separation bubble size across different mesh resolutions390
compared with isotropic SGS models? To answer these questions, a series of analyses are391
conducted, as detailed in the following sections.392

3.2. Identification of the critical region for SGS anisotropy effect393

According to the aforementioned results, the prediction of the separation bubble is strongly394
influenced by the choice of SGS model. In particular, compared with the SM, the MSM395
provides more consistent and accurate predictions of the separation bubble on the leeward396
side of the bump, underscoring the importance of SGS anisotropy. To better understand the397
role of anisotropic SGS stress in the mean flow field and in the formation of the separation398
bubble, a numerical experiment is designed to identify where the anisotropy effects becomes399
most critical. In this experiment, a series of LES are performed using the same computational400
domain as before and the previously defined medium mesh. However, the domain is divided401
into upstream and downstream sections, as illustrated in figure 8. In each section, a different402
SGS model is employed. At the virtual interface between the two sections, a logistic function403
is used to smoothly transition from one SGS model to another. All simulations use the same404
boundary conditions as before.405

Regarding the SGS models, the classical SM and the MSM discussed earlier are selectively406
assigned to the two domain sections. Based on previous studies of flow over a Gaussian bump407
(Uzun & Malik 2022; Prakash et al. 2024; Xu & Bermejo-Moreno 2024), the flow near the408
bump peak plays an important role in the formation of the downstream separation bubble.409
Therefore, in this experiment, five different locations of the virtual interface within this410
region are considered. The details of the interface locations and the selected SGS models411
for each case are listed in Table 2. In the first group SM-MSM, the upstream section of the412
domain employs the SM and the downstream section uses the MSM, while in the second413
group MSM-SM, the upstream section employs the MSM and the downstream section uses414
the SM. The virtual interface dividing the domain is aligned with the local normal direction415
of the bump surface, and the 𝑥 coordinate of its intersection with the bump surface is defined416
as the interface location, 𝑥0. Based on this setup, the SGS stress is given by417

𝜏
sgs
𝑖 𝑗

= 𝜏iso
𝑖 𝑗 + 𝑔 · 𝜏ani

𝑖 𝑗 = 𝜏SM
𝑖 𝑗 + 𝑔 · 𝜏ani

𝑖 𝑗 . (3.1)418

Here, 𝑔 is a logistic function used to achieve a smooth transition from one SGS model to419
another in the computational domain, and its form for the two groups of simulations is given420
by421

𝑔 =


𝑔0

1 + 𝑒𝑘×𝑑×𝜑
(SM-MSM)

𝑔0

1 + 𝑒−𝑘×𝑑×𝜑
(MSM-SM)

, (3.2)422

where 𝑔0 = 1, 𝑑 is the spatial distance from a point in the domain to the virtual interface at423
𝑥0, and 𝑘 controls the effective width of the interface. In the present setup, 𝑘 = 5000, giving424
an approximate effective width of 5 × 10−3𝐿, which corresponds to ten cells in the medium425
mesh. Tests with interface widths ranging from 1×10−3𝐿 to 1×10−2𝐿 showed no significant426
influence on the resulting mean velocity fields. The parameter 𝜑 is equal to 1 upstream of427
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Figure 8: Virtual-interface setup dividing the domain into upstream and downstream
regions using different SGS models for the flow over a Gaussian bump.

Group index Virtual interface location 𝑥0/𝐿 SGS models in the upstream / downstream

SM-MSM
−0.3
−0.2
−0.1
0.0
0.05

SM / MSM

MSM-SM MSM / SM

Table 2: List of parameters for the virtual interface setup.

the centerline of the interface and −1 downstream of it. Moreover, for each simulation in the428
experiment, the first two flow-through times are discarded to remove initial transients, and429
flow statistics are collected over the following three flow-through times.430

Figure 9 shows the predicted mean separation bubble size (𝐿s/𝐿), as well as the location of431
the mean separation point (𝑥s/𝐿) from the simulations in the experiment. The results indicate432
that when the interface is placed at the most upstream location (𝑥0/𝐿 = −0.3), the predictions433
are similar to those from the simulation using only the SGS model applied in the downstream434
section over the entire domain. As the interface is shifted downstream, the predictions become435
increasingly similar to those obtained using the SGS model applied in the upstream section436
over the entire domain. For example, in the cases of the group SM-MSM, when the interface437
is located at 𝑥0/𝐿 = −0.3, the predicted downstream separation bubble closely matches that438
from the simulation with the MSM over the entire domain, for which the separation bubble439
size reaches 0.44𝐿. As the interface is shifted downstream, the separation bubble on the440
leeward side of the bump gradually decreases in size. When the interface reaches the leeward441
side of the bump (𝑥0/𝐿 = 0.05), the separation bubble disappears, and the flow field becomes442
similar to that of the simulation with the SM applied over the entire domain. An opposite443
trend is observed for the cases of the group MSM-SM. The most pronounced variations occur444
as the interface moves from 𝑥0/𝐿 = −0.2 to the bump peak, where the FPG remains strong.445
Beyond the bump peak, shifting the interface farther downstream has a smaller influence,446
and the predicted separation bubble remains nearly unchanged.447

To examine how the TBL changes with the variation of the virtual interface locations within448
the critical FPG region (𝑥 ∈ [−0.2, 0]), the velocity statistics at the bump peak (𝑥/𝐿 = 0)449
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Figure 9: Mean separation bubble length on the leeward side of the bump (a) and the
location of mean separation point (b) from medium-mesh simulations using the SM-MSM

and MSM-SM with different virtual interface locations. Horizontal lines indicate the
results from the medium-mesh simulation with MSM.

are analysed. In addition to the mean streamwise velocity 𝑢1, the Reynolds shear stress450

𝑢′1𝑢
′
2 and the wall-normal Reynolds normal stress 𝑢′2𝑢

′
2 are examined, since these stresses451

play important roles in shaping the near-wall mean flow, as will be illustrated later in §4.1452
and §4.3. The results from the two groups of simulations are shown in figures 10 and 11.453
The comparison again demonstrate that as the interface is shifted downstream, the results454
gradually approach those obtained using the SGS model applied in the upstream section455
throughout the domain. Furthermore, the DNS data exhibit pronounced internal peaks in456
the profiles of Reynolds stresses at this location. According to the investigation from Uzun457
& Malik (2022), these internal peaks play a crucial role in determining the downstream458
evolution of the TBL and the onset of flow separation on the leeward side. Compared with459
the DNS, the WMLES predictions of the Reynolds stresses deviate to different degrees, which460
could be attributed to the use of constant, non-optimized model coefficients in these SGS461
models. Moreover, as will be discussed in §4.1 and §4.3, it is the wall-normal gradients of462
the Reynolds stresses, rather than their magnitudes, that more directly influence momentum463
transport and mean pressure distribution. From the comparisons among the simulations,464
it is found that applying the MSM within the critical FPG region on the windward side465
improves the capture of the internal peaks in the Reynolds stress profiles at the bump peak.466
These results suggest that the predicted size of the separation bubble on the leeward side467
is strongly influenced by the SGS model used in the upstream region where the FPG is468
strong. In particular, the ability of the SGS model to reproduce the near-wall trends of469
the Reynolds stress internal peaks appears to have an important effect on the downstream470
separation behaviour. This finding is consistent with the DNS observations of Uzun & Malik471
(2022) and will be further examined in the following sections. Overall, the results of this472
designed numerical experiment highlight that the effect of anisotropic SGS stress on the473
windward side of the bump is critical. Applying an anisotropic SGS model in the region of474
strong FPG alters the wall-normal distributions of Reynolds stress and subsequently affects475
the downstream flow separation.476

4. Budget analyses477

In this section, we first study the mean streamwise momentum and pressure equations slightly478
upstream of the mean separation point to isolate the effects of the individual budget terms.479

We demonstrate that the Reynolds stresses, particularly 𝑢′1𝑢
′
2 and 𝑢′2𝑢

′
2, have a significant480
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Figure 10: Mean streamwise velocity 𝑢1 (a), Reynolds shear stress 𝑢′1𝑢
′
2 (b), and Reynolds

normal stress 𝑢′2𝑢
′
2 (c) profiles at the bump peak (𝑥/𝐿 = 0) for SM-MSM with the virtual

interface located at 𝑥0/𝐿 = −0.2, −0.1, and 0. DNS (Uzun & Malik 2022), SM and MSM
results are shown for reference.
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Figure 11: Mean streamwise velocity 𝑢1 (a), Reynolds shear stress 𝑢′1𝑢
′
2 (b), and Reynolds

normal stress 𝑢′2𝑢
′
2 (c) profiles at the bump peak (𝑥/𝐿 = 0) for MSM–SM with the virtual

interface located at 𝑥0/𝐿 = −0.2, −0.1, and 0. DNS (Uzun & Malik 2022), SM and MSM
results are shown for reference.

impact on the mean flow field. We then analyse the Reynolds stress transport equations to481
understand how the distributions within the TBL are influenced by anisotropic SGS stress.482

This analysis considers the original simulations with the SM and the MSM applied over483
the entire computational domain. These SGS models nominally share the same kinetic484
energy dissipation mechanism but differ in their treatment of anisotropic SGS stress. Only485
the medium mesh simulations are analysed in §4.1-4.3, as this resolution shows the most486
pronounced differences in separation bubble prediction between the two models (see figure 7).487
We then study the effect of mesh resolution on the separation bubble prediction in §4.4. The488
analysis aims to address why the predicted flow on the leeward side of the bump differs489
qualitatively between the simulations using these two SGS models.490
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4.1. Mean streamwise momentum491

Considering the homogeneity of the current statistically stationary flow in the spanwise492
direction, the streamwise mean momentum equation can be expressed as493

𝑢1
𝜕𝑢1
𝜕𝑥1

+ 𝑢2
𝜕𝑢1
𝜕𝑥2

= 𝑃𝑔 +𝑉11 +𝑉12 + 𝑇11 + 𝑇12 + 𝑅11 + 𝑅12 , (4.1)494

where the seven terms on the right-hand side of the equation are495

𝑃𝑔 = − 1
𝜌

𝜕𝑝

𝜕𝑥1
, 𝑉11 =

𝜕

𝜕𝑥1

(
2𝜈𝑆11

)
, 𝑉12 =

𝜕

𝜕𝑥2

(
2𝜈𝑆12

)
, (4.2)496

497

𝑇11 =
𝜕

𝜕𝑥1

(
−𝜏sgs

11

)
, 𝑇12 =

𝜕

𝜕𝑥2

(
−𝜏sgs

12

)
, (4.3)498

499

𝑅11 =
𝜕

𝜕𝑥1

(
−𝑢′1𝑢

′
1

)
, 𝑅12 =

𝜕

𝜕𝑥2

(
−𝑢′1𝑢

′
2

)
. (4.4)500

Specifically, 𝑃𝑔 corresponds to the contribution from the mean pressure gradient.𝑉11 and𝑉12501
denote contributions from viscosity. 𝑇11 and 𝑇12 represent contributions from the mean SGS502
stress. The last two terms, 𝑅11 and 𝑅12, denote contributions from the Reynolds stress. The503
magnitudes of these terms influence the distribution of mean momentum and, consequently,504
the mean velocity field. It should be noted that curvature effects are neglected in the derivation505
of the mean momentum equation, since their influence in the region upstream of the mean506
separation point, where 𝑥/𝐿 < 0.1, is negligible. The corresponding investigation is described507
in appendix A.508

Figure 12 shows the mean streamwise momentum budget at 𝑥/𝐿 = 0.05, approximately509
one boundary-layer thickness upstream of the separation point in the MSM simulation. The510
same location is used for the SM case for consistency. Although both simulations exhibit511
the same dominant balance, the adverse pressure-gradient term, 𝑃𝑔, and the Reynolds shear-512
stress gradient term, 𝑅12, differ quantitatively in ways that directly influence the downstream513
separation.514

In both cases, 𝑃𝑔 is strongly negative across the boundary layer, reflecting the strong515
APG. However, the MSM produces a noticeably larger magnitude of 𝑃𝑔, indicating stronger516
deceleration of the mean flow. The distributions of 𝑅12 also differ in a manner essential517
to the separation mechanism. While the peak magnitude of 𝑅12 is similar between the two518
simulations, the MSM exhibits a significantly broader region over which 𝑅12 is negative. This519
extended negative region implies that momentum is extracted over a thicker portion of the520
boundary layer and redistributed toward the near-wall region. Consequently, less streamwise521
momentum remains available farther from the wall to resist the APG, making the near-wall522
mean flow more susceptible to decelerating to zero and initiating separation in the MSM523
case. In contrast, the SM confines the momentum deficit to a thinner layer, helping the flow524
remain attached despite the strong APG.525

4.2. Mean pressure equation526

The Poisson equation for the mean pressure of the flow is given by528

− 1
𝜌
∇2𝑝 =

𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
+
𝜕2𝑢′

𝑖
𝑢′
𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗

= 𝑈11 +𝑈12 +𝑈22 +𝑊11 +𝑊12 +𝑊22 ,

(4.5)529
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Figure 12: Mean streamwise momentum budget terms at 𝑥/𝐿 = 0.05 from medium-mesh
simulations with the SM (a) and MSM (b). All terms are nondimensionalized using 𝑈∞, 𝐿

and 𝜌. The line notations correspond to equations (4.2)–(4.4).
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Figure 13: Mean pressure budget terms at 𝑥/𝐿 = 0.05 from medium-mesh simulations
with the SM (a) and MSM (b). All terms are nondimensionalized using 𝑈∞, 𝐿 and 𝜌. The

line notations correspond to equations (4.6) and (4.7).

where the six terms on the right-hand side of the equation are530

𝑈11 =

( 𝜕𝑢1
𝜕𝑥1

)2
, 𝑈12 = 2

( 𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥1

)
, 𝑈22 =

( 𝜕𝑢2
𝜕𝑥2

)2
, (4.6)531

532

𝑊11 =
𝜕2𝑢′1𝑢

′
1

𝜕𝑥2
1

, 𝑊12 = 2
𝜕2𝑢′1𝑢

′
2

𝜕𝑥1𝜕𝑥2
, 𝑊22 =

𝜕2𝑢′2𝑢
′
2

𝜕𝑥2
2

. (4.7)533

The three terms in equation (4.6) represent the contributions from the mean velocity field534
to the mean pressure, and the remaining three terms in equation (4.7) account for the535
contributions from the Reynolds stresses.536

Figure 13 shows the profiles of all six terms in the mean pressure equation at the streamwise537
location 𝑥/𝐿 = 0.05. The results are qualitatively similar for the two simulations with different538
SGS models. Within the TBL, the term that has the dominant effect on the mean pressure field539

is𝑊22, which is associated with the wall-normal Reynolds normal stress, 𝑢′2𝑢
′
2. This indicates540

that variations in the wall-normal turbulent fluctuations are the primary contributors to the541
local mean pressure distribution.542

Taken together with the momentum budget analysis, these results highlight a consistent543
picture: in the medium-mesh simulations, the Reynolds stresses, not the mean SGS stresses,544
govern both the mean velocity and mean pressure fields immediately upstream of the545
separation point. Although the two SGS models produce different downstream separation546
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behaviour, those differences arise primarily from how each model shapes the Reynolds-stress547
distributions within the upstream FPG region. The mean SGS stresses, by comparison, make548
only a minor contribution at this location.549

4.3. Reynolds stress transport equation550

Based on the mean momentum and pressure budget analyses, we examine the Reynolds shear551

stress 𝑢′1𝑢
′
2 and the Reynolds normal stress 𝑢′2𝑢

′
2 at three streamwise locations within the FPG552

region upstream of the bump peak. Figure 14 shows the wall-normal profiles of the Reynolds553
stresses from the two medium-mesh simulations, along with DNS results from Uzun & Malik554
(2022) for reference.555

The DNS data indicate that, along the streamwise direction, the magnitudes of the Reynolds556
shear and normal stresses gradually increase in the near-wall region and exhibit a distinct557
internal peak in the FPG region. Both medium-mesh simulations deviate noticeably from558
the DNS data, with both overpredicting Reynolds stresses in the outer layer. It should be559
mentioned that the SGS models in these simulations use constant model coefficients and have560
not been optimized for WMLES of this flow configuration. The most prominent distinction561

between the two simulations is that the MSM reproduces clear internal peaks of 𝑢′1𝑢
′
2 and562

𝑢′2𝑢
′
2 at 𝑥2/𝐿 ≈ 1.3 × 10−3, slightly above the DNS location, while the SM does not capture563

these features. This upward shift of the internal peaks in the MSM case is partly due to the564
coarse mesh resolution in the present WMLES.565

As shown in §4.1, the wall-normal gradient of 𝑢′1𝑢
′
2 is closely related to mean momentum566

transport, while the gradient of 𝑢′2𝑢
′
2 is associated with the mean pressure distribution.567

Therefore, accurately capturing the wall-normal variation of these stresses, which determines568
the sign and magnitudes of these gradients, is essential for predicting downstream flow569
separation. The improved prediction of Reynolds stress profiles in the MSM simulation,570
particularly the internal stress peak under FPG conditions, demonstrates the benefit of571
incorporating anisotropic SGS stress. As discussed by Uzun & Malik (2022), these internal572
peaks evolve downstream and strongly influence the mean flow and separation onset. This is573
consistent with the present as well as the earlier analysis in §3.2. Taken together, the results574
indicate that the improved prediction of flow separation in the MSM simulation is linked to its575
ability to better reproduce Reynolds stress distributions, particularly the internal peak in the576
FPG region. This improvement is closely associated with changes in downstream Reynolds577
stresses, the mean velocity field, and ultimately the separation bubble development.578

To better understand the impact of the SGS model on the Reynolds shear stress 𝑢′1𝑢
′
2 and the579

Reynolds normal stress 𝑢′2𝑢
′
2, it is necessary to analyse the Reynolds stress transport equation,580

with particular attention to the individual contributions from the SGS model. Based on the581
Reynolds decomposition and the assumption of homogeneity in the spanwise direction, the582
transport equation for the resolved Reynolds stresses in LES can be expressed as583

𝜕𝑢′
𝑖
𝑢′
𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝑢′
𝑖
𝑢′
𝑗

𝜕𝑥𝑘
= 𝑃𝑖 𝑗 − 𝜀𝑖 𝑗 + 𝜙𝑖 𝑗 + 𝜉𝑖 𝑗 +

𝜕

𝜕𝑥𝑘

(
𝜁𝑖 𝑗𝑘 + 𝐷𝑖 𝑗𝑘 + 𝑇𝑖 𝑗𝑘 + 𝐽𝑖 𝑗𝑘

)
, (4.8)584

where585

𝑃𝑖 𝑗 = −𝑢′
𝑖
𝑢′
𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
− 𝑢′

𝑗
𝑢′
𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
, (4.9)586

𝜀𝑖 𝑗 = 2𝜈
(
𝑆′
𝑖𝑘

𝜕𝑢′
𝑗

𝜕𝑥𝑘
+ 𝑆′

𝑗𝑘

𝜕𝑢′
𝑖

𝜕𝑥𝑘

)
= 2𝜈

( 𝜕𝑢′
𝑖

𝜕𝑥𝑘

𝜕𝑢′
𝑗

𝜕𝑥𝑘

)
, (4.10)587
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Figure 14: Reynolds shear stress 𝑢′1𝑢
′
2 (a-c) and Reynolds normal stress 𝑢′2𝑢

′
2 (d-f) profiles

at 𝑥/𝐿 = −0.2 (a,d), 𝑥/𝐿 = −0.1 (b,e), and 𝑥/𝐿 = 0 (c,f) for SM, MSM and reference
DNS (Uzun & Malik 2022).

𝜙𝑖 𝑗 =
𝑝′

𝜌
·
(
𝜕𝑢′

𝑖

𝜕𝑥 𝑗

+
𝜕𝑢′

𝑗

𝜕𝑥𝑖

)
= 2

𝑝′

𝜌
𝑆′
𝑖 𝑗
, (4.11)588

𝜉𝑖 𝑗 = (𝜏sgs
𝑖𝑘

)′
𝜕𝑢′

𝑗

𝜕𝑥𝑘
+ (𝜏sgs

𝑗𝑘
)′
𝜕𝑢′

𝑖

𝜕𝑥𝑘
, (4.12)589

𝜕

𝜕𝑥𝑘
𝜁𝑖 𝑗𝑘 = − 𝜕

𝜕𝑥𝑘

[
(𝜏sgs

𝑖𝑘
)′𝑢′

𝑗
+ (𝜏sgs

𝑗𝑘
)′𝑢′

𝑖

]
, (4.13)590

𝜕

𝜕𝑥𝑘
𝐷𝑖 𝑗𝑘 = 𝜈

𝜕2𝑢′
𝑖
𝑢′
𝑗

𝜕𝑥2
𝑘

= 2𝜈
𝜕

𝜕𝑥𝑘

(
𝑆′
𝑖𝑘
𝑢′
𝑗
+ 𝑆′

𝑗𝑘
𝑢′
𝑖

)
, (4.14)591

𝜕

𝜕𝑥𝑘
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𝜕

𝜕𝑥𝑘
𝐽𝑖 𝑗𝑘 = − 𝜕

𝜕𝑥𝑘

(
𝑝′𝑢′

𝑖
𝛿 𝑗𝑘 + 𝑝′𝑢′

𝑗
𝛿𝑖𝑘

)
. (4.16)593

The terms given in equations (4.9)–(4.16) correspond to production, viscous dissipation,594
pressure strain, SGS dissipation, SGS diffusion, viscous diffusion, turbulent diffusion, and595
pressure diffusion, respectively. In particular, the terms expressed in equations (4.12) and596
(4.13) are associated with SGS stress fluctuations and directly represent the contributions597
from the SGS model. While the magnitudes of these terms in the Reynolds-stress transport598
equations are generally smaller than leading-order contributions such as production and599
pressure redistribution in the near-wall region, they remain physically meaningful and can600
be influential. The SGS dissipation represents the local transfer of resolved-scale energy to601
unresolved scales, whereas the SGS diffusion corresponds to the spatial redistribution of602
energy. Their importance also lies in how they modulate the expression of other budget terms603
in the resolved flow, thereby influencing the overall distribution of Reynolds stresses.604

Figure 15 shows the comparison of SGS dissipation and SGS diffusion from the medium-605
mesh simulations with the SM and the MSM at the three streamwise locations discussed606
above. The wall-normal range in each plot focuses on the near-wall region of the boundary607
layer, where the effects of SGS dissipation and diffusion are most pronounced. The SGS608
dissipation results indicate that the SM and MSM produce qualitatively different behaviours609

for both 𝑢′1𝑢
′
2 and 𝑢′2𝑢

′
2. In the SM, the SGS dissipation remains positive for 𝑢′1𝑢

′
2 and negative610

for 𝑢′2𝑢
′
2, showing that the SGS stress fluctuations consistently act as a sink of Reynolds611

stresses, with a net removal of resolved energy into the SGS scales. In contrast, the MSM612

yields negative SGS dissipation for 𝑢′1𝑢
′
2 in the inner layer and positive values for 𝑢′2𝑢

′
2 in the613

very near-wall region. This behaviour indicates that the SGS stress fluctuations in the MSM614
can produce a net backscatter of energy, transferring it from unresolved to resolved scales615
and locally enhancing the Reynolds stresses. This backscatter effect is physically significant.616
On a coarse mesh, the cutoff lies in the energy-containing range or in the energetic part of617
the inertial range, so the unresolved motions carry a substantial fraction of turbulent energy618
and momentum fluxes. Consequently, the SGS stress must not only remove resolved energy619
but also be capable of returning energy into the resolved field. Moreover, in the near-wall620
region, turbulence is highly anisotropic and the near-wall cycle involves essential small-scale621
dynamics. These mechanisms become even more crucial in TBLs with pressure gradients,622
such as in the present case. A coarse-mesh LES that does not capture these near-wall scales623
omits an important pathway by which energy is both removed from and supplied back to the624
larger scales.625

The SGS diffusion results for both 𝑢′1𝑢
′
2 and 𝑢′2𝑢

′
2 reveal important differences between626

the SM and MSM. For the Reynolds shear stress 𝑢′1𝑢
′
2, the SM produces negative SGS627

diffusion very close to the wall, which then becomes positive away from the wall before628
eventually decaying to zero. In contrast, the MSM yields negative SGS diffusion throughout629
the near-wall region, monotonically approaching zero with wall-normal distance. Since SGS630
diffusion represents movement of Reynolds stresses by unresolved motions, with negative631
values indicating movement into a location and positive values indicating movement away,632

the positive region in the SM profile implies that SGS motions redistribute 𝑢′1𝑢
′
2 away from633

the near wall region to parts where the SGS diffusion is negative. The MSM, however,634

continuously moves 𝑢′1𝑢
′
2 toward the near-wall region.635

For the Reynolds normal stress 𝑢′2𝑢
′
2, the SM gives positive SGS diffusion near the wall,636

decreasing with distance, becoming slightly negative, and then approaching zero. The MSM,637
by contrast, shows negative diffusion very close to the wall, positive values near the internal638
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Figure 15: SGS dissipation 𝜉𝑖 𝑗 (solid square) and diffusion 𝜕
𝜕𝑥𝑘

𝜁𝑖 𝑗𝑘 (dashed) for the
Reynolds shear stress 𝑢′1𝑢

′
2 (a–c) and the wall-normal Reynolds normal stress 𝑢′2𝑢

′
2 (d–f)

at 𝑥/𝐿 = −0.2 (a,d), 𝑥/𝐿 = −0.1 (b,e), and 𝑥/𝐿 = 0 (c,f) for SM (red) and MSM (blue)
simulations on the medium-mesh. All terms are nondimensionalized using 𝑈∞, 𝐿 and 𝜌.

peak of 𝑢′2𝑢
′
2, and negative values again farther out. This pattern indicates that the MSM moves639

𝑢′2𝑢
′
2 into the internal-peak region from both sides, while the SM primarily redistributes it640

from the outer region toward the wall.641
These SGS diffusion behaviours, combined with the differences in SGS dissipation, help642

explain why the MSM produces the internal Reynolds-stress peaks observed in figure 14,643
whereas the SM does not.644

As described in §2, the MSM expresses the SGS stress 𝜏
sgs
𝑖 𝑗

as equation (2.4), which645

contains the isotropic stress term 𝜏iso
𝑖 𝑗

from the SM and an additional anisotropic term 𝜏ani
𝑖 𝑗

. To646

clarify their roles, the individual contributions from them are analysed separately. Figure 16647
shows the wall-normal distributions of SGS dissipation and diffusion in the medium-mesh648
simulation with the MSM. For the SGS dissipation associated with both the Reynolds shear649

stress 𝑢′1𝑢
′
2 and the Reynolds normal stress 𝑢′2𝑢

′
2, the contribution of the isotropic stress650

term behaves similarly to the SM that shown in figure 15. It consistently acts as a sink of651
resolved energy, with a magnitude larger than in the SM alone. In contrast, the contribution652
of the anisotropic stress term generates significant local production in the near-wall inner653
layer. This indicates that the anisotropic term is the primary source of backscatter in the654
MSM, transferring energy from unresolved to resolved scales and enhancing the Reynolds655
stresses. For the SGS diffusion associated with Reynolds shear stress, the contribution of656
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Figure 16: SGS dissipation 𝜉𝑖 𝑗 (solid square) and diffusion 𝜕
𝜕𝑥𝑘

𝜁𝑖 𝑗𝑘 (dashed) from the
isotropic (red) and anisotropic (blue) stress components of the MSM for the Reynolds

shear stress 𝑢′1𝑢
′
2 (a–c) and the wall-normal Reynolds normal stress 𝑢′2𝑢

′
2 (d–f) at

𝑥/𝐿 = −0.2 (a,d), 𝑥/𝐿 = −0.1 (b,e), and 𝑥/𝐿 = 0 (c,f). All terms are nondimensionalized
using 𝑈∞, 𝐿 and 𝜌.

isotropic stress term again resembles the SM. It is negative very close to the wall, becomes657
positive away from the wall, and decays toward zero, reflecting a wall-normal redistribution658

of 𝑢′1𝑢
′
2 from locations with positive diffusion toward locations with negative diffusion. The659

contribution of anisotropic stress term shows the opposite pattern, with negative values near660
𝑥2/𝐿 ≈ 1.3×10−3, which is the wall-normal location of the internal shear-stress peak. For the661
SGS diffusion of the Reynolds normal stress, the isotropic part redistributes energy from the662
outer region toward the very near-wall region, while the anisotropic part redistributes energy663
into the internal-peak location from its neighbouring wall-normal regions. Taken together,664
the dissipation and diffusion decompositions indicate that the anisotropic SGS stress in the665
MSM is responsible for the redistribution of energy toward the wall-normal locations around666
the internal peak of the Reynolds stresses.667

The analyses in this section demonstrate that fluctuations of the SGS stress strongly668
influence the distributions of Reynolds stresses within the critical FPG region. In this region,669
the fluctuations of isotropic SGS stress act primarily as a dissipative sink for the Reynolds670

shear stress 𝑢′1𝑢
′
2 and the wall-normal normal stress 𝑢′2𝑢

′
2. In contrast, the fluctuations of671

anisotropic SGS stress provide significant backscatter and wall-normal redistribution of672
energy, which facilitates the formation of the internal peaks of these stresses in the near-wall673
region of the TBL. This mechanism further impacts the downstream development of the674



23

⊗

a

b

0 0.5 1 1.5 2
­0.05

0

0.05

0.1

0.15

⊗

SM

MSM

DNS

Figure 17: Mean separation point from simulations using the SM and MSM for different
mesh resolutions and from the reference DNS (Uzun & Malik 2022). No separation is

detected in the medium-mesh simulation (Δc/𝐿 ≈ 4.76 × 10−4) with the SM.

Reynolds stresses and, in turn, alters the mean flow field on the leeward side of the bump,675
particularly the onset of separation. These results indicate that enabling accurate WMLES676
predictions requires accurately representing the complex near-wall SGS dynamics, which in677
turn relies on properly accounting for SGS stress fluctuations in the SGS model.678

4.4. Influence of mesh resolution679

Through the analysis and comparison of the medium-mesh simulations with isotropic and680
anisotropic SGS models in the previous sections, we have answered the first question raised681
in §3, namely why the predicted flow on the leeward side of the bump differs qualitatively682
between these medium-mesh simulations. The second question, which asks why simulations683
with anisotropic SGS models provide more consistent predictions of the separation bubble684
size across different mesh resolutions compared to those with isotropic SGS models, remains685
to be addressed. To gain further insight into this question, we analyse the simulation results686
across different mesh resolutions. In particular, to assess the relative contributions of the mean687
SGS stress and Reynolds stress to the mean velocity field and the onset of flow separation, we688
examine the budgets of the mean streamwise momentum equation at a location immediately689
upstream of the mean separation point, following the same approach as in §4.1.690

The predicted mean separation points in the simulations with the SM and the MSM are691
shown in figure 17. When the coarsest mesh is used, both simulations capture flow separation692
on the leeward side of the bump. Not only are the predicted mean separation bubble sizes693
similar (see figure 7), but the predicted mean separation points are also consistent, with their694
locations close to the bump peak. As the mesh resolution is refined, the mean separation695
location gradually shifts downstream and the difference between the two simulations becomes696
larger. In particular, with the medium mesh, the separation bubble disappears in the simulation697
with the SM. When the mesh is further refined to the fine resolution, both simulations again698
predict a separation bubble on the leeward side of the bump, and the mean separation point699
approaches the reference location from the DNS (Uzun & Malik 2022).700

In examining the budgets of the mean streamwise momentum equation (2.2) for each701
simulation, the analysis is performed at a position 0.02𝐿 upstream of the corresponding702
mean separation point along the 𝑥 direction, which is approximately one boundary layer703
thickness upstream of separation. For the medium-mesh simulation with the SM, where no704
separation bubble forms on the leeward side of the bump, the same location as in the medium-705
mesh MSM simulation is used for consistency. The results for the SM and MSM simulations706
are presented in figures 18 and 19, respectively. With the coarsest mesh, both simulations707



24

(a) a

b

­5 0 5
0

0.01

0.02
   c

   d

   e

   f

   g

   h

   i

(b)
a

b

­5 0 5
0

0.01

0.02

(c)
a

b

­5 0 5
0

0.01

0.02

(d)
a

b

­5 0 5
0

0.01

0.02

Figure 18: Mean streamwise momentum budget terms at 0.02𝐿 upstream of the mean
separation point along the 𝑥 direction from cases with SM for the coarsest mesh (a),

coarse mesh (b), medium mesh (c), and fine mesh (d). All terms are nondimensionalized
using 𝑈∞, 𝐿 and 𝜌. The line notations correspond to equations (4.2)–(4.4).

behave qualitatively similarly. The mean SGS shear-stress gradient term 𝑇12 dominates in the708
lower half of the TBL, while other terms remain relatively small across the boundary layer.709
It should be noted that this investigated spatial location lies slightly upstream of the bump710
peak, where the pressure gradient is close to zero. On the coarse mesh, the predicted mean711
separation point shifts further downstream in both simulations, and the APG effect becomes712
stronger, particularly in the MSM case. At the same time, while 𝑇12 remains important, the713
contribution of 𝑅12 increases noticeably within the near-wall region in the MSM simulation.714
As the resolution increases to the medium mesh, the predicted separation behaviour becomes715
qualitatively different between the two SGS models, as discussed earlier. Compared with716
coarser meshes, the contribution of 𝑇12 decreases substantially in both simulations. With717
the fine mesh, the behaviour of the budget terms in the SM and MSM cases becomes718
similar again, with 𝑅12 and 𝑃𝑔 emerging as the dominant contributions. Notably, in the719
SM case, the negative portion of 𝑅12 extends over a wider wall-normal range than in the720
medium-mesh SM case. This indicates that momentum is extracted over a thicker layer and721
redistributed toward the near-wall region where 𝑅12 is positive. Such redistribution reduces722
the streamwise momentum available downstream to resist the APG, ultimately leading to723
mean flow separation in the fine-mesh simulation with the SM. In addition, the contribution724

of 𝑅11, associated with the Reynolds normal stress 𝑢′1𝑢
′
1, also becomes important in both725

simulations.726
These results suggest that in the current WMLES, when coarse grid resolutions such as727

the coarsest and coarse meshes are used, many flow structures remain unresolved because728
their scales are smaller than the grid size. Under these conditions, the mean SGS shear stress729

𝜏
sgs
12 dominates the mean streamwise momentum balance upstream of the mean separation730
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Figure 19: Mean streamwise momentum budget terms at 0.02𝐿 upstream of the mean
separation point along the 𝑥 direction from cases with MSM for the coarsest mesh (a),

coarse mesh (b), medium mesh (c), and fine mesh (d). All terms are nondimensionalized
using 𝑈∞, 𝐿 and 𝜌. The line notations correspond to equations (4.2)–(4.4).

point, while the contribution from Reynolds stress is relatively small. The difference between731
the SM and the MSM lies in the anisotropic SGS stress term (see equation (2.4)); however,732

as will be shown in §5, its contribution to the shear stress component 𝜏sgs
12 in the near-wall733

region is limited. Consequently, both models behave similarly in predicting the mean velocity734
field. When the medium mesh, representative of typical WMLES resolution, is used, more735
flow scales are resolved. As a result, the importance of the mean SGS shear stress decreases,736
while Reynolds stresses play a more significant role in the mean momentum transport. As737
discussed earlier in §4.3, the anisotropic SGS stress term in the MSM modifies the effect738
of SGS stress fluctuations, which improves the prediction of Reynolds stresses and thereby739
the prediction of downstream flow separation. For the fine mesh, which has a characteristic740
resolution similar to typical WRLES, more flow scales are resolved, leaving the SGS model741
to account only for the smallest motions. In this case, the influence of the SGS model on both742
mean velocity and Reynolds stress predictions becomes weaker, and the difference between743
the SM and MSM results reduces substantially. These findings highlight that, to design a744
robust SGS model capable of providing accurate predictions of mean flow fields across745
various mesh resolutions for complex configurations, it is essential to model both the mean746
SGS stress and the SGS stress fluctuations effectively.747

5. Properties of SGS stress748

In this section, we examine the properties of the SGS stress and the underlying mechanism749
of the anisotropic SGS stress. The investigation focuses on the critical FPG region in front750
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Figure 20: Mean SGS stress tensor components 𝜏sgs
𝑖 𝑗

at 𝑥/𝐿 = −0.1 for medium-mesh
simulations with the SM (a) and MSM (b).

of the bump peak, where the anisotropic SGS stress has a strong effect and significantly751
influences the mean flow separation downstream of the bump peak.752

5.1. Mean SGS stress753

We first examine the mean SGS stress at 𝑥/𝐿 = −0.1, located near the center of the critical754
FPG region where the TBL remains attached in all simulations. Figure 20 shows the wall-755
normal distributions of the six independent components of the mean SGS stress from the756
medium-mesh simulations using the SM and MSM. As discussed earlier, the medium mesh757
exhibits the strongest discrepancy in downstream mean-flow prediction between the two758
models.759

In both simulations, the mean SGS stress is significant only in the very near-wall region,760

with the dominant component being the shear stress 𝜏
sgs
12 , as expected from the large wall-761

normal gradient of the streamwise velocity. In the SM case, the remaining components762
are negligible relative to this dominant shear stress. In contrast, the MSM produces two763

additional stress components of appreciable magnitude, 𝜏sgs
11 and 𝜏

sgs
22 , which modify the764

principal directions of the mean SGS stress tensor and alter the associated momentum765
transfer. Although not shown, this qualitative behaviour persists throughout the FPG region.766

Since 𝜏
sgs
11 , 𝜏sgs

22 , and 𝜏
sgs
12 are the three main components of the mean SGS stress tensor and767

others are negligible, only these are presented in the subsequent figures for clarity.768
Figures 21 and 22 show the wall-normal distributions of the three main components of the769

mean SGS stress tensor at 𝑥/𝐿 = −0.1 for different mesh resolutions. In all cases, refining770
the mesh reduces the magnitude of the dominant SGS stress components and narrows the771
wall-normal region over which the SGS shear stress is significant.772

For the SM, the dominant component of the mean SGS stress tensor is always the shear773

stress 𝜏sgs
12 , regardless of mesh resolution. However, when the fine mesh is used, the normal774

stress components 𝜏sgs
11 and 𝜏sgs

22 become non-negligible in the near-wall region. This behaviour775
indicates that the anisotropic dynamics of near-wall turbulence begin to be resolved, and the776
principal directions of both the mean SGS stress tensor and the mean strain-rate tensor shift777
relative to the coarser-mesh cases. Notably, the signs of these normal stress components are778
consistent with the MSM simulations, suggesting that the principal direction of the mean779
SGS stress in the fine-mesh SM case begins to align with that of the MSM.780

For the MSM, by contrast, the near-wall dominance of 𝜏
sgs
12 , 𝜏sgs

11 , and 𝜏
sgs
22 is present at781
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Figure 21: Mean SGS stress tensor components (𝜏sgs
11 , 𝜏sgs

12 , and 𝜏
sgs
22 ) at 𝑥/𝐿 = −0.1 for

simulations with the SM using the coarsest mesh (a), coarse mesh (b), medium mesh (c),
and fine mesh (d).

all mesh resolutions, and the qualitative behaviour of these components remains unchanged782
with mesh refinement.783

As mentioned earlier, the SGS stress provided by the MSM can be expressed as equa-784
tion (2.4), consisting of an isotropic component 𝜏iso

𝑖 𝑗
and an anisotropic component 𝜏ani

𝑖 𝑗
.785

Figure 23 shows the contributions of these two terms to the mean SGS stress at 𝑥/𝐿 = −0.1786
for the medium-mesh MSM simulation. Again, only the three main components are plotted,787
since the remaining components are much smaller in magnitude.788

The mean isotropic stress behaves almost identically to that in the SM case (see figure 20),789
indicating that adding the anisotropic term does not significantly modify the isotropic part790
of the model. A similar trend is also observed in the eddy-viscosity distributions within the791
FPG region (shown in figure 3). Moreover, since the SGS dissipation in the MSM arises792
exclusively from the isotropic stress term, this similarity implies that the SGS dissipation of793
kinetic energy is comparable between the SM and MSM at this location.794

In contrast, the mean anisotropic stress exhibits a distinctly different behaviour, where795
the shear stress component are negligible while the normal stress components dominate.796
Comparing these results with the total mean SGS stress in figure 20 reveals that the normal797
stress in the MSM originate almost entirely from the anisotropic term. This confirms that the798
anisotropic SGS stress term is the primary source of the difference in the principal directions799
of the mean SGS stress tensor between the SM and MSM simulations.800

The above comparison shows that the differences in the mean SGS stress between the801

SM and MSM arise from the normal stress components, 𝜏sgs
11 and 𝜏

sgs
22 , which originate from802

the additional anisotropic SGS stress term in the MSM. However, as shown in the mean803
streamwise momentum budget analysis in §4.1 and §4.4, these mean normal stresses have804
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Figure 22: Mean SGS stress tensor components (𝜏sgs
11 , 𝜏sgs

12 , and 𝜏
sgs
22 ) at 𝑥/𝐿 = −0.1 for

simulations with the MSM using the coarsest mesh (a), coarse mesh (b), medium mesh
(c), and fine mesh (d).
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Figure 23: Mean isotropic SGS stress tensor components (𝜏iso
11 , 𝜏iso

12 , and 𝜏iso
22 ) (a) and

mean anisotropic SGS stress tensor components (𝜏ani
11 , 𝜏ani

12 , and 𝜏ani
22 ) (b) at 𝑥/𝐿 = −0.1 for

medium-mesh simulations with the MSM.

limited contributions to the mean streamwise momentum. In contrast, the mean shear stress805

component 𝜏sgs
12 , which is the component most relevant to momentum transport and the onset806

of separation on relatively coarse meshes, is predicted similarly by both SGS models within807
the critical FPG region. This explains why the coarsest- and coarse-mesh simulations exhibit808
similar separation behaviour for the SM and MSM.809
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Figure 24: SGS stress tensor r.m.s. components 𝜏sgs
𝑖 𝑗, rms at 𝑥/𝐿 = −0.1 for medium-mesh

simulations with the SM (a) and MSM (b).

5.2. SGS stress fluctuations810

To obtain a more complete understanding of the SGS stress properties, it is also necessary811
to examine the SGS stress fluctuations, as these fluctuations can significantly influence812
the Reynolds stress distributions (see §4.3). Figure 24 shows the wall-normal distributions813
of the six independent components of the root-mean-square (r.m.s.) values of SGS stress814
fluctuations at 𝑥/𝐿 = −0.1 for the medium-mesh simulations. As with the mean SGS815
stresses, the SGS stress fluctuations are largest close to the wall, with 𝜏

sgs
12 exhibiting the816

strongest fluctuations in both simulations.817
In the MSM simulation, however, the normal stress components 𝜏sgs

11 and 𝜏
sgs
22 also display818

substantial fluctuations, unlike in the SM. Because fluctuations of the normal stresses819
contribute directly to both SGS dissipation and SGS diffusion in the Reynolds stress transport820
equation, these enhanced fluctuations help explain the distinct SGS dissipation and diffusion821
behaviour observed for the MSM in §4.3. Examination at other streamwise locations shows822
that this qualitative behaviour of SGS stress fluctuations remains largely consistent throughout823
the FPG region.824

Figures 25 and 26 show the r.m.s. values of the SGS stress fluctuations at 𝑥/𝐿 = −0.1825
for simulations using different mesh resolutions with the SM and MSM, respectively. Here,826
only the results corresponding to the three main components are exhibited. Within each SGS827
model, the qualitative behaviour of the fluctuations remains similar as the mesh is refined.828
In contrast to the mean SGS stresses, which decrease rapidly with mesh refinement, the829
magnitudes of SGS stress fluctuations only mildly decrease with refinement. This difference830
in scaling implies that the relative importance of SGS stress fluctuations increases as the grid831
is refined. Furthermore, at this streamwise location, the MSM consistently produces larger832
fluctuations in all these SGS stress components than the SM for a given mesh resolution.833

For the MSM simulations, we further examined the SGS stress fluctuations at 𝑥/𝐿 = −0.1834
by separating the isotropic and anisotropic contributions, shown in figure 27. Similar to the835
mean SGS stress results, the fluctuations associated with the isotropic term behave similarly836
to those in the SM (see figure 25), again indicating that the addition of the anisotropic837
term does not substantially alter the isotropic component of the model. In contrast, the838
fluctuations of anisotropic stress term are dominated by the normal stress components 𝜏ani

11839

and 𝜏ani
22 , consistent with the behaviour of the mean anisotropic stress. Comparison with the840

total SGS stress fluctuations shown in figure 26 reveals that the large fluctuations in these841
normal components primarily originate from the anisotropic term.842

These observations confirm that the differences in SGS dissipation and diffusion of843
Reynolds stresses discussed in §4.3 stem mainly from the additional anisotropic stress term844
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Figure 25: SGS stress tensor r.m.s. components (𝜏sgs
11, rms, 𝜏sgs

12, rms, and 𝜏
sgs
22, rms) at

𝑥/𝐿 = −0.1 for simulations with the SM using the coarsest mesh (a), coarse mesh (b),
medium mesh (c), and fine mesh (d).

in the MSM, not from modifications to the isotropic stress term. This also suggests that845
optimizing the coefficient and formulation of the anisotropic stress term in anisotropic SGS846
models may provide an effective means of controlling SGS stress fluctuations and, in turn,847
improving the prediction of Reynolds stress distributions and the mean velocity field.848

5.3. A priori analysis of filtered DNS849

Previously, based on a series of WMLES, we conducted a comprehensive a posteriori analysis850
of the mean SGS stress and the fluctuations of SGS stress within the critical FPG region on851
the windward side of the bump. To further validate those conclusions and to gain additional852
insight into the characteristics of SGS stress in wall-bounded turbulence under FPG, we853
perform an a priori analysis using Gaussian-filtered DNS of turbulent Couette-Poiseuille854
flow. The DNS is conducted at a Reynolds number of 𝑅𝑒𝐻 = 𝑈𝑐𝐻/𝜈 = 2,500, where 𝐻 is855
the half-channel height and 𝑈𝑐 is the wall motion speed. Additional details of the DNS and856
the filtering operation are provided in Appendices C and D.857

The a priori analysis focuses on the lower half of the channel, where the flow near the858
bottom wall experiences an FPG and behaves qualitatively similarly to a TBL with FPG.859
Gaussian filtering of the velocity field is applied only in the streamwise (𝑥) and spanwise (𝑧)860
directions, since the DNS grid is non-uniform in the wall-normal (𝑦) direction. To examine861
a range of moderate to coarse filter widths, the standard deviations of the Gaussian kernel862
are set to 𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 =1, 2 and 4, where Δ𝑥 and Δ𝑧 are the uniform DNS grid863
spacings in 𝑥 and 𝑧. Based on the filtered velocity field, the SGS stress can be calculated as864

𝜏
sgs
𝑖 𝑗

= 𝑢𝑖𝑢 𝑗 − 𝑢̂𝑖 𝑢̂ 𝑗 , where (̂·) denotes Gaussian filtering. For the present analysis, we only865

consider the deviatoric, trace-free part of the SGS stress tensor.866
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Figure 26: SGS stress tensor r.m.s. components (𝜏sgs
11, rms, 𝜏sgs

12, rms, and 𝜏
sgs
22, rms) at

𝑥/𝐿 = −0.1 for simulations with the MSM using the coarsest mesh (a), coarse mesh (b),
medium mesh (c), and fine mesh (d).
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Figure 27: Isotropic SGS stress tensor r.m.s. components (𝜏iso
11, rms, 𝜏iso

12, rms, and 𝜏iso
22, rms)

(a) and anisotropic SGS stress tensor r.m.s. components (𝜏ani
11, rms, 𝜏ani

12, rms, and 𝜏ani
22, rms) (b)

at 𝑥/𝐿 = −0.1 for medium-mesh simulations with the MSM.

Figure 28(a) shows the wall-normal distributions of the mean SGS stress components867
obtained from the filtered DNS data using a Gaussian kernel with 𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 =868
2. The magnitudes of the mean SGS stresses are largest near the wall, with peak values869
occurring at 𝑦/𝐻 ≈ 0.06 (approximately 20 wall units). A key observation is that the870
normal stress components, 𝜏sgs

11 and 𝜏
sgs
22 , are significantly larger than the other components.871

This indicates strong SGS anisotropy near the wall, with the streamwise and wall-normal872
directions dominating the interscale energy transfer. By contrast, although the mean shear is873
large in this region, the small-scale cross-correlation between streamwise and wall-normal874
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Figure 28: Mean SGS stress tensor components 𝜏sgs
𝑖 𝑗

(a) and SGS stress tensor r.m.s.
components 𝜏sgs

𝑖 𝑗, rms (b) obtained from the Gaussian filtering of velocity field from the
DNS of turbulent Couette-Poiseuille flow with the standard deviations of the Gaussian

kernel 𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 =2.

velocity fluctuations is weaker than the variance of each component, causing the mean shear875
stress 𝜏sgs

12 to remain comparatively small.876
When compared with the mean SGS stress in the TBL within the FPG region of the877

present WMLES, the filtered DNS results exhibit behaviour more consistent with the MSM878
predictions. In both cases, the anisotropic stress introduces crucial normal stress components879
in the near-wall region, and the signs of the dominant 𝜏sgs

11 and 𝜏
sgs
22 components agree between880

the two flows. However, due to the coarse resolution along the wall-normal direction in the881
WMLES, the peaks of the mean SGS stress components are not fully captured.882

It is also worth noting that the qualitative behaviour of the mean SGS stresses remains883
similar across different standard deviations of the Gaussian filter, or equivalently, different884
effective filter widths. For brevity, results for other filter widths (e.g., 𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 = 1885
or 4) are not shown. Examination of these cases indicates that increasing the filter standard886
deviation leads to larger mean SGS stress magnitudes, consistent with the fact that wider887
filters remove more turbulent scales and therefore attribute a greater portion of the momentum888
transfer to the unresolved motions.889

Figure 28(b) shows the wall-normal distributions of the r.m.s. values of SGS stress890
fluctuations from filtered DNS. As expected, the fluctuation intensities are largest near the891
bottom wall, with peak values occurring at approximately the same wall-normal location as892
the mean SGS stresses in figure 28(a). While the mean SGS stresses represent the average893
interscale momentum transfer, the r.m.s. values reflect its temporal and spatial variability894
and are therefore more sensitive to localized turbulent events. The strong peaks near the wall895
indicate that the energy transfer between resolved and subgrid scales is highly intermittent896
in this region, driven by the bursting and ejection–sweep cycles characteristic of near-wall897
turbulence. The particularly large fluctuations in 𝜏

sgs
11 and 𝜏

sgs
22 suggest substantial temporal898

variability in the normal stress components, likely associated with rapid distortion of streaks899
and vortical structures.900

The strong normal SGS stress fluctuations are also better captured by the MSM in the901
WMLES, whereas they are nearly absent in the SM results within the FPG region. This902
reinforces the role of the anisotropic stress term in reproducing the correct near-wall SGS903
dynamics. Finally, although results for other filter widths (𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 = 1 and 4) are not904
shown, their qualitative behaviour is similar: the fluctuation intensities increase with filter905
width, consistent with the enhanced contribution from unresolved scales.906

From the filtered DNS analysis and its comparison with the WMLES results, it is evident907
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that in wall-bounded turbulence under FPG the SGS dynamics are strongly anisotropic near908
the wall, with the normal SGS stress components playing a major role. Classical eddy-909
viscosity models are unable to represent these effects adequately. In contrast, the anisotropic910
SGS model reproduces the near-wall anisotropy much more realistically, consistent with911
the characteristics observed in the filtered DNS. These findings suggest that improving or912
optimizing the anisotropic stress term and its coefficient in SGS models offers a promising913
pathway for enhancing model performance in simulations of complex turbulent flows.914

6. Conclusions915

This study performed a comprehensive a posteriori analysis of the effect of anisotropic SGS916
stress on WMLES of separated turbulent flow over a spanwise-uniform Gaussian bump. An917
idealized wall boundary condition prescribing the local mean wall-shear stress from DNS918
data (Uzun & Malik 2022) was used to isolate the impact of the SGS model. Two models919
were compared: the classical Smagorinsky model (SM) and a modified Smagorinsky model920
(MSM) that includes an additional anisotropic stress term.921

The main findings are summarized as follows. First, the predicted flow separation on the922
leeward side of the bump depends strongly on the SGS model. The isotropic SM exhibits923
non-monotonic convergence of the mean separation bubble length with mesh refinement,924
whereas the anisotropic MSM provides consistent predictions across resolutions. Second,925
the influence of anisotropic SGS stress is found to be most critical upstream of the bump926
peak, within the region of strong favorable pressure gradient (FPG). Changes to the SGS927
model in this region substantially alter the downstream separation, revealing a pronounced928
history effect in determining separation onset. Third, inclusion of anisotropic SGS stress929
improves the prediction of Reynolds shear and normal stress distributions in the FPG930
region. These modifications propagate downstream and influence the onset and size of the931
separation bubble. Analysis of the Reynolds stress budget shows that anisotropic SGS stress932
fluctuations enable both dissipation and backscatter, facilitating the bidirectional energy933
transfer that isotropic models fail to represent. The dependence of flow-separation prediction934
on mesh resolution is also clarified. On coarse meshes, the mean SGS shear stress dominates935
the streamwise momentum balance upstream of the separation point, and both models936
behave similarly. As the resolution increases, Reynolds stresses become more influential,937
and the anisotropic MSM better captures their distribution and yields more consistent flow938
predictions. At fine resolution, model differences diminish as more turbulent scales are939
resolved. The key physical distinction between the SM and MSM arises from the normal940
SGS stress components, 𝜏sgs

11 and 𝜏
sgs
22 , which in the MSM significantly contribute to SGS941

dissipation and diffusion of Reynolds stresses, particularly under FPG. An a priori analysis942
based on filtered DNS of Couette–Poiseuille flow further confirms that near-wall turbulence943
under FPG is highly anisotropic and dominated by these normal stress components, which944
are not captured by isotropic eddy-viscosity models.945

Taken together, these findings explain why isotropic and anisotropic SGS models yield946
qualitatively different predictions of separation behaviour and why the anisotropic model947
achieves more consistent convergence across mesh resolutions. The results emphasize that948
accurate WMLES predictions require proper representation of both mean and fluctuating949
SGS stresses, especially their anisotropy in the near-wall region.950

Beyond elucidating the role of anisotropic SGS stress, this study highlights directions951
for improving WMLES of complex wall-bounded turbulence. Since the unresolved motions952
in WMLES carry substantial energy and momentum fluxes, the SGS model must account953
for anisotropic stress dynamics near the wall and under pressure gradients. Developing954
more advanced anisotropic SGS models, potentially through optimized extensions of eddy-955
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Figure 29: Curvature radius (a) of the Gaussian bump surface and local boundary layer
thickness (b) for the medium-mesh simulation with the SM in 𝑥/𝐿 ∈ [−0.4, 0.1].

viscosity formulations (Marstorp et al. 2009; Silvis & Verstappen 2019; Agrawal et al. 2022;956
Uzun & Malik 2025), is therefore a promising path forward. Although this work employed957
an idealized wall model to isolate SGS effects, realistic wall modeling and its coupling with958
the SGS model remain critical challenges. Unified SGS/wall modeling frameworks (Ling959
et al. 2022; Arranz et al. 2023, 2024; Zhou et al. 2025) represent a promising direction to960
enhance the robustness and predictive accuracy of WMLES for complex turbulent flows.961

Acknowledgments962

This work was supported by National Science Foundation (NSF) grant No. 2152705. Com-963
puter time was provided by the Discover project at Pittsburgh Supercomputing Center through964
allocation PHY240020 from the Advanced Cyberinfrastructure Coordination Ecosystem:965
Services & Support (ACCESS) program, which is supported by NSF grants No. 2138259,966
No. 2138286, No. 2138307, No. 2137603, and No. 2138296. The authors sincerely thank967
Dr. Ali Uzun and Dr. Mujeeb Malik for generously sharing their DNS data. We also extend968
our special gratitude to Dr. Meng Wang for his invaluable assistance.969

Declaration of Interests970

The authors report no conflict of interest.971

Appendix A. Investigation of the curvature effect on the region upstream of972
separation973

Figure 29 shows the local curvature radius (𝑟) of the present Gaussian bump surface and974
the local boundary layer thickness (𝛿) from the medium-mesh simulation with the SM in975
the region 𝑥/𝐿 ∈ [−0.4, 0.1]. The curvature radius reaches its minimum at the bump peak976
(𝑥/𝐿 = 0), where the curvature is largest, while the curvature radius is substantially larger977
at all other locations. Even at the bump peak, the minimum curvature radius remains much978
larger than the local boundary layer thickness, with the ratio of curvature radius to boundary979
layer thickness exceeding 10. These observations indicate that curvature effects in this region980
are negligible, consistent with findings of previous studies (Prakash et al. 2024; Spalart et al.981
2024).982

Appendix B. Simulations using the mixed model983

An additional anisotropic SGS model evaluated in the present study is the mixed model984
(MM) (Bardina 1983; Sarghini et al. 1999). It combines the SM (Smagorinsky 1963) with985
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Figure 30: Mean separation bubble length on the leeward side of the bump from the
simulations using the MM for different mesh resolutions and the reference DNS (Uzun &

Malik 2022). Symbols represent data point for each case.

a scale-similarity term computed using explicit filtering (Meneveau & Katz 2000), which is986
given by987

𝜏ani
𝑖 𝑗 = �𝑢𝑖 𝑢 𝑗 − 𝑢̂𝑖 𝑢̂ 𝑗 , (B 1)988

where (̂·) denotes an explicit filtering operation, chosen here as Gaussian filtering. With the989
use of Gaussian filtering, the anisotropic term can be approximated (Clark et al. 1979) by990

𝜏ani
𝑖 𝑗 = �𝑢𝑖 𝑢 𝑗 − 𝑢̂𝑖 𝑢̂ 𝑗 ≈

Δ2

12
𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
=
Δ2

12
[
𝑆𝑖𝑘𝑆𝑘 𝑗 − 𝑅𝑖𝑘𝑅𝑘 𝑗 −

(
𝑆𝑖𝑘𝑅𝑘 𝑗 − 𝑅𝑖𝑘𝑆𝑘 𝑗

) ]
. (B 2)991

In addition to introducing anisotropic SGS stress, this term can produce kinetic energy992
dissipation. In particular, it can also produce negative dissipation, which allows for local993
backscatter of kinetic energy. The isotropic SGS stress term in the MM is given by the SM994
with a coefficient of 𝐶𝑠 = 0.127 (Bhushan & Warsi 2005; Bhushan et al. 2006), chosen to995
ensure that the total kinetic energy dissipation for homogeneous isotropic turbulence from996
both the isotropic and anisotropic stress terms matches that from the SM and MSM used in997
the present study. The MM simulations are carried out using the same computational meshes998
and boundary conditions described in §2.999

Figure 30 shows the mean separation bubble length on the leeward side of the bump as1000
a function of characteristic mesh resolution. The MM simulations consistently overpredict1001
the separation bubble length, but the predictions that remain nearly insensitive to mesh1002
refinement. This trend mirrors the behaviour observed for the MSM simulations (see figure 7),1003
further underscoring the robustness of anisotropic SGS models for WMLES.1004

Additional analyses of the mean streamwise momentum, mean pressure, and Reynolds1005
stress transport equations using data from multiple mesh resolutions show that the MM1006
exhibits behaviour qualitatively similar to the MSM, particularly in its representation of1007
anisotropic stress effects. Thus, the conclusions drawn in the main text remain applicable to1008
the MM simulations.1009

Appendix C. DNS of plane Couette-Poiseuille flow1010

A DNS of turbulent plane Couette–Poiseuille flow is conducted at 𝑅𝑒𝐻 = 2,500, where1011
𝐻 denotes the half-channel height. In the simulation, the incompressible Navier–Stokes1012
equations are solved using a staggered finite-difference scheme that is second-order accurate1013
in space and advanced in time with an explicit third-order Runge–Kutta method. The flow1014
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Figure 31: Isocontours of the instantaneous streamwise velocity relative to the bottom wall
𝑢𝑟/𝑈𝑐 in (a) an 𝑥-𝑦 plane and (b) a 𝑧-𝑦 plane from the DNS of turbulent

Couette–Poiseuille flow.

solver has been validated in previous studies of turbulent channel flows (Bae et al. 2018,1015
2019). In the computational domain, periodic boundary conditions are imposed in the1016
streamwise (𝑥) and spanwise (𝑧) directions. The top and bottom walls move parallel to1017
each other in opposite directions along the 𝑥 axis. A Dirichlet boundary condition with1018
constant velocity 𝑢𝑥 = 𝑈𝑐 = 1 is applied at the top wall (𝑦/𝐻 = 2), while a constant1019
velocity 𝑢𝑥 = −𝑈𝑐 = −1 is imposed at the bottom wall (𝑦/𝐻 = 0). A constant streamwise1020

pressure gradient, corresponding to 𝐻/(𝜌𝑈2
𝑐)

𝑑𝑝

𝑑𝑥
= −0.003, is applied to drive the flow,1021

indicating that the mean pressure decreases in the positive 𝑥 direction. The computational1022
domain extends over 𝐿𝑥/𝐻 = 6𝜋, 𝐿𝑦/𝐻 = 2, and 𝐿𝑧/𝐻 = 3𝜋 in the streamwise, wall-1023
normal, and spanwise directions, respectively. Uniform grids with 512 points are used1024
in both the streamwise and spanwise directions. In the wall-normal direction, 256 non-1025
uniformly spaced points are distributed according to a hyperbolic tangent stretching, yielding1026
min(Δ𝑦)/𝐻 = 3.5 × 10−4 and max(Δ𝑦)/𝐻 = 2.2 × 10−2. The simulation is first advanced1027
for 100 flow-through times (6𝜋𝐻/𝑈𝑐) to eliminate initial transients. After the flow reaches a1028
statistically stationary state, 1,500 temporal snapshots are collected for the present analysis.1029
Moreover, the statistical quantities in the present study are obtained by performing temporal1030
and spatial averaging along the homogeneous streamwise and spanwise directions of the1031
corresponding instantaneous fields.1032

Figure 31 shows the instantaneous streamwise velocity relative to the bottom wall, 𝑢𝑟 =1033
𝑢𝑥 + 𝑈𝑐, from the DNS. Due to the motion of the parallel walls and the imposed mean1034
pressure gradient, the wall-bounded turbulence in the upper half of the channel experiences1035
an APG and behaves similarly to an APG TBL containing many large-scale flow structures.1036
In contrast, the turbulence near the bottom wall is subjected to an FPG and qualitatively1037
similar to an FPG TBL. Figure 32 presents the profile of inner-scaled mean streamwise1038

velocity relative to the bottom wall, defined as 𝑢+𝑟 = (𝑢𝑥 +𝑈𝑐)/𝑢𝜏,𝑏. Here, the superscript1039
“+” denotes inner-scaled quantity by wall unit and 𝑢𝜏,𝑏 is the bottom-wall friction velocity.1040

Appendix D. Filtering of the DNS velocity field1041

To obtain the filtered velocity field from the DNS of the turbulent Couette–Poiseuille flow, a1042
Gaussian filter is applied to the instantaneous velocity field 𝒖 = (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧). Since the DNS1043
grid is non-uniform in the wall-normal (𝑦) direction, the filtering operation is performed only1044
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Figure 32: Mean streamwise velocity relative to the bottom wall from the DNS of
turbulent Couette-Poiseuille flow. The dashed line represents the classical log law of the

wall 𝑢+𝑟 = (1/0.41) ln(𝑦+) + 5.2.

in the streamwise (𝑥) and spanwise (𝑧) directions to avoid commutation errors. The filtered1045
velocity field 𝒖̂ = (𝑢̂𝑥 , 𝑢̂𝑦 , 𝑢̂𝑧) is obtained through a two-dimensional convolution in the 𝑥1046
and 𝑧 directions,1047

𝑢̂𝑖 (𝑥, 𝑦, 𝑧) =
∬

𝐺 (𝑥 − 𝑟𝑥 , 𝑧 − 𝑟𝑧) 𝑢𝑖 (𝑟𝑥 , 𝑦, 𝑟𝑧) d𝑟𝑥 d𝑟𝑧 , (D 1)1048

where the Gaussian kernel is defined as1049

𝐺 (𝑟𝑥 , 𝑟𝑧) =
1

2𝜋 𝜎𝑥𝜎𝑧

exp

[
−1

2

(
𝑟2
𝑥

𝜎2
𝑥

+
𝑟2
𝑧

𝜎2
𝑧

)]
. (D 2)1050

Here, 𝑟𝑥 and 𝑟𝑧 denote spatial separations in the streamwise and spanwise directions, and 𝜎𝑥1051
and 𝜎𝑧 are the corresponding standard deviations of the Gaussian kernel. Since the DNS grid1052
is uniform in both directions, the filtering is implemented as a discrete convolution using1053
symmetric one-dimensional Gaussian kernels applied successively in 𝑥 and 𝑧.1054

The effective filter width Δ 𝑓 ,𝑖 in each direction 𝑖 ∈ {𝑥, 𝑧} is defined by matching the second1055
moment of the Gaussian filter with that of a top-hat filter, giving1056

Δ 𝑓 ,𝑖 = 2
√

3𝜎𝑖 . (D 3)1057

In this study, the standard deviations are set as multiples of the uniform DNS grid spacings1058
such that 𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 = 1, 2, and 4, corresponding to moderate to coarse filter widths1059
that remove small-scale motions while retaining large-scale flow structures. The resulting1060
effective filter widths Δ 𝑓 ,𝑥 and Δ 𝑓 ,𝑧 are approximately 3.464, 6.928, and 13.856 times the1061
grid spacings Δ𝑥 and Δ𝑧, respectively.1062

Figure 33 shows the filtered instantaneous streamwise velocity relative to the bottom1063
wall 𝑢̂𝑟/𝑈𝑐 in an 𝑥–𝑦 plane for these three filter widths, along with the DNS field. As the1064
standard deviations increase, progressively finer structures are removed, demonstrating how1065
the Gaussian filter systematically isolates the larger-scale motions.1066
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Figure 33: Isocontours of the filtered streamwise velocity 𝑢̂𝑟/𝑈𝑐 with
𝜎𝑥/Δ𝑥 = 𝜎𝑧/Δ𝑧 = 1 (a), 2 (b), and 4 (c).
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