

Banner appropriate to article type will appear here in typeset article

1 **Effect of subgrid-scale anisotropy on wall-modeled 2 large-eddy simulation of turbulent flow with 3 smooth-body separation**

4 **Di Zhou^{1,2}† and H. Jane Bae¹**

5 ¹Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA

6 ²Department of Mechanical and Aerospace Engineering, University of Tennessee, Knoxville, TN 37996,
7 USA

8 (Received xx; revised xx; accepted xx)

9 We examine the role of anisotropic subgrid-scale (SGS) stress in wall-modeled large-
10 eddy simulation (WMLES) of flow over a spanwise-uniform Gaussian-shaped bump, with
11 emphasis on predicting flow separation. The simulations show that eddy-viscosity-based
12 SGS models often yield non-monotonic predictions of the mean separation bubble size
13 on the leeward side under grid refinement, whereas models incorporating anisotropic SGS
14 stress produce more consistent results. To identify where SGS anisotropy is most critical,
15 we introduce anisotropic SGS stress in selected regions of the domain. The results reveal
16 that the windward side, where a strong favorable pressure gradient (FPG) occurs, is crucial
17 in determining downstream separation. Analysis of the Reynolds stress transport equation
18 shows that fluctuations of anisotropic SGS stress modify SGS dissipation and diffusion in
19 this region, thereby altering the Reynolds stress and the onset of separation. Examination of
20 the mean streamwise momentum equation indicates that at coarse resolutions, the mean SGS
21 shear stress dominates, and the differences between the eddy-viscosity-based and anisotropic
22 models remain minor. With grid refinement, resolved Reynolds stresses increasingly govern
23 the near-wall momentum transport, and the influence of SGS stress fluctuations grows as they
24 determine the SGS dissipation and diffusion of Reynolds stresses. Component-wise analysis
25 of the SGS stress tensor further shows that the improvement arises mainly from including
26 significant normal stress contributions. An *a priori* study using filtered direct numerical
27 simulation of turbulent Couette-Poiseuille flow confirms that wall-bounded turbulence under
28 FPG is highly anisotropic and that anisotropic SGS models provide a more realistic SGS
29 stress representation than eddy-viscosity-based models.

30 **MSC Codes** 76F65, 76F40

31 **1. Introduction**

32 Complex turbulent flows with separation are commonplace in various aerodynamic and
33 hydrodynamic vehicles, significantly influencing their performance and stall characteristics.
34 The ability to accurately predict such flows is therefore crucial for the design and assessment
35 of these systems. A potentially suitable and feasible tool for this purpose is wall-modeled

† Email address for correspondence: dzhou6@utk.edu

36 large-eddy simulation (WMLES) (Larsson *et al.* 2016; Park 2017; Bose & Park 2018), as it
 37 resolves the energy-containing and dynamically important scales of turbulence away from
 38 the wall while employing a reduced-order model to account for the effects of energetic
 39 near-wall eddies. Compared with classical wall-resolved large-eddy simulation (WRLES),
 40 WMLES not only significantly reduces the grid resolution requirement but also allows for
 41 a larger time-step sizes; therefore, it is computationally more efficient. Recent studies (Choi
 42 & Moin 2012; Yang & Griffin 2021) have shown that the computational cost of WMLES
 43 is one to two orders of magnitude smaller than that for the WRLES in attached flow over a
 44 finite aspect-ratio wing at varying Reynolds numbers. Because of these advantages, WMLES
 45 has been anticipated as the next step toward the broader use of high-fidelity simulation in
 46 realistic engineering applications. In recent years, WMLES has been applied to complex
 47 flow configurations in practical engineering contexts (Lehmkuhl *et al.* 2018; Goc *et al.*
 48 2021, 2024). These simulations have highlighted the capability of WMLES in predicting
 49 critical flow-performance quantities, particularly in comparison with approaches based
 50 on Reynolds-averaged Navier–Stokes (RANS) closures. Moreover, by leveraging modern,
 51 massively parallel computer architectures, these simulations achieve turnaround times of
 52 less than a few days with modest computational resources.

53 Currently, the primary challenge in applying WMLES to realistic applications lies in
 54 achieving both robustness and accuracy across a range of flow regimes and configurations.
 55 However, many existing wall models are built upon the assumption of statistically equilibrium
 56 wall-bounded turbulence, which applies to only a limited class of turbulent flows. To go
 57 beyond the equilibrium assumption, developing more capable techniques that can address
 58 a wider range of non-equilibrium flows has become a key focus within the wall-modeling
 59 community. A widely used approach has been to develop wall models based on the thin
 60 boundary-layer equations while incorporating some or all of the effects of unsteadiness,
 61 convection, and pressure gradients (Wang & Moin 2002; Kawai & Larsson 2013; Park &
 62 Moin 2014). An alternative approach is dynamic slip wall modeling (Bose & Moin 2014; Bae
 63 *et al.* 2019), which is derived directly from the filtered Navier–Stokes equations instead of
 64 relying on thin boundary-layer approximations. Despite these advancements in wall modeling
 65 techniques, accurate numerical prediction of complex separated flows remains a significant
 66 challenge for WMLES. Recent studies (Lozano-Durán & Bae 2019; Rezaeiravesh *et al.* 2019;
 67 Zhou & Bae 2024a) have demonstrated that this challenge arises not only from the less-than-
 68 ideal performance of wall-modeling approaches but also, and perhaps more importantly,
 69 from the insufficient capability of existing subgrid-scale (SGS) models in WMLES, a topic
 70 that has received relatively little attention. Specifically, Zhou *et al.* (2023) and Zhou & Bae
 71 (2024a) have shown that the influence of SGS models on WMLES of turbulent flow with
 72 separation is profound, significantly limiting the robustness and applicability of WMLES.

73 In large-eddy simulations (LES), the large scales of turbulent flow are explicitly resolved,
 74 while the effects of small-scale motions are modeled using SGS models. It is often
 75 assumed that turbulence at the small, unresolved scales is largely isotropic. Based on
 76 this assumption, the original development of SGS models focused on WRLES using fine-
 77 resolution computational meshes, and the effects of SGS were modeled using simple isotropic
 78 models such as eddy-viscosity models. However, computational meshes with much coarser
 79 resolution employed in WMLES were not fully considered in the development of SGS
 80 models. To date, eddy-viscosity models still represent the most commonly used class of SGS
 81 models in LES (Moser *et al.* 2021; Duraisamy 2021; Choi *et al.* 2025). While they can provide
 82 a statistically accurate energy transfer rate from resolved scales to SGS (*i.e.*, dissipation of
 83 kinetic energy), several studies (Clark *et al.* 1979; Kerr *et al.* 1996; Domaradzki & Saiki 1997)
 84 have highlighted that the output of these models is poorly correlated with the exact SGS stress
 85 computed from direct numerical simulation (DNS). Beyond dissipation, there are statistical

86 characteristics that the SGS model must satisfy to enable reliable simulations (Moser *et al.*
 87 2021), for example, accurately predicting the mean SGS stress. Unfortunately, investigations
 88 (Meneveau 1994; Jimenez & Moser 2000; Li & Meneveau 2004) have shown that eddy-
 89 viscosity models may not sufficiently capture both the energy transfer and SGS stress
 90 behaviour in turbulent flows. It has also been observed that eddy-viscosity models produce
 91 a non-monotonic convergence behaviour for separation bubble prediction at coarser mesh
 92 resolutions (Whitmore *et al.* 2021; Agrawal *et al.* 2022; Zhou & Bae 2024a). Consequently,
 93 they often require the LES resolution to be fine enough for the mean SGS stress to become
 94 negligible. This reliance on finer resolution limits their practical applicability, underscoring
 95 the need for SGS models compatible with WMLES that can still yield accurate predictions
 96 of complex turbulent flows.

97 The central challenge in advancing SGS models is overcoming the so-called well-resolved
 98 barrier, where the majority of turbulence is adequately captured. For coarser resolutions, SGS
 99 models must fulfill roles beyond simple energy dissipation, as subgrid motions contribute
 100 increasingly to mean momentum and energy transport. Moreover, the effects of SGS
 101 anisotropy, both in dissipation and stress, cannot be ignored, especially at the smallest
 102 resolved scales that are dynamically active and energy-containing. The primary limitation of
 103 traditional eddy-viscosity models arises from their single degree of freedom, which restricts
 104 their ability to represent both stress and dissipation simultaneously. Reliable WMLES at
 105 coarse resolutions therefore requires enhanced formulations beyond the isotropic models
 106 to represent both stress and dissipation simultaneously. To achieve these goals, a variety
 107 of anisotropic SGS models have been proposed over the past decades, including mixed
 108 similarity models (Zang *et al.* 1993; Liu *et al.* 1994; Vreman *et al.* 1994, 1997; Horiuti
 109 1997; Meneveau & Katz 2000; Kobayashi & Shimomura 2001; Inagaki & Kobayashi 2020;
 110 Iyer & Malik 2024), algebraic models (Gatski & Jongen 2000; Marstorp *et al.* 2009; Rasam
 111 *et al.* 2017; Montecchia *et al.* 2017; Silvis & Verstappen 2019), and other nonlinear SGS
 112 models (Kosović 1997; Wang & Bergstrom 2005; Abe 2013, 2014; Vollant *et al.* 2016;
 113 Kobayashi 2018; Agrawal *et al.* 2022; Uzun & Malik 2025). These models have been shown
 114 to outperform traditional eddy-viscosity models in canonical turbulent flows such as channel
 115 flows and turbulent boundary layers (TBLs). However, their performance in more complex
 116 and realistic configurations remains insufficiently explored. Furthermore, despite the wide
 117 range of proposed models, detailed analyses of their underlying mechanisms and the effects
 118 of SGS anisotropy are still limited. It is therefore necessary to investigate the effects of
 119 anisotropic SGS stress in complex turbulent flows, particularly as model development in this
 120 area has progressed relatively slowly.

121 Investigations into the effect of anisotropic SGS stress have recently gained momentum.
 122 Several studies have focused on *a priori* analyses (Horiuti 2003; Abe 2019; Cimarelli *et al.*
 123 2019; Inagaki & Kobayashi 2023) based on filtered DNS data, showing that SGS anisotropy
 124 significantly influences the evolution of Reynolds stress, vorticity, and enstrophy, particularly
 125 in wall-bounded turbulence. However, previous studies (Vreman *et al.* 1997; Park *et al.*
 126 2005; Duraisamy 2021; Choi *et al.* 2025) on both traditional and data-driven SGS models
 127 have revealed inconsistencies between the results of *a priori* and *a posteriori* evaluations.
 128 Specifically, models that perform poorly in *a priori* tests may yield excellent *a posteriori*
 129 results, and vice versa, highlighting a fundamental limitation of the *a priori* analysis. Given
 130 this gap, and to fully evaluate the effects of anisotropic SGS stress on WMLES of separated
 131 turbulent flows, we conduct a comprehensive *a posteriori* study.

132 In particular, this *a posteriori* investigation focuses on the flow over a Gaussian-shaped
 133 bump at a relatively high Reynolds number (see figure 1), as proposed by Boeing Research
 134 & Technology (Slotnick 2019). This configuration is closely related to realistic applications,
 135 mimicking the smooth junctions between an aircraft wing and fuselage, where smooth-body

separation of a TBL occurs under the combined influence of pressure gradients and surface curvature. As a canonical flow configuration, it has been extensively studied, and a wealth of experimental data is available (Williams *et al.* 2020; Gray *et al.* 2021, 2022*a,b*; Gluzman *et al.* 2022), establishing it as a benchmark for validating computational fluid dynamics techniques (Balin & Jansen 2021; Whitmore *et al.* 2021; Iyer & Malik 2022; Agrawal *et al.* 2022; Uzun & Malik 2022; Arranz *et al.* 2023; Zhou *et al.* 2023; Zhou & Bae 2024*b*; Agrawal *et al.* 2024; Iyer & Malik 2025). Computational studies have consistently emphasized the challenge of accurately predicting the extent and location of separation on the leeward side of the bump. Recent WMLES studies have shown that mean separation prediction is highly sensitive to the SGS model employed, affecting both accuracy and robustness (Iyer & Malik 2022; Agrawal *et al.* 2022; Zhou & Bae 2024*a*). Furthermore, anisotropic SGS models have been found to markedly improve the predictions of mean velocity field in WMLES (Agrawal *et al.* 2022; Zhou & Bae 2024*a*; Iyer & Malik 2024; Uzun & Malik 2025). Given the complex physics of smooth-body separation and the sensitivity of its separation prediction to the SGS model, the flow over a Gaussian-shaped bump is an ideal test case for the present *a posteriori* analysis. To avoid the complexities due to spanwise variations, this study focuses on a spanwise-uniform Gaussian bump with periodic boundary conditions in the spanwise direction. The flow configuration and simulation setup follow the hybrid DNS-WRLES study by Uzun & Malik (2022), which also provides high-fidelity reference data. Through this study, we aim to improve understanding of how anisotropic SGS models influence the statistics and dynamics of separated flow in WMLES, particularly the mean velocity field and the onset of smooth-body separation. We also seek to characterize the properties of anisotropic SGS stress and identify key features required of SGS models for accurate and robust WMLES in complex separated flows. Building on these insights, our ultimate goal is to provide guidance for future SGS model development and enhance the overall predictive performance of WMLES.

The remainder of the paper is organized as follows. §2 describes the numerical approach, flow configuration, and simulation setup, including computational meshes and boundary conditions. In §3, the sensitivity of mean flow separation to the SGS models and grid resolution is examined through a series of WMLES, and a numerical experiment that introduces anisotropic SGS stress in different regions of the computational domain is conducted to identify where SGS anisotropy is most critical. §4 presents detailed analyses based on the simulation data to explain the mechanisms underlying the sensitivities of the flow separation prediction, as well as the role of the anisotropic SGS stress in the flow over the Gaussian bump. Specifically, the budgets of the mean streamwise momentum and Reynolds stress transport equations are examined. In §5, the properties of the SGS stress in these simulations are then investigated and compared with corresponding results from an *a priori* study based on filtered DNS data of a turbulent Couette–Poiseuille flow. Finally, §6 summarizes the key findings and provides insights for further improvement of the WMLES technique.

2. Computational methodology

2.1. Numerical approach

Flow simulations are conducted employing a finite-volume, unstructured-mesh LES code (You *et al.* 2008). The reliability of this LES code in accurately simulating turbulent flows has been demonstrated in various configurations, such as rough-wall TBLs (Yang & Wang 2013), flow over an axisymmetric body of revolution (Zhou *et al.* 2020), and rotor interactions with thick axisymmetric TBL (Zhou *et al.* 2024). In this LES code, the spatially-filtered incompressible Navier–Stokes equations are solved with second-order accuracy using cell-

183 based, low-dissipative, and energy-conservative spatial discretization and a fully implicit,
 184 fractional-step time-advancement method with the Crank–Nicolson scheme. The Poisson
 185 equation for pressure is solved using the bi-conjugate gradient stabilized method (Van der
 186 Vorst 1992). The governing equations for LES of incompressible turbulent flows are given
 187 by

$$188 \quad \frac{\partial \tilde{u}_i}{\partial x_i} = 0, \quad (2.1)$$

189 and

$$190 \quad \frac{\partial \tilde{u}_i}{\partial t} + \tilde{u}_j \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_i} + \nu \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j} - \frac{\partial}{\partial x_j} \tau_{ij}^{\text{sgs}}, \quad (2.2)$$

191 where u_i is the instantaneous flow velocity, \tilde{p} is the instantaneous static pressure, ρ is fluid
 192 density, ν is fluid kinematic viscosity and (\cdot) denotes grid-filtering operation. SGS stress
 193 is given by the tensor $\tau_{ij}^{\text{sgs}} = \tilde{u}_i \tilde{u}_j - \tilde{u}_i \tilde{u}_j$. The deviatoric part of the SGS stress tensor is
 194 modeled using an SGS model for closure of the equations, and the isotropic component of
 195 the SGS stress is absorbed into pressure. Without specific description, the SGS stress term in
 196 the following discussion denotes the deviatoric part of the corresponding SGS stress tensor.
 197 Additionally, in the following discussions, the tilde symbol, which denotes the grid filtering
 198 operation, will be omitted for the sake of simplicity. Hence, u_i and p will directly represent
 199 the instantaneous physical quantity of resolved flow field.

200 In the current study, two SGS models are investigated. The first model is the classical
 201 Smagorinsky model (SM) (Smagorinsky 1963), a widely used isotropic SGS model based
 202 on the eddy-viscosity closure assumption. The corresponding SGS stress is given by

$$203 \quad \tau_{ij}^{\text{sgs}} = \tau_{ij}^{\text{SM}} = -2(C_s \Delta)^2 |S| S_{ij}, \quad (2.3)$$

204 where S_{ij} represents the strain-rate tensor, and $|S| = (2S_{ij}S_{ij})^{1/2}$. Furthermore, in the
 205 Smagorinsky model, the eddy viscosity is represented by $\nu_t = (C_s \Delta)^2 |S|$, where Δ denotes
 206 the grid filter width, typically assumed to be the geometric mean of the local grid size.
 207 The Smagorinsky coefficient, C_s , is typically between 0.1 and 0.2. In the present study, we
 208 use $C_s = 0.16$, which was originally calibrated for homogeneous isotropic turbulence. The
 209 second SGS model is an anisotropic SGS model that consist of the isotropic term τ_{ij}^{iso} given
 210 by the SM (Smagorinsky 1963) and an additional anisotropic SGS stress term τ_{ij}^{ani} , such that

$$211 \quad \tau_{ij}^{\text{sgs}} = \tau_{ij}^{\text{iso}} + \tau_{ij}^{\text{ani}} = \tau_{ij}^{\text{SM}} + \tau_{ij}^{\text{ani}}. \quad (2.4)$$

212 Specifically, we consider a modified SM (MSM), where the anisotropic SGS stress term
 213 is defined as $\tau_{ij}^{\text{ani}} = C_a \Delta^2 (S_{ik} R_{kj} - R_{ik} S_{kj})$, C_a is the corresponding coefficient and R_{ij}
 214 denotes the rotation-rate tensor. This anisotropic term is one of the six independent terms
 215 that arise when expanding the SGS stress in terms of the strain-rate and rotation-rate tensors
 216 (Lund & Novikov 1992; Gatski & Jongen 2000). It is explicitly incorporated in several
 217 recently developed anisotropic SGS models (Agrawal *et al.* 2022; Uzun & Malik 2025),
 218 which have shown promising predictions for flow over a Gaussian bump. Furthermore, this
 219 anisotropic term does not directly contribute to energy transfer between resolved scale and
 220 SGS (Lund & Novikov 1992; Silvis & Verstappen 2019; Inagaki & Kobayashi 2023), thus
 221 the corresponding SGS dissipation of kinetic energy is $\tau_{ij}^{\text{ani}} S_{ij} = 0$. This anisotropic term
 222 allows us to study the physical properties of the anisotropic SGS stress in addition to the
 223 energy transfer. To reduce the influence of different kinetic energy dissipation from these SGS
 224 models, we set $C_s = 0.16$ for the MSM as well. For the coefficient of the anisotropic stress
 225 term, C_a , we conducted a series of tests with values ranging from $-1/30$ to $-1/6$. This range

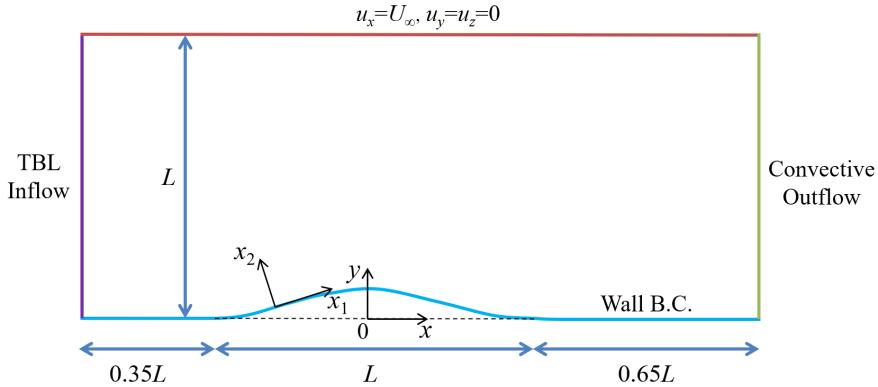


Figure 1: Simulation set-up for flow over a Gaussian-shaped bump.

226 is chosen by referring to the value of the corresponding coefficient used in other anisotropic
 227 SGS models (Bardina 1983; Kosović 1997; Sarghini *et al.* 1999; Wang & Bergstrom 2005;
 228 Marstorp *et al.* 2009; Silvis & Verstappen 2019). For instance, as shown in Appendix B,
 229 the same term in the mixed model (Bardina 1983; Sarghini *et al.* 1999) is approximately
 230 $-1/12$. Across the tested range, the predicted separation bubble on the leeward side of the
 231 bump shows no significant change. Therefore, C_a in the MSM is chosen arbitrarily as $-1/30$,
 232 which yields the smallest modification to the SM and avoids any optimization for the flow
 233 simulations. Moreover, it should be noted that since the current study focuses on WMLES
 234 with relatively coarse meshes, damping function for eddy viscosity is not employed in the
 235 near-wall region for neither the SM or the MSM model.

236 2.2. Flow configuration and simulation set-up

237 The physical conditions for the present simulations are consistent with those in the hybrid
 238 DNS-WRLES of Uzun & Malik (2022). The flow configuration and boundary conditions
 239 are shown schematically in figure 1. The geometry of the bump is given by the analytic
 240 function $y = f_b(x) = h \exp[-(x/x_0)^2]$, where f_b is the surface representing the geometry
 241 of the wall-mounted bump, the maximum height of the bump is $h = 0.085L$, $x_0 = 0.195L$,
 242 and L is the width of the bump. The Reynolds number is $Re_L = U_\infty L / \nu = 2 \times 10^6$ based
 243 on the free-stream velocity U_∞ and the width of the bump, which is identical to that in the
 244 referenced DNS (Uzun & Malik 2022).

245 Simulations are conducted in a rectangular domain of length $2L$, height L and spanwise
 246 depth $0.08L$. The dimensions in the vertical and spanwise directions are chosen to be the
 247 same values as those in the DNS of Uzun & Malik (2022). For convenience, both a Cartesian
 248 coordinate system (x - y - z) with velocity components (u, v, w) and a localized coordinate
 249 system (x_1 - x_2 - x_3) with velocities (u_1, u_2, u_3) are used simultaneously in this paper, and both
 250 coordinates obey the right-hand rule. Specifically, the x - y - z system is defined as a global
 251 coordinate system. The origin is placed at the base of the bump peak, which is located $0.85L$
 252 downstream from the inlet, as shown in figure 1. In the localized system, x_1 is tangential
 253 to the bump surface in the flow direction, x_2 is normal to the surface and points toward the
 254 flow field, and x_3 is identical to the spanwise direction z . Correspondingly, u_1 is the local
 255 streamwise velocity, u_2 is the local wall-normal velocity, u_3 is identical to the spanwise
 256 velocity u_z .

257 The boundary conditions consist of a TBL inflow at the inlet, free-stream condition on
 258 the top boundary, convective outflow condition at the exit, and periodic conditions on the
 259 spanwise boundaries. The TBL inflow data for the simulations of flow over Gaussian bump

260 are provided by a separate LES of flat-plate TBL using the rescale-and-recycle method of
 261 Lund *et al.* (1998). The friction Reynolds number Re_τ of the TBL inflow is approximately
 262 equal to 620 and the TBL thickness is $\delta_{in}/L = 0.0061$, which is approximately 10% larger
 263 than that in the DNS of Uzun & Malik (2022). The momentum thickness Reynolds number
 264 of the inflow is $Re_\theta \approx 1074$, compared to their slightly smaller value of approximately 1035.
 265 More details of the TBL inflow and the corresponding simulation are referred to our previous
 266 publication (Zhou & Bae 2024a). Additionally, it should be noted that the inflow-generation
 267 method used in the study of Uzun & Malik (2022) is different from the current method. The
 268 current study focuses on investigating the SGS model effect on WMLES, thus in order to
 269 sidestep the complexity associated with the modeling of wall-shear stress and its interaction
 270 with the SGS model, the physical no-slip condition at the solid surface is replaced by an ideal
 271 boundary condition based on the mean wall-shear stress from DNS. Specifically, it adopts a
 272 time-independent Neumann boundary condition given by the form

$$273 \quad \left. \left(\frac{\partial u_1}{\partial x_2} \right) \right|_w = \frac{\tau_{w,1}^{\text{DNS}}}{\rho \nu}, \quad (2.5)$$

274 where $\tau_{w,1}^{\text{DNS}}$ is the mean wall-shear stress known *a priori* from the DNS (Uzun & Malik
 275 2022), μ is the fluid dynamic viscosity, and the subscript w denotes the quantities evaluated
 276 at the solid wall. This boundary condition can be treated as an idealized wall model supplying
 277 the exact mean wall-shear stress. The distribution of the mean skin-friction coefficient on
 278 the bottom solid surface can be referred to the paper of Uzun & Malik (2022). Meanwhile, a
 279 no-penetration condition is enforced at the solid surface for the wall-normal velocity u_2 .

280 The computational mesh consists of structured-mesh blocks around the bottom surface
 281 and unstructured-mesh blocks in the outer region. To avoid resolution-induced anisotropy
 282 (Haering *et al.* 2019) and to more clearly analyse the effect of mesh resolution, we used
 283 isotropic computational meshes with increasing resolutions within the structured-mesh block.
 284 The parameters of these computational meshes are detailed in Table 1, which are identical
 285 to those computational meshes employed in our previous investigation (Zhou & Bae 2024a).
 286 Based on the TBL thickness at $x/L = -0.65$ from the DNS of Uzun & Malik (2022), the
 287 TBL is resolved by approximately 5 cells in the coarsest mesh, 9 cells in the coarse mesh,
 288 18 cells in the medium mesh, and 36 cells in the fine mesh. In particular, the resolution
 289 of the fine mesh, determined based on the mesh-cell size and the mean skin friction from
 290 the reference DNS (Uzun & Malik 2022), ranges from 10 to 30 wall units within regions
 291 of attached flow. Although this resolution is comparable to that of the standard WRLES
 292 mesh in the streamwise and spanwise directions, it is order of magnitude coarser in the
 293 wall-normal direction within the near-wall region. For the DNS computational mesh (Uzun
 294 & Malik 2022), the characteristic cell size Δ_c , which is the geometric mean of the mesh cell
 295 dimension, is approximately equal to $1.10 \times 10^{-4} L$. This estimate is derived from the mesh
 296 resolution at the location of the thickest separation bubble. In the outer unstructured-mesh
 297 blocks of the current computational meshes, the mesh cell size is smaller than $0.1L$, and the
 298 control volumes are gradually refined towards the bottom surface.

299 A maximum Courant–Friedrichs–Lewy number of 1.0 is used for time advancement in all
 300 simulations. The simulations are first run for two flow-through times ($4L/U_\infty$) to wash out
 301 initial transients, and then another three flow-through times ($6L/U_\infty$) to obtain converged
 302 statistics.

Mesh label	Δ_c/L	Cell number
Coarsest mesh	1.90×10^{-3}	$1050 \times 44 \times 42 \approx 1.94$ million
Coarse mesh	9.52×10^{-4}	$2100 \times 88 \times 84 \approx 15.5$ million
Medium mesh	4.76×10^{-4}	$4200 \times 176 \times 168 \approx 124$ million
Fine mesh	2.38×10^{-4}	$8400 \times 352 \times 336 \approx 993$ million

Table 1: Parameters of the computational meshes utilizing isotropic cells.

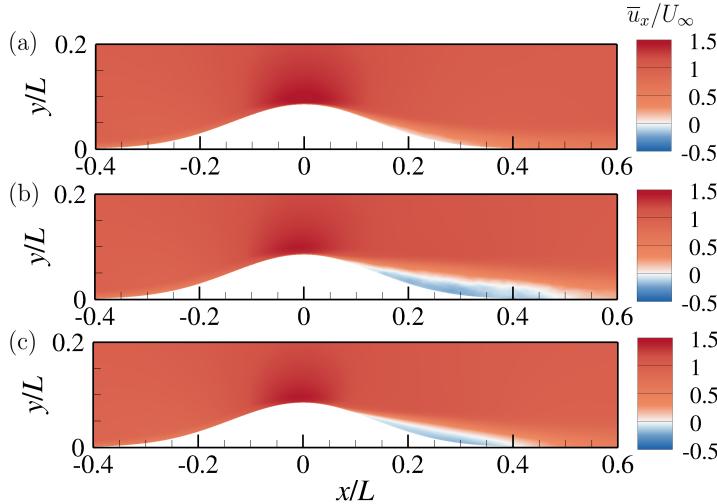


Figure 2: Isocontours of mean velocity \bar{u}_x/U_∞ from the medium-mesh simulations with the SM (a) and MSM (b) and from the reference DNS (Uzun & Malik 2022) (c).

303 **3. Sensitivity of mean flow separation prediction to SGS model**

304 *3.1. Separation prediction and grid convergence test*

305 The flow field around the Gaussian-shaped bump, obtained using the medium mesh for the
 306 two SGS models, is shown in figure 2. Here, $\overline{(\cdot)}$ denotes both temporal averaging and spatial
 307 averaging along the homogeneous directions. With this definition, an instantaneous quantity
 308 φ can be decomposed as $\varphi = \bar{\varphi} + \varphi'$. For reference, the DNS results from Uzun & Malik
 309 (2022) are also included in the figure.

310 In the DNS flow field, the incoming TBL accelerates upstream of the bump peak and
 311 then decelerates downstream under the influence of an adverse pressure gradient (APG),
 312 leading to rapid thickening of the boundary layer on the leeward side. Farther downstream,
 313 a pronounced separation bubble forms. In contrast, for the present medium-mesh WMLES, the
 314 predicted separation behaviour is highly sensitive to the SGS model. The simulation using
 315 the SM does not predict any flow separation, whereas the simulation using the MSM exhibits
 316 a separation bubble that is larger than the one observed in the DNS.

317 The contours of the mean eddy viscosity in SGS model, denoted by $\bar{\nu}_t/\nu$, from the
 318 medium-mesh simulations in an x - y plane are shown in figure 3. For the MSM, the eddy
 319 viscosity arises solely through the isotropic stress term of the Smagorinsky model, as defined
 320 in equation (2.4). The magnitude of the eddy viscosity within the TBL is on the same order
 321 of magnitude as the fluid viscosity. Upstream of the bump peak, the eddy viscosity produced
 322 by the two SGS models are similar. However, farther downstream, noticeable differences

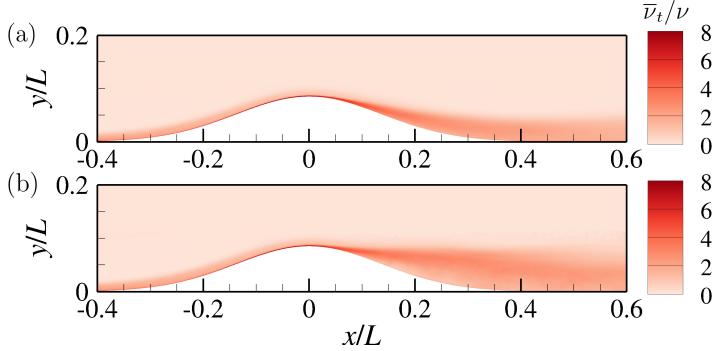


Figure 3: Isocontours of mean eddy viscosity $\bar{\nu}_t/\nu$ from the medium-mesh simulations with the SM (a) and MSM (b).

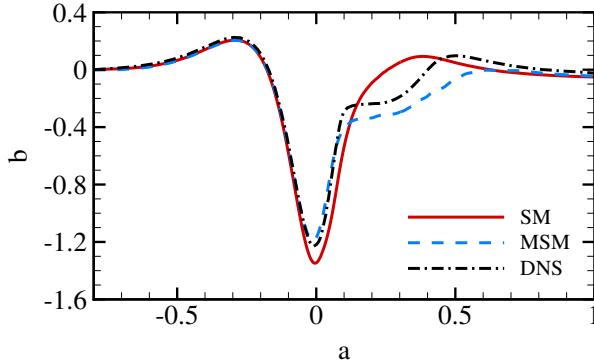


Figure 4: Mean pressure coefficient on the bottom surface from the medium-mesh simulations with the SM and MSM along with the reference DNS (Uzun & Malik 2022).

323 emerge. In particular, although the MSM uses the same model coefficient C_s as the SM, the
 324 eddy viscosity distribution on the leeward side of the bump is significantly modified by the
 325 additional anisotropic stress term. The change in eddy viscosity indicates the SGS dissipation
 326 of kinetic energy introduced by the MSM differs substantially from that of the SM in this
 327 region.

328 In figure 4, the distribution of the mean pressure coefficient, $C_p = (\bar{p}_w - P_\infty) / (\frac{1}{2} \rho U_\infty^2)$,
 329 on the bottom surface is compared with the DNS data (Uzun & Malik 2022). Here, p_w
 330 denotes the instantaneous static pressure at the wall, and the reference pressure P_∞ is taken
 331 near the top boundary at the inlet. The C_p distributions obtained from the medium-mesh
 332 simulations show a strong favorable pressure gradient (FPG) on the windward side of the
 333 bump near the bump peak. Downstream of the peak, the flow experiences a strong APG,
 334 followed by a milder APG over the majority of the leeward side. For the two medium-mesh
 335 simulations, the results agree reasonably well upstream of the bump peak and in the flat
 336 region downstream of the bump, but clear differences appear near the peak and along the
 337 leeward side. The comparison indicates that the MSM provides better agreement with the
 338 DNS data. In particular, the MSM predicts a plateau in C_p on the leeward side of the bump,
 339 corresponding to the presence of a separation bubble.

340 A comparison of boundary layer profiles from the medium-mesh simulations with the DNS
 341 results of Uzun & Malik (2022) is shown in figure 5, where the mean streamwise velocity \bar{u}_1 is

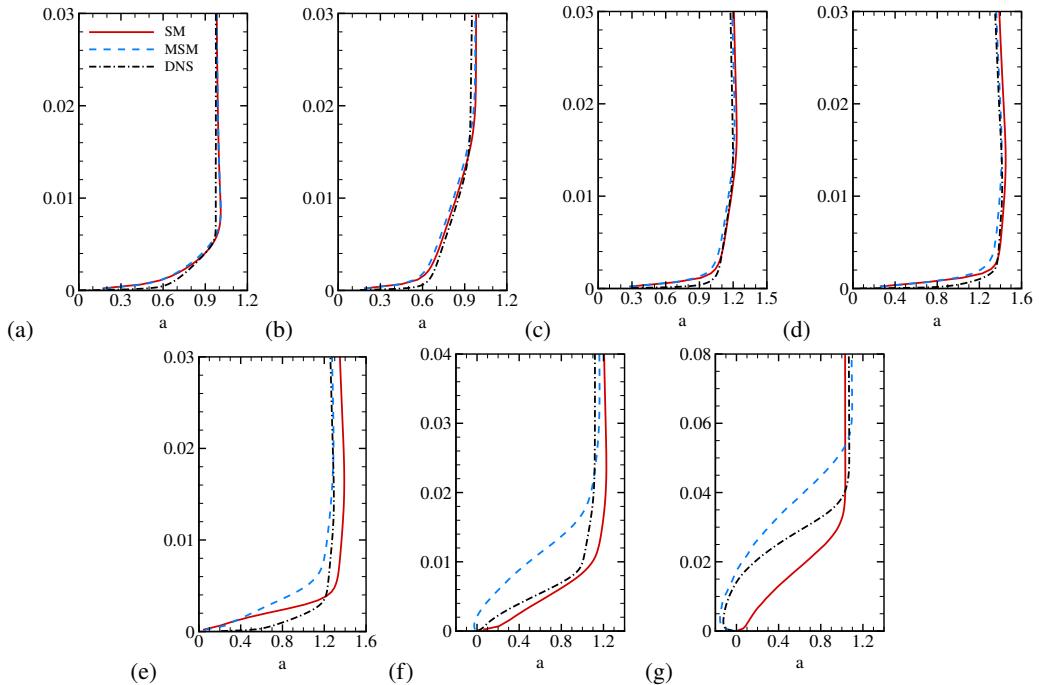


Figure 5: The profiles of mean streamwise velocity at $x/L = -0.7$ (a), $x/L = -0.2$ (b), $x/L = -0.1$ (c), $x/L = 0$ (d), $x/L = 0.05$ (e), $x/L = 0.1$ (f) and $x/L = 0.2$ (g) for the SM, MSM, and the reference DNS (Uzun & Malik 2022).

342 plotted at seven streamwise stations in the computational domain. The results capture the flow
 343 acceleration on the windward side of the bump, followed by deceleration and boundary-layer
 344 thickening or separation on the leeward side. Upstream of the bump peak, the simulations
 345 employing the two SGS models agree reasonably well with each other and with the DNS
 346 data (Uzun & Malik 2022). Downstream of the peak, however, clear differences emerge. In
 347 particular, the boundary layer thickens more rapidly in the MSM simulation, leading to the
 348 formation of a separation bubble, while the boundary layer in the SM simulation remains
 349 attached throughout the domain.

350 Since all simulations impose a wall-shear stress matched to the local mean wall-shear
 351 stress from the reference DNS (Uzun & Malik 2022), the length of the predicted separation
 352 bubble is estimated using the mean streamwise velocity at the first off-wall cell center, as
 353 shown in figure 6. A closer examination of the mean velocity distributions reveals noticeable
 354 differences between the two medium-mesh simulations. Upstream of the bump peak, the
 355 mean velocity at the first off-wall cell center agrees well across all simulations. Downstream
 356 of the peak, however, the flow in the SM simulation approaches separation but remains
 357 attached, whereas the MSM simulation clearly exhibits a separation bubble.

358 To quantitatively assess the effects of mesh resolution and SGS model on predicting
 359 the mean separation bubble size, figure 7 shows the mean horizontal length (L_s/L) of the
 360 predicted separation bubble as a function of the characteristic mesh resolution (Δ_c/L). For
 361 reference, the corresponding DNS data (Uzun & Malik 2022) is also included, where the
 362 mean horizontal length of the separation bubble is approximately $0.32L$. The variations in
 363 separation bubble length with mesh resolution show a complex trend. For the SM simulations,
 364 convergence with mesh refinement is non-monotonic, producing a spurious reduction of the
 365 separation bubble upon as the mesh is refined. Such non-monotonic convergence toward DNS

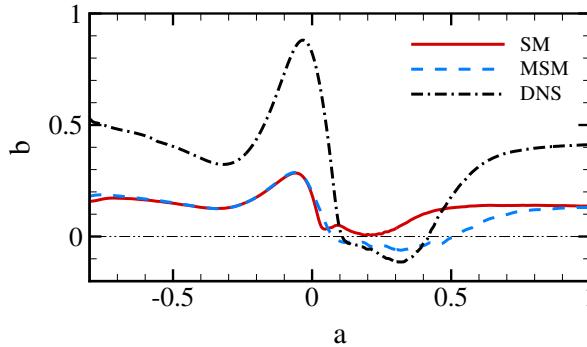


Figure 6: Mean streamwise velocity at the first off-wall cell center from the medium-mesh simulations with the SM and MSM, and the reference DNS results (Uzun & Malik 2022) at the same wall-normal location. $\bar{u}_1 = 0$ is indicated by the horizontal line.

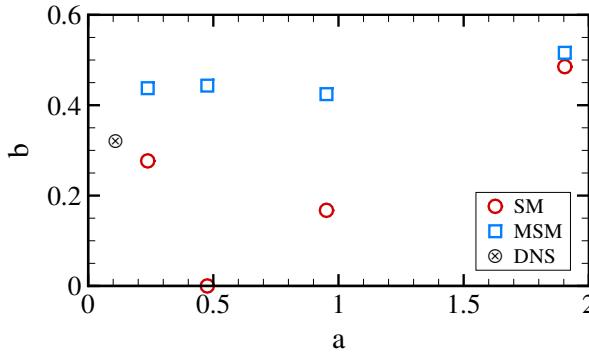


Figure 7: Mean separation bubble length on the leeward side of the bump from the simulations using the SM and MSM for different mesh resolutions and the reference DNS (Uzun & Malik 2022). Symbols represent data point for each case.

366 or experimental results has also been reported in previous studies with various isotropic SGS
 367 models and wall models (Whitmore *et al.* 2021; Agrawal *et al.* 2022; Zhou & Bae 2024a),
 368 supporting the view that this behaviour stems from limitations in the SGS model.

369 In contrast, the MSM predicts a larger separation bubble but yields results that are consistent
 370 across mesh resolutions, suggesting that including an anisotropic SGS stress term provides a
 371 beneficial effect. Similar consistency in separation-bubble prediction has also been observed
 372 with the mixed model (Bardina 1983; Sarghini *et al.* 1999), as discussed in Appendix B and
 373 (Zhou & Bae 2024a). Since the current MSM has not been optimized and employs fixed
 374 coefficients, further improvement may be achieved through dynamic coefficients or other
 375 optimization strategies.

376 As the mesh is refined to the fine-mesh resolution, results from all simulations converge and
 377 approach the DNS data. This fine mesh achieves a resolution close to WRLES, particularly
 378 within the separation bubble, where the boundary layer thickness is resolved by more than
 379 150 cells. Under such resolution, the dependence of the mean flow prediction on the SGS
 380 model is significantly reduced.

381 The results presented in this section highlight the sensitivity of the predicted mean velocity
 382 field in WMLES to both the SGS model and mesh resolution, consistent with observations
 383 from previous studies (Rezaeiravesh *et al.* 2019; Lozano-Durán & Bae 2019; Whitmore *et al.*

384 2020; Iyer & Malik 2022; Zhou & Bae 2024a). Because the mean velocity is one of the most
 385 important first-order statistical quantities that WMLES aims to predict, understanding the
 386 underlying mechanisms behind the sensitivity is essential. This leads to two key questions.
 387 First, why does the predicted mean velocity on the leeward side of the bump differ qualitatively
 388 between simulations using isotropic and anisotropic SGS models, particularly at medium
 389 mesh resolution? Second, why do simulations employing anisotropic SGS models yield more
 390 consistent predictions of the mean separation bubble size across different mesh resolutions
 391 compared with isotropic SGS models? To answer these questions, a series of analyses are
 392 conducted, as detailed in the following sections.

393 *3.2. Identification of the critical region for SGS anisotropy effect*

394 According to the aforementioned results, the prediction of the separation bubble is strongly
 395 influenced by the choice of SGS model. In particular, compared with the SM, the MSM
 396 provides more consistent and accurate predictions of the separation bubble on the leeward
 397 side of the bump, underscoring the importance of SGS anisotropy. To better understand the
 398 role of anisotropic SGS stress in the mean flow field and in the formation of the separation
 399 bubble, a numerical experiment is designed to identify where the anisotropy effects becomes
 400 most critical. In this experiment, a series of LES are performed using the same computational
 401 domain as before and the previously defined medium mesh. However, the domain is divided
 402 into upstream and downstream sections, as illustrated in figure 8. In each section, a different
 403 SGS model is employed. At the virtual interface between the two sections, a logistic function
 404 is used to smoothly transition from one SGS model to another. All simulations use the same
 405 boundary conditions as before.

406 Regarding the SGS models, the classical SM and the MSM discussed earlier are selectively
 407 assigned to the two domain sections. Based on previous studies of flow over a Gaussian bump
 408 (Uzun & Malik 2022; Prakash *et al.* 2024; Xu & Bermejo-Moreno 2024), the flow near the
 409 bump peak plays an important role in the formation of the downstream separation bubble.
 410 Therefore, in this experiment, five different locations of the virtual interface within this
 411 region are considered. The details of the interface locations and the selected SGS models
 412 for each case are listed in Table 2. In the first group SM-MSM, the upstream section of the
 413 domain employs the SM and the downstream section uses the MSM, while in the second
 414 group MSM-SM, the upstream section employs the MSM and the downstream section uses
 415 the SM. The virtual interface dividing the domain is aligned with the local normal direction
 416 of the bump surface, and the x coordinate of its intersection with the bump surface is defined
 417 as the interface location, x_0 . Based on this setup, the SGS stress is given by

$$418 \quad \tau_{ij}^{\text{sgs}} = \tau_{ij}^{\text{iso}} + g \cdot \tau_{ij}^{\text{ani}} = \tau_{ij}^{\text{SM}} + g \cdot \tau_{ij}^{\text{ani}} \quad (3.1)$$

419 Here, g is a logistic function used to achieve a smooth transition from one SGS model to
 420 another in the computational domain, and its form for the two groups of simulations is given
 421 by

$$422 \quad g = \begin{cases} \frac{g_0}{1 + e^{k \times d \times \varphi}} & (\text{SM-MSM}) \\ \frac{g_0}{1 + e^{-k \times d \times \varphi}} & (\text{MSM-SM}) \end{cases}, \quad (3.2)$$

423 where $g_0 = 1$, d is the spatial distance from a point in the domain to the virtual interface at
 424 x_0 , and k controls the effective width of the interface. In the present setup, $k = 5000$, giving
 425 an approximate effective width of $5 \times 10^{-3}L$, which corresponds to ten cells in the medium
 426 mesh. Tests with interface widths ranging from $1 \times 10^{-3}L$ to $1 \times 10^{-2}L$ showed no significant
 427 influence on the resulting mean velocity fields. The parameter φ is equal to 1 upstream of

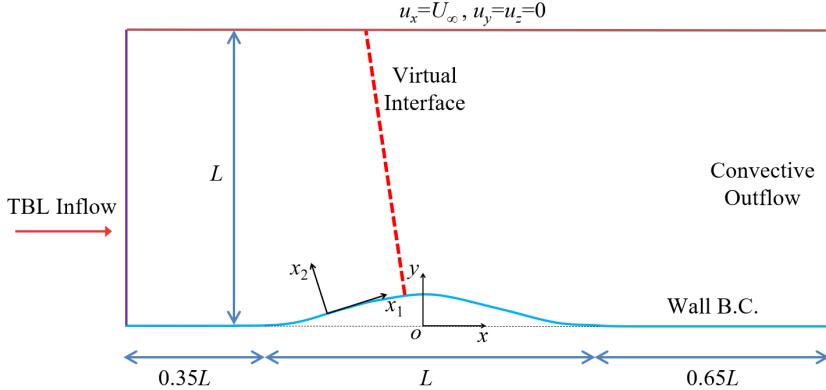


Figure 8: Virtual-interface setup dividing the domain into upstream and downstream regions using different SGS models for the flow over a Gaussian bump.

Group index	Virtual interface location x_0/L	SGS models in the upstream / downstream
SM-MSM	-0.3	SM / MSM
	-0.2	
	-0.1	
	0.0	
MSM-SM	0.05	MSM / SM

Table 2: List of parameters for the virtual interface setup.

428 the centerline of the interface and -1 downstream of it. Moreover, for each simulation in the
 429 experiment, the first two flow-through times are discarded to remove initial transients, and
 430 flow statistics are collected over the following three flow-through times.

431 Figure 9 shows the predicted mean separation bubble size (L_s/L), as well as the location of
 432 the mean separation point (x_s/L) from the simulations in the experiment. The results indicate
 433 that when the interface is placed at the most upstream location ($x_0/L = -0.3$), the predictions
 434 are similar to those from the simulation using only the SGS model applied in the downstream
 435 section over the entire domain. As the interface is shifted downstream, the predictions become
 436 increasingly similar to those obtained using the SGS model applied in the upstream section
 437 over the entire domain. For example, in the cases of the group SM-MSM, when the interface
 438 is located at $x_0/L = -0.3$, the predicted downstream separation bubble closely matches that
 439 from the simulation with the MSM over the entire domain, for which the separation bubble
 440 size reaches $0.44L$. As the interface is shifted downstream, the separation bubble on the
 441 leeward side of the bump gradually decreases in size. When the interface reaches the leeward
 442 side of the bump ($x_0/L = 0.05$), the separation bubble disappears, and the flow field becomes
 443 similar to that of the simulation with the SM applied over the entire domain. An opposite
 444 trend is observed for the cases of the group MSM-SM. The most pronounced variations occur
 445 as the interface moves from $x_0/L = -0.2$ to the bump peak, where the FPG remains strong.
 446 Beyond the bump peak, shifting the interface farther downstream has a smaller influence,
 447 and the predicted separation bubble remains nearly unchanged.

448 To examine how the TBL changes with the variation of the virtual interface locations within
 449 the critical FPG region ($x \in [-0.2, 0]$), the velocity statistics at the bump peak ($x/L = 0$)

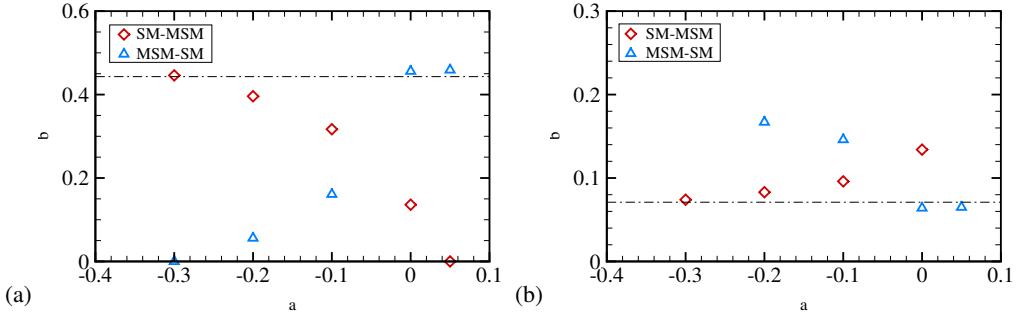


Figure 9: Mean separation bubble length on the leeward side of the bump (a) and the location of mean separation point (b) from medium-mesh simulations using the SM-MSM and MSM-MSM with different virtual interface locations. Horizontal lines indicate the results from the medium-mesh simulation with MSM.

450 are analysed. In addition to the mean streamwise velocity \bar{u}_1 , the Reynolds shear stress
 451 $\bar{u}'_1 \bar{u}'_2$ and the wall-normal Reynolds normal stress $\bar{u}'_2 \bar{u}'_2$ are examined, since these stresses
 452 play important roles in shaping the near-wall mean flow, as will be illustrated later in §4.1
 453 and §4.3. The results from the two groups of simulations are shown in figures 10 and 11.
 454 The comparison again demonstrate that as the interface is shifted downstream, the results
 455 gradually approach those obtained using the SGS model applied in the upstream section
 456 throughout the domain. Furthermore, the DNS data exhibit pronounced internal peaks in
 457 the profiles of Reynolds stresses at this location. According to the investigation from Uzun
 458 & Malik (2022), these internal peaks play a crucial role in determining the downstream
 459 evolution of the TBL and the onset of flow separation on the leeward side. Compared with
 460 the DNS, the WMLES predictions of the Reynolds stresses deviate to different degrees, which
 461 could be attributed to the use of constant, non-optimized model coefficients in these SGS
 462 models. Moreover, as will be discussed in §4.1 and §4.3, it is the wall-normal gradients of
 463 the Reynolds stresses, rather than their magnitudes, that more directly influence momentum
 464 transport and mean pressure distribution. From the comparisons among the simulations,
 465 it is found that applying the MSM within the critical FPG region on the windward side
 466 improves the capture of the internal peaks in the Reynolds stress profiles at the bump peak.
 467 These results suggest that the predicted size of the separation bubble on the leeward side
 468 is strongly influenced by the SGS model used in the upstream region where the FPG is
 469 strong. In particular, the ability of the SGS model to reproduce the near-wall trends of
 470 the Reynolds stress internal peaks appears to have an important effect on the downstream
 471 separation behaviour. This finding is consistent with the DNS observations of Uzun & Malik
 472 (2022) and will be further examined in the following sections. Overall, the results of this
 473 designed numerical experiment highlight that the effect of anisotropic SGS stress on the
 474 windward side of the bump is critical. Applying an anisotropic SGS model in the region of
 475 strong FPG alters the wall-normal distributions of Reynolds stress and subsequently affects
 476 the downstream flow separation.

477 4. Budget analyses

478 In this section, we first study the mean streamwise momentum and pressure equations slightly
 479 upstream of the mean separation point to isolate the effects of the individual budget terms.
 480 We demonstrate that the Reynolds stresses, particularly $\bar{u}'_1 \bar{u}'_2$ and $\bar{u}'_2 \bar{u}'_2$, have a significant

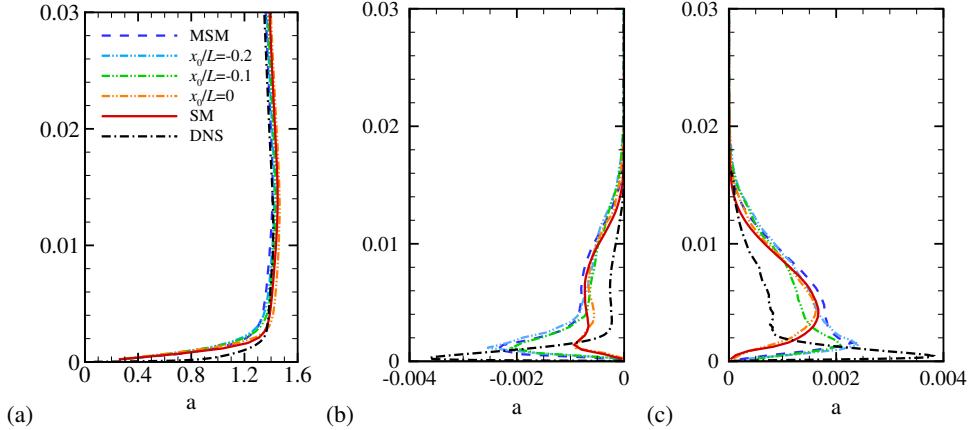


Figure 10: Mean streamwise velocity \bar{u}_1 (a), Reynolds shear stress $\overline{u'_1 u'_2}$ (b), and Reynolds normal stress $\overline{u'_2 u'_2}$ (c) profiles at the bump peak ($x/L = 0$) for SM-MSM with the virtual interface located at $x_0/L = -0.2, -0.1$, and 0. DNS (Uzun & Malik 2022), SM and MSM results are shown for reference.

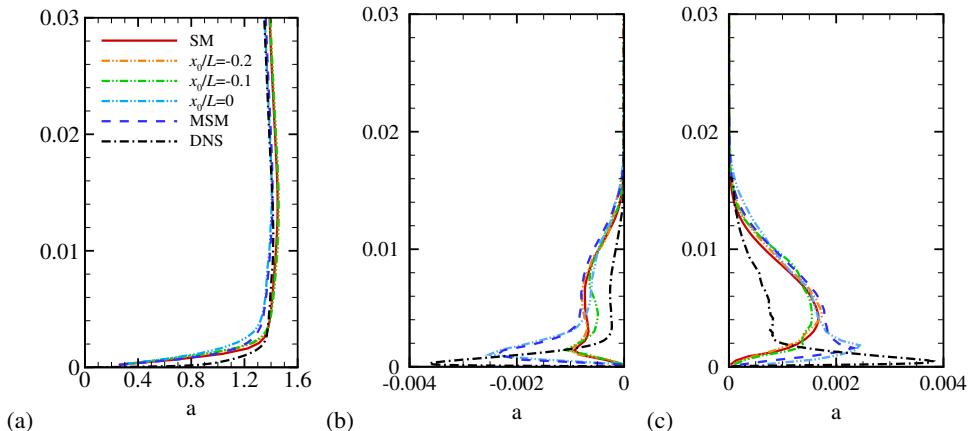


Figure 11: Mean streamwise velocity \bar{u}_1 (a), Reynolds shear stress $\overline{u'_1 u'_2}$ (b), and Reynolds normal stress $\overline{u'_2 u'_2}$ (c) profiles at the bump peak ($x/L = 0$) for MSM-SM with the virtual interface located at $x_0/L = -0.2, -0.1$, and 0. DNS (Uzun & Malik 2022), SM and MSM results are shown for reference.

481 impact on the mean flow field. We then analyse the Reynolds stress transport equations to
482 understand how the distributions within the TBL are influenced by anisotropic SGS stress.

483 This analysis considers the original simulations with the SM and the MSM applied over
484 the entire computational domain. These SGS models nominally share the same kinetic
485 energy dissipation mechanism but differ in their treatment of anisotropic SGS stress. Only
486 the medium mesh simulations are analysed in §4.1-4.3, as this resolution shows the most
487 pronounced differences in separation bubble prediction between the two models (see figure 7).
488 We then study the effect of mesh resolution on the separation bubble prediction in §4.4. The
489 analysis aims to address why the predicted flow on the leeward side of the bump differs
490 qualitatively between the simulations using these two SGS models.

491 4.1. *Mean streamwise momentum*

492 Considering the homogeneity of the current statistically stationary flow in the spanwise
 493 direction, the streamwise mean momentum equation can be expressed as

494
$$\bar{u}_1 \frac{\partial \bar{u}_1}{\partial x_1} + \bar{u}_2 \frac{\partial \bar{u}_1}{\partial x_2} = P_g + V_{11} + V_{12} + T_{11} + T_{12} + R_{11} + R_{12} , \quad (4.1)$$

495 where the seven terms on the right-hand side of the equation are

496
$$P_g = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_1} , \quad V_{11} = \frac{\partial}{\partial x_1} \left(2\nu \bar{S}_{11} \right) , \quad V_{12} = \frac{\partial}{\partial x_2} \left(2\nu \bar{S}_{12} \right) , \quad (4.2)$$

497

498
$$T_{11} = \frac{\partial}{\partial x_1} \left(-\bar{\tau}_{11}^{\text{sgs}} \right) , \quad T_{12} = \frac{\partial}{\partial x_2} \left(-\bar{\tau}_{12}^{\text{sgs}} \right) , \quad (4.3)$$

499

500
$$R_{11} = \frac{\partial}{\partial x_1} \left(-\bar{u}'_1 \bar{u}'_1 \right) , \quad R_{12} = \frac{\partial}{\partial x_2} \left(-\bar{u}'_1 \bar{u}'_2 \right) . \quad (4.4)$$

501 Specifically, P_g corresponds to the contribution from the mean pressure gradient. V_{11} and V_{12}
 502 denote contributions from viscosity. T_{11} and T_{12} represent contributions from the mean SGS
 503 stress. The last two terms, R_{11} and R_{12} , denote contributions from the Reynolds stress. The
 504 magnitudes of these terms influence the distribution of mean momentum and, consequently,
 505 the mean velocity field. It should be noted that curvature effects are neglected in the derivation
 506 of the mean momentum equation, since their influence in the region upstream of the mean
 507 separation point, where $x/L < 0.1$, is negligible. The corresponding investigation is described
 508 in appendix A.

509 Figure 12 shows the mean streamwise momentum budget at $x/L = 0.05$, approximately
 510 one boundary-layer thickness upstream of the separation point in the MSM simulation. The
 511 same location is used for the SM case for consistency. Although both simulations exhibit
 512 the same dominant balance, the adverse pressure-gradient term, P_g , and the Reynolds shear-
 513 stress gradient term, R_{12} , differ quantitatively in ways that directly influence the downstream
 514 separation.

515 In both cases, P_g is strongly negative across the boundary layer, reflecting the strong
 516 APG. However, the MSM produces a noticeably larger magnitude of P_g , indicating stronger
 517 deceleration of the mean flow. The distributions of R_{12} also differ in a manner essential
 518 to the separation mechanism. While the peak magnitude of R_{12} is similar between the two
 519 simulations, the MSM exhibits a significantly broader region over which R_{12} is negative. This
 520 extended negative region implies that momentum is extracted over a thicker portion of the
 521 boundary layer and redistributed toward the near-wall region. Consequently, less streamwise
 522 momentum remains available farther from the wall to resist the APG, making the near-wall
 523 mean flow more susceptible to decelerating to zero and initiating separation in the MSM
 524 case. In contrast, the SM confines the momentum deficit to a thinner layer, helping the flow
 525 remain attached despite the strong APG.

526 4.2. *Mean pressure equation*

528 The Poisson equation for the mean pressure of the flow is given by

529
$$\begin{aligned} -\frac{1}{\rho} \nabla^2 \bar{p} &= \frac{\partial \bar{u}_i}{\partial x_j} \frac{\partial \bar{u}_j}{\partial x_i} + \frac{\partial^2 \bar{u}'_i \bar{u}'_j}{\partial x_i \partial x_j} \\ &= U_{11} + U_{12} + U_{22} + W_{11} + W_{12} + W_{22} , \end{aligned} \quad (4.5)$$

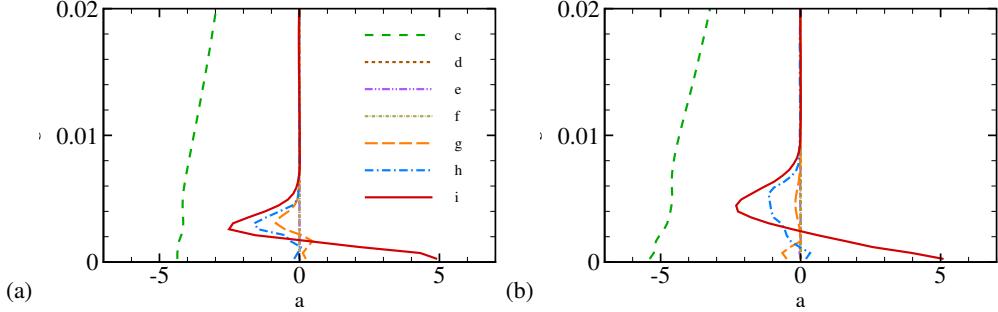


Figure 12: Mean streamwise momentum budget terms at $x/L = 0.05$ from medium-mesh simulations with the SM (a) and MSM (b). All terms are nondimensionalized using U_∞ , L and ρ . The line notations correspond to equations (4.2)–(4.4).

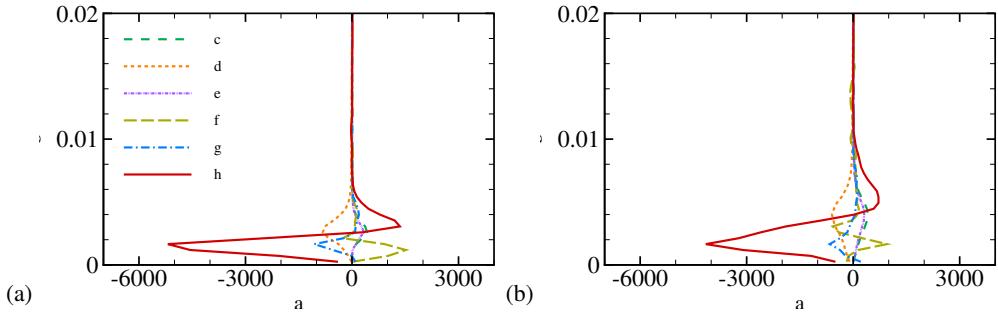


Figure 13: Mean pressure budget terms at $x/L = 0.05$ from medium-mesh simulations with the SM (a) and MSM (b). All terms are nondimensionalized using U_∞ , L and ρ . The line notations correspond to equations (4.6) and (4.7).

530 where the six terms on the right-hand side of the equation are

$$531 \quad U_{11} = \left(\frac{\partial \bar{u}_1}{\partial x_1} \right)^2, \quad U_{12} = 2 \left(\frac{\partial \bar{u}_1}{\partial x_2} \frac{\partial \bar{u}_2}{\partial x_1} \right), \quad U_{22} = \left(\frac{\partial \bar{u}_2}{\partial x_2} \right)^2, \quad (4.6)$$

$$533 \quad W_{11} = \frac{\partial^2 \bar{u}'_1 \bar{u}'_1}{\partial x_1^2}, \quad W_{12} = 2 \frac{\partial^2 \bar{u}'_1 \bar{u}'_2}{\partial x_1 \partial x_2}, \quad W_{22} = \frac{\partial^2 \bar{u}'_2 \bar{u}'_2}{\partial x_2^2}. \quad (4.7)$$

534 The three terms in equation (4.6) represent the contributions from the mean velocity field
 535 to the mean pressure, and the remaining three terms in equation (4.7) account for the
 536 contributions from the Reynolds stresses.

537 Figure 13 shows the profiles of all six terms in the mean pressure equation at the streamwise
 538 location $x/L = 0.05$. The results are qualitatively similar for the two simulations with different
 539 SGS models. Within the TBL, the term that has the dominant effect on the mean pressure field
 540 is W_{22} , which is associated with the wall-normal Reynolds normal stress, $\bar{u}'_2 \bar{u}'_2$. This indicates
 541 that variations in the wall-normal turbulent fluctuations are the primary contributors to the
 542 local mean pressure distribution.

543 Taken together with the momentum budget analysis, these results highlight a consistent
 544 picture: in the medium-mesh simulations, the Reynolds stresses, not the mean SGS stresses,
 545 govern both the mean velocity and mean pressure fields immediately upstream of the
 546 separation point. Although the two SGS models produce different downstream separation

547 behaviour, those differences arise primarily from how each model shapes the Reynolds-stress
 548 distributions within the upstream FPG region. The mean SGS stresses, by comparison, make
 549 only a minor contribution at this location.

550 4.3. Reynolds stress transport equation

551 Based on the mean momentum and pressure budget analyses, we examine the Reynolds shear
 552 stress $\overline{u'_1 u'_2}$ and the Reynolds normal stress $\overline{u'_2 u'_2}$ at three streamwise locations within the FPG
 553 region upstream of the bump peak. Figure 14 shows the wall-normal profiles of the Reynolds
 554 stresses from the two medium-mesh simulations, along with DNS results from Uzun & Malik
 555 (2022) for reference.

556 The DNS data indicate that, along the streamwise direction, the magnitudes of the Reynolds
 557 shear and normal stresses gradually increase in the near-wall region and exhibit a distinct
 558 internal peak in the FPG region. Both medium-mesh simulations deviate noticeably from
 559 the DNS data, with both overpredicting Reynolds stresses in the outer layer. It should be
 560 mentioned that the SGS models in these simulations use constant model coefficients and have
 561 not been optimized for WMLES of this flow configuration. The most prominent distinction
 562 between the two simulations is that the MSM reproduces clear internal peaks of $\overline{u'_1 u'_2}$ and
 563 $\overline{u'_2 u'_2}$ at $x_2/L \approx 1.3 \times 10^{-3}$, slightly above the DNS location, while the SM does not capture
 564 these features. This upward shift of the internal peaks in the MSM case is partly due to the
 565 coarse mesh resolution in the present WMLES.

566 As shown in §4.1, the wall-normal gradient of $\overline{u'_1 u'_2}$ is closely related to mean momentum
 567 transport, while the gradient of $\overline{u'_2 u'_2}$ is associated with the mean pressure distribution.
 568 Therefore, accurately capturing the wall-normal variation of these stresses, which determines
 569 the sign and magnitudes of these gradients, is essential for predicting downstream flow
 570 separation. The improved prediction of Reynolds stress profiles in the MSM simulation,
 571 particularly the internal stress peak under FPG conditions, demonstrates the benefit of
 572 incorporating anisotropic SGS stress. As discussed by Uzun & Malik (2022), these internal
 573 peaks evolve downstream and strongly influence the mean flow and separation onset. This is
 574 consistent with the present as well as the earlier analysis in §3.2. Taken together, the results
 575 indicate that the improved prediction of flow separation in the MSM simulation is linked to its
 576 ability to better reproduce Reynolds stress distributions, particularly the internal peak in the
 577 FPG region. This improvement is closely associated with changes in downstream Reynolds
 578 stresses, the mean velocity field, and ultimately the separation bubble development.

579 To better understand the impact of the SGS model on the Reynolds shear stress $\overline{u'_1 u'_2}$ and the
 580 Reynolds normal stress $\overline{u'_2 u'_2}$, it is necessary to analyse the Reynolds stress transport equation,
 581 with particular attention to the individual contributions from the SGS model. Based on the
 582 Reynolds decomposition and the assumption of homogeneity in the spanwise direction, the
 583 transport equation for the resolved Reynolds stresses in LES can be expressed as

$$584 \frac{\partial \overline{u'_i u'_j}}{\partial t} + \bar{u}_k \frac{\partial \overline{u'_i u'_j}}{\partial x_k} = P_{ij} - \varepsilon_{ij} + \phi_{ij} + \xi_{ij} + \frac{\partial}{\partial x_k} \left(\zeta_{ijk} + D_{ijk} + T_{ijk} + J_{ijk} \right), \quad (4.8)$$

585 where

$$586 P_{ij} = -\overline{u'_i u'_k} \frac{\partial \bar{u}_j}{\partial x_k} - \overline{u'_j u'_k} \frac{\partial \bar{u}_i}{\partial x_k}, \quad (4.9)$$

$$587 \varepsilon_{ij} = 2\nu \overline{\left(S'_{ik} \frac{\partial u'_j}{\partial x_k} + S'_{jk} \frac{\partial u'_i}{\partial x_k} \right)} = 2\nu \overline{\left(\frac{\partial u'_i}{\partial x_k} \frac{\partial u'_j}{\partial x_k} \right)}, \quad (4.10)$$

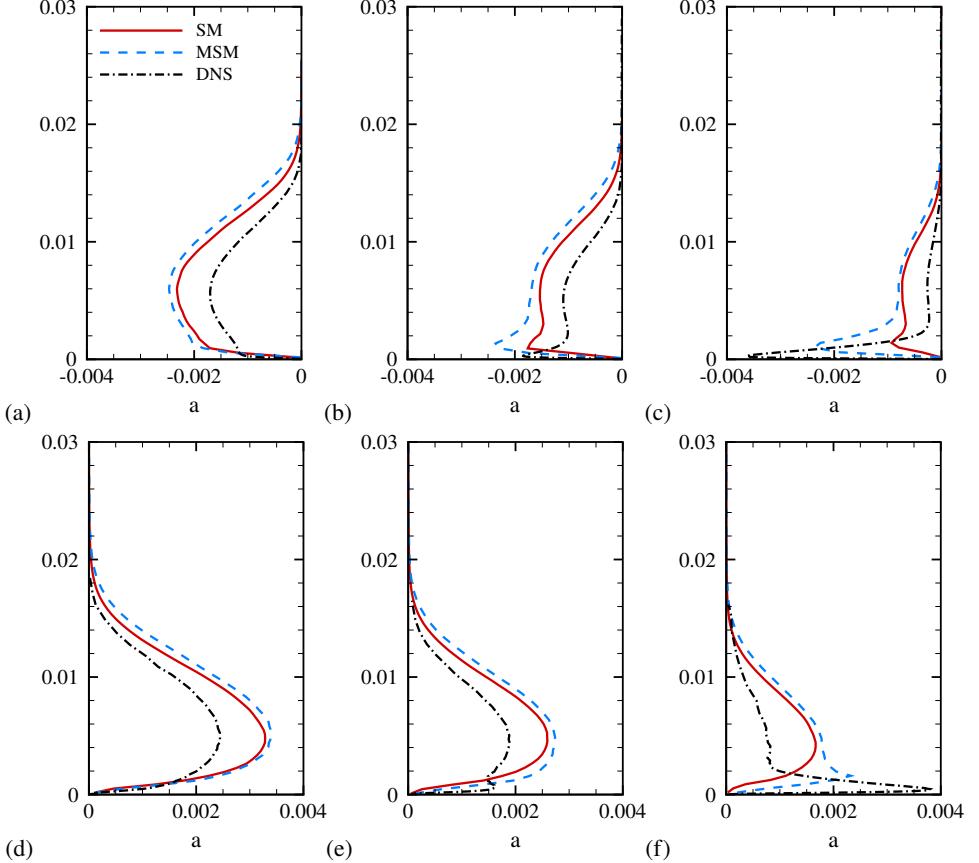


Figure 14: Reynolds shear stress $\overline{u'_1 u'_2}$ (a-c) and Reynolds normal stress $\overline{u'_2 u'_2}$ (d-f) profiles at $x/L = -0.2$ (a,d), $x/L = -0.1$ (b,e), and $x/L = 0$ (c,f) for SM, MSM and reference DNS (Uzun & Malik 2022).

588

$$\phi_{ij} = \overline{\frac{p'}{\rho} \cdot \left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i} \right)} = 2 \overline{\frac{p'}{\rho} S'_{ij}}, \quad (4.11)$$

589

$$\xi_{ij} = (\tau_{ik}^{\text{sgs}})' \frac{\partial u'_j}{\partial x_k} + (\tau_{jk}^{\text{sgs}})' \frac{\partial u'_i}{\partial x_k}, \quad (4.12)$$

590

$$\frac{\partial}{\partial x_k} \zeta_{ijk} = - \frac{\partial}{\partial x_k} \left[(\tau_{ik}^{\text{sgs}})' u'_j + (\tau_{jk}^{\text{sgs}})' u'_i \right], \quad (4.13)$$

591

$$\frac{\partial}{\partial x_k} D_{ijk} = \nu \frac{\partial^2 \overline{u'_i u'_j}}{\partial x_k^2} = 2\nu \frac{\partial}{\partial x_k} \left(\overline{S'_{ik} u'_j} + \overline{S'_{jk} u'_i} \right), \quad (4.14)$$

592

$$\frac{\partial}{\partial x_k} T_{ijk} = - \frac{\partial}{\partial x_k} \overline{u'_i u'_j u'_k}, \quad (4.15)$$

$$593 \quad \frac{\partial}{\partial x_k} J_{ijk} = - \frac{\partial}{\partial x_k} \left(\overline{p' u'_i} \delta_{jk} + \overline{p' u'_j} \delta_{ik} \right). \quad (4.16)$$

594 The terms given in equations (4.9)–(4.16) correspond to production, viscous dissipation,
 595 pressure strain, SGS dissipation, SGS diffusion, viscous diffusion, turbulent diffusion, and
 596 pressure diffusion, respectively. In particular, the terms expressed in equations (4.12) and
 597 (4.13) are associated with SGS stress fluctuations and directly represent the contributions
 598 from the SGS model. While the magnitudes of these terms in the Reynolds-stress transport
 599 equations are generally smaller than leading-order contributions such as production and
 600 pressure redistribution in the near-wall region, they remain physically meaningful and can
 601 be influential. The SGS dissipation represents the local transfer of resolved-scale energy to
 602 unresolved scales, whereas the SGS diffusion corresponds to the spatial redistribution of
 603 energy. Their importance also lies in how they modulate the expression of other budget terms
 604 in the resolved flow, thereby influencing the overall distribution of Reynolds stresses.

605 Figure 15 shows the comparison of SGS dissipation and SGS diffusion from the medium-
 606 mesh simulations with the SM and the MSM at the three streamwise locations discussed
 607 above. The wall-normal range in each plot focuses on the near-wall region of the boundary
 608 layer, where the effects of SGS dissipation and diffusion are most pronounced. The SGS
 609 dissipation results indicate that the SM and MSM produce qualitatively different behaviours
 610 for both $\overline{u'_1 u'_2}$ and $\overline{u'_2 u'_1}$. In the SM, the SGS dissipation remains positive for $\overline{u'_1 u'_2}$ and negative
 611 for $\overline{u'_2 u'_1}$, showing that the SGS stress fluctuations consistently act as a sink of Reynolds
 612 stresses, with a net removal of resolved energy into the SGS scales. In contrast, the MSM
 613 yields negative SGS dissipation for $\overline{u'_1 u'_2}$ in the inner layer and positive values for $\overline{u'_2 u'_1}$ in the
 614 very near-wall region. This behaviour indicates that the SGS stress fluctuations in the MSM
 615 can produce a net backscatter of energy, transferring it from unresolved to resolved scales
 616 and locally enhancing the Reynolds stresses. This backscatter effect is physically significant.
 617 On a coarse mesh, the cutoff lies in the energy-containing range or in the energetic part of
 618 the inertial range, so the unresolved motions carry a substantial fraction of turbulent energy
 619 and momentum fluxes. Consequently, the SGS stress must not only remove resolved energy
 620 but also be capable of returning energy into the resolved field. Moreover, in the near-wall
 621 region, turbulence is highly anisotropic and the near-wall cycle involves essential small-scale
 622 dynamics. These mechanisms become even more crucial in TBLs with pressure gradients,
 623 such as in the present case. A coarse-mesh LES that does not capture these near-wall scales
 624 omits an important pathway by which energy is both removed from and supplied back to the
 625 larger scales.

626 The SGS diffusion results for both $\overline{u'_1 u'_2}$ and $\overline{u'_2 u'_1}$ reveal important differences between
 627 the SM and MSM. For the Reynolds shear stress $\overline{u'_1 u'_2}$, the SM produces negative SGS
 628 diffusion very close to the wall, which then becomes positive away from the wall before
 629 eventually decaying to zero. In contrast, the MSM yields negative SGS diffusion throughout
 630 the near-wall region, monotonically approaching zero with wall-normal distance. Since SGS
 631 diffusion represents movement of Reynolds stresses by unresolved motions, with negative
 632 values indicating movement into a location and positive values indicating movement away,
 633 the positive region in the SM profile implies that SGS motions redistribute $\overline{u'_1 u'_2}$ away from
 634 the near wall region to parts where the SGS diffusion is negative. The MSM, however,
 635 continuously moves $\overline{u'_1 u'_2}$ toward the near-wall region.

636 For the Reynolds normal stress $\overline{u'_2 u'_2}$, the SM gives positive SGS diffusion near the wall,
 637 decreasing with distance, becoming slightly negative, and then approaching zero. The MSM,
 638 by contrast, shows negative diffusion very close to the wall, positive values near the internal

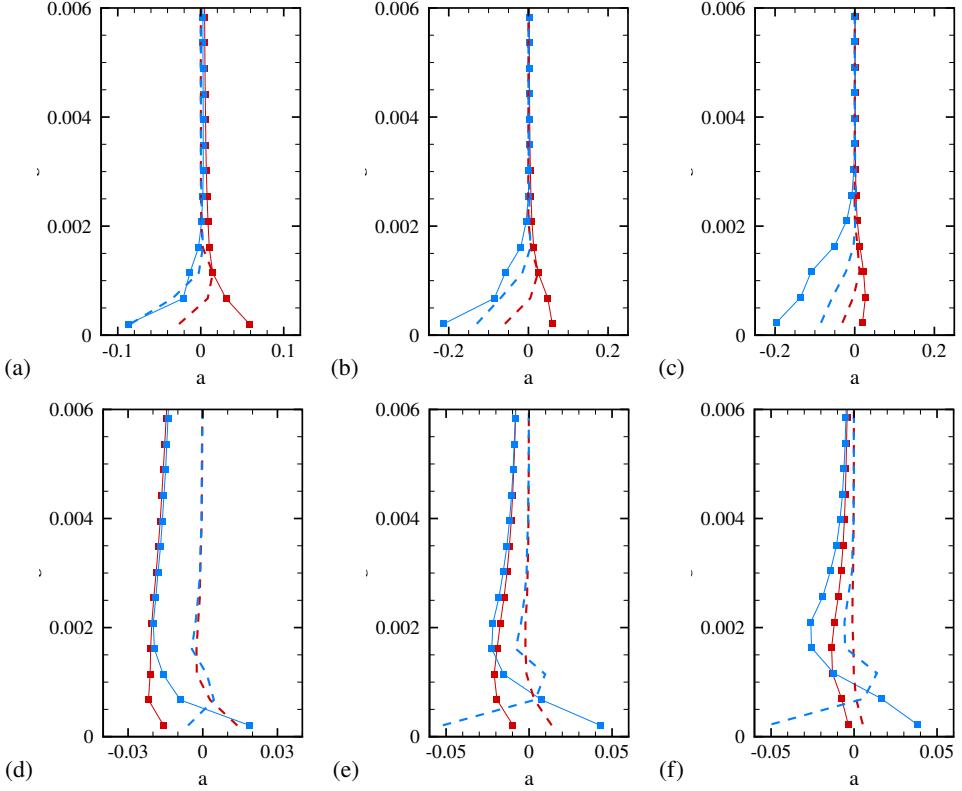


Figure 15: SGS dissipation ξ_{ij} (solid square) and diffusion $\frac{\partial}{\partial x_k} \zeta_{ijk}$ (dashed) for the Reynolds shear stress $\overline{u'_1 u'_2}$ (a–c) and the wall-normal Reynolds normal stress $\overline{u'_2 u'_2}$ (d–f) at $x/L = -0.2$ (a,d), $x/L = -0.1$ (b,e), and $x/L = 0$ (c,f) for SM (red) and MSM (blue) simulations on the medium-mesh. All terms are nondimensionalized using U_∞ , L and ρ .

peak of $\overline{u'_2 u'_2}$, and negative values again farther out. This pattern indicates that the MSM moves $\overline{u'_2 u'_2}$ into the internal-peak region from both sides, while the SM primarily redistributes it from the outer region toward the wall.

These SGS diffusion behaviours, combined with the differences in SGS dissipation, help explain why the MSM produces the internal Reynolds-stress peaks observed in figure 14, whereas the SM does not.

As described in §2, the MSM expresses the SGS stress τ_{ij}^{sgs} as equation (2.4), which contains the isotropic stress term τ_{ij}^{iso} from the SM and an additional anisotropic term τ_{ij}^{ani} . To clarify their roles, the individual contributions from them are analysed separately. Figure 16 shows the wall-normal distributions of SGS dissipation and diffusion in the medium-mesh simulation with the MSM. For the SGS dissipation associated with both the Reynolds shear stress $\overline{u'_1 u'_2}$ and the Reynolds normal stress $\overline{u'_2 u'_2}$, the contribution of the isotropic stress term behaves similarly to the SM that shown in figure 15. It consistently acts as a sink of resolved energy, with a magnitude larger than in the SM alone. In contrast, the contribution of the anisotropic stress term generates significant local production in the near-wall inner layer. This indicates that the anisotropic term is the primary source of backscatter in the MSM, transferring energy from unresolved to resolved scales and enhancing the Reynolds stresses. For the SGS diffusion associated with Reynolds shear stress, the contribution of

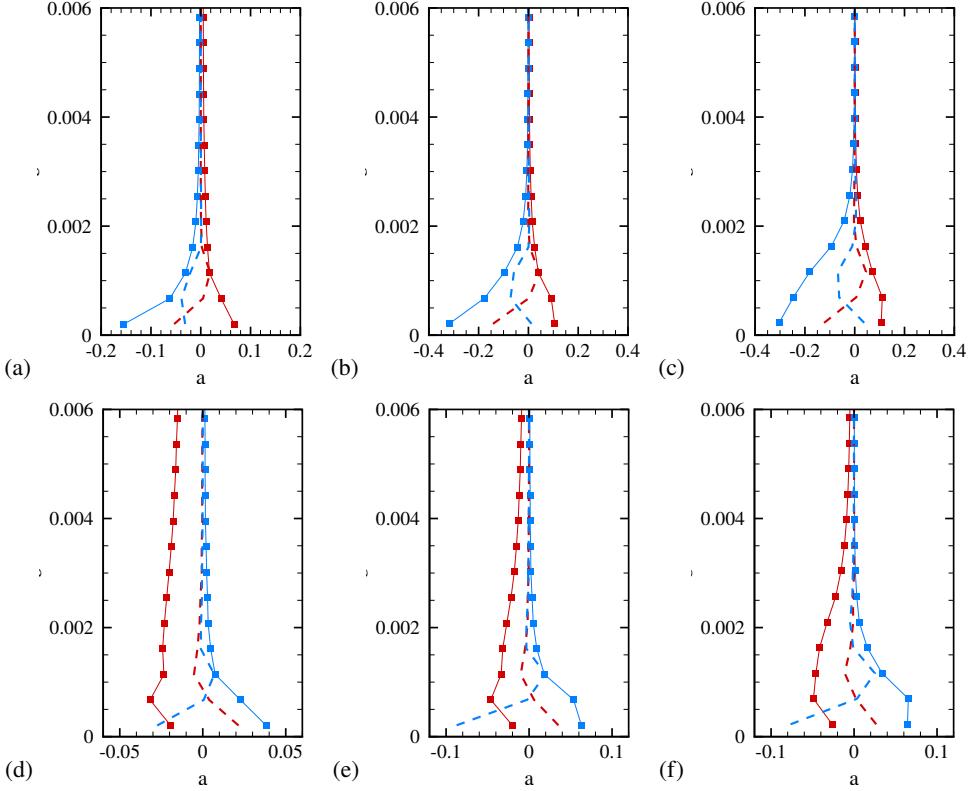


Figure 16: SGS dissipation ξ_{ij} (solid square) and diffusion $\frac{\partial}{\partial x_k} \zeta_{ijk}$ (dashed) from the isotropic (red) and anisotropic (blue) stress components of the MSM for the Reynolds shear stress $\overline{u'_1 u'_2}$ (a–c) and the wall-normal Reynolds normal stress $\overline{u'_2 u'_2}$ (d–f) at $x/L = -0.2$ (a,d), $x/L = -0.1$ (b,e), and $x/L = 0$ (c,f). All terms are nondimensionalized using U_∞ , L and ρ .

isotropic stress term again resembles the SM. It is negative very close to the wall, becomes positive away from the wall, and decays toward zero, reflecting a wall-normal redistribution of $\overline{u'_1 u'_2}$ from locations with positive diffusion toward locations with negative diffusion. The contribution of anisotropic stress term shows the opposite pattern, with negative values near $x_2/L \approx 1.3 \times 10^{-3}$, which is the wall-normal location of the internal shear-stress peak. For the SGS diffusion of the Reynolds normal stress, the isotropic part redistributes energy from the outer region toward the very near-wall region, while the anisotropic part redistributes energy into the internal-peak location from its neighbouring wall-normal regions. Taken together, the dissipation and diffusion decompositions indicate that the anisotropic SGS stress in the MSM is responsible for the redistribution of energy toward the wall-normal locations around the internal peak of the Reynolds stresses.

The analyses in this section demonstrate that fluctuations of the SGS stress strongly influence the distributions of Reynolds stresses within the critical FPG region. In this region, the fluctuations of isotropic SGS stress act primarily as a dissipative sink for the Reynolds shear stress $\overline{u'_1 u'_2}$ and the wall-normal normal stress $\overline{u'_2 u'_2}$. In contrast, the fluctuations of anisotropic SGS stress provide significant backscatter and wall-normal redistribution of energy, which facilitates the formation of the internal peaks of these stresses in the near-wall region of the TBL. This mechanism further impacts the downstream development of the

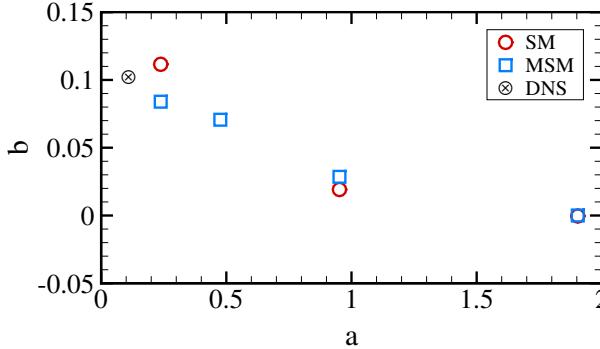


Figure 17: Mean separation point from simulations using the SM and MSM for different mesh resolutions and from the reference DNS (Uzun & Malik 2022). No separation is detected in the medium-mesh simulation ($\Delta_c/L \approx 4.76 \times 10^{-4}$) with the SM.

675 Reynolds stresses and, in turn, alters the mean flow field on the leeward side of the bump,
 676 particularly the onset of separation. These results indicate that enabling accurate WMLES
 677 predictions requires accurately representing the complex near-wall SGS dynamics, which in
 678 turn relies on properly accounting for SGS stress fluctuations in the SGS model.

679 *4.4. Influence of mesh resolution*

680 Through the analysis and comparison of the medium-mesh simulations with isotropic and
 681 anisotropic SGS models in the previous sections, we have answered the first question raised
 682 in §3, namely why the predicted flow on the leeward side of the bump differs qualitatively
 683 between these medium-mesh simulations. The second question, which asks why simulations
 684 with anisotropic SGS models provide more consistent predictions of the separation bubble
 685 size across different mesh resolutions compared to those with isotropic SGS models, remains
 686 to be addressed. To gain further insight into this question, we analyse the simulation results
 687 across different mesh resolutions. In particular, to assess the relative contributions of the mean
 688 SGS stress and Reynolds stress to the mean velocity field and the onset of flow separation, we
 689 examine the budgets of the mean streamwise momentum equation at a location immediately
 690 upstream of the mean separation point, following the same approach as in §4.1.

691 The predicted mean separation points in the simulations with the SM and the MSM are
 692 shown in figure 17. When the coarsest mesh is used, both simulations capture flow separation
 693 on the leeward side of the bump. Not only are the predicted mean separation bubble sizes
 694 similar (see figure 7), but the predicted mean separation points are also consistent, with their
 695 locations close to the bump peak. As the mesh resolution is refined, the mean separation
 696 location gradually shifts downstream and the difference between the two simulations becomes
 697 larger. In particular, with the medium mesh, the separation bubble disappears in the simulation
 698 with the SM. When the mesh is further refined to the fine resolution, both simulations again
 699 predict a separation bubble on the leeward side of the bump, and the mean separation point
 700 approaches the reference location from the DNS (Uzun & Malik 2022).

701 In examining the budgets of the mean streamwise momentum equation (2.2) for each
 702 simulation, the analysis is performed at a position $0.02L$ upstream of the corresponding
 703 mean separation point along the x direction, which is approximately one boundary layer
 704 thickness upstream of separation. For the medium-mesh simulation with the SM, where no
 705 separation bubble forms on the leeward side of the bump, the same location as in the medium-
 706 mesh MSM simulation is used for consistency. The results for the SM and MSM simulations
 707 are presented in figures 18 and 19, respectively. With the coarsest mesh, both simulations

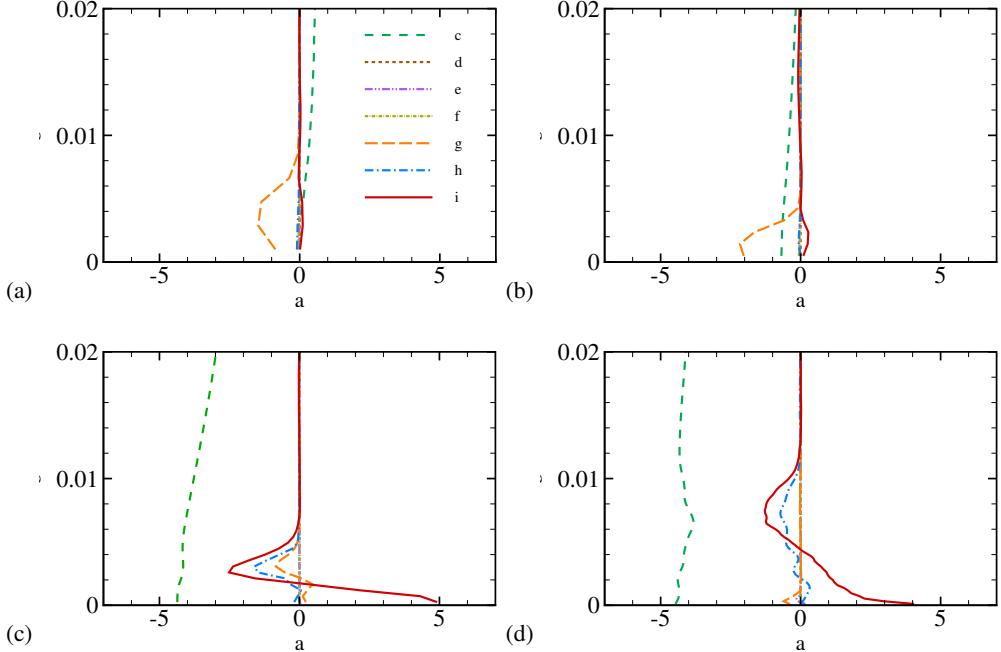


Figure 18: Mean streamwise momentum budget terms at $0.02L$ upstream of the mean separation point along the x direction from cases with SM for the coarsest mesh (a), coarse mesh (b), medium mesh (c), and fine mesh (d). All terms are nondimensionalized using U_∞ , L and ρ . The line notations correspond to equations (4.2)–(4.4).

708 behave qualitatively similarly. The mean SGS shear-stress gradient term T_{12} dominates in the
 709 lower half of the TBL, while other terms remain relatively small across the boundary layer.
 710 It should be noted that this investigated spatial location lies slightly upstream of the bump
 711 peak, where the pressure gradient is close to zero. On the coarse mesh, the predicted mean
 712 separation point shifts further downstream in both simulations, and the APG effect becomes
 713 stronger, particularly in the MSM case. At the same time, while T_{12} remains important, the
 714 contribution of R_{12} increases noticeably within the near-wall region in the MSM simulation.
 715 As the resolution increases to the medium mesh, the predicted separation behaviour becomes
 716 qualitatively different between the two SGS models, as discussed earlier. Compared with
 717 coarser meshes, the contribution of T_{12} decreases substantially in both simulations. With
 718 the fine mesh, the behaviour of the budget terms in the SM and MSM cases becomes
 719 similar again, with R_{12} and P_g emerging as the dominant contributions. Notably, in the
 720 SM case, the negative portion of R_{12} extends over a wider wall-normal range than in the
 721 medium-mesh SM case. This indicates that momentum is extracted over a thicker layer and
 722 redistributed toward the near-wall region where R_{12} is positive. Such redistribution reduces
 723 the streamwise momentum available downstream to resist the APG, ultimately leading to
 724 mean flow separation in the fine-mesh simulation with the SM. In addition, the contribution
 725 of R_{11} , associated with the Reynolds normal stress $u'_1 u'_1$, also becomes important in both
 726 simulations.

727 These results suggest that in the current WMLES, when coarse grid resolutions such as
 728 the coarsest and coarse meshes are used, many flow structures remain unresolved because
 729 their scales are smaller than the grid size. Under these conditions, the mean SGS shear stress
 730 τ_{12}^{sgs} dominates the mean streamwise momentum balance upstream of the mean separation

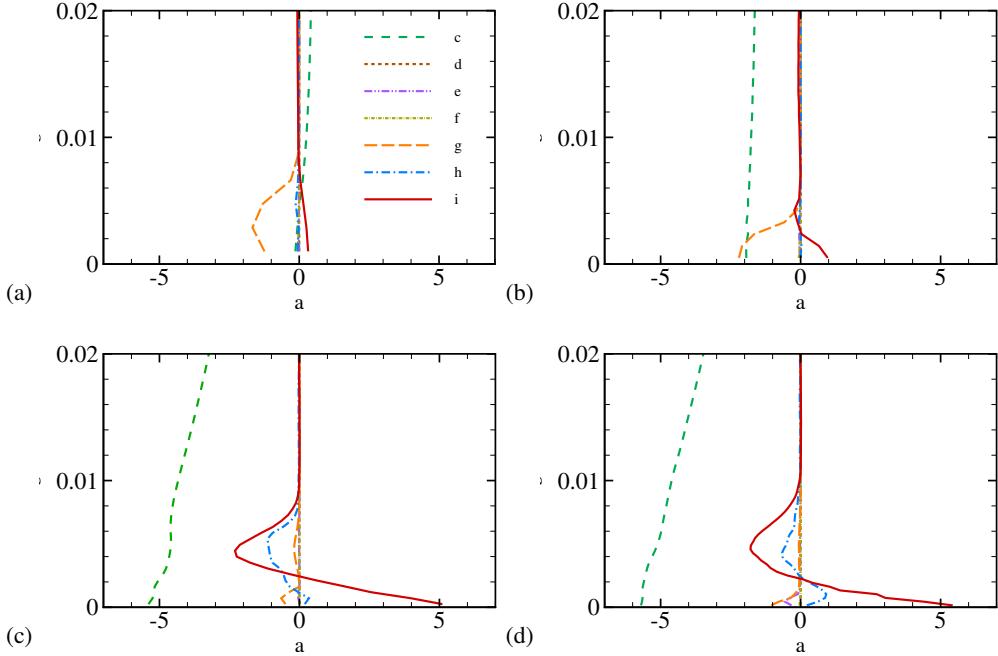


Figure 19: Mean streamwise momentum budget terms at $0.02L$ upstream of the mean separation point along the x direction from cases with MSM for the coarsest mesh (a), coarse mesh (b), medium mesh (c), and fine mesh (d). All terms are nondimensionalized using U_∞ , L and ρ . The line notations correspond to equations (4.2)–(4.4).

731 point, while the contribution from Reynolds stress is relatively small. The difference between
 732 the SM and the MSM lies in the anisotropic SGS stress term (see equation (2.4)); however,
 733 as will be shown in §5, its contribution to the shear stress component τ_{12}^{sgs} in the near-wall
 734 region is limited. Consequently, both models behave similarly in predicting the mean velocity
 735 field. When the medium mesh, representative of typical WMLES resolution, is used, more
 736 flow scales are resolved. As a result, the importance of the mean SGS shear stress decreases,
 737 while Reynolds stresses play a more significant role in the mean momentum transport. As
 738 discussed earlier in §4.3, the anisotropic SGS stress term in the MSM modifies the effect
 739 of SGS stress fluctuations, which improves the prediction of Reynolds stresses and thereby
 740 the prediction of downstream flow separation. For the fine mesh, which has a characteristic
 741 resolution similar to typical WRLES, more flow scales are resolved, leaving the SGS model
 742 to account only for the smallest motions. In this case, the influence of the SGS model on both
 743 mean velocity and Reynolds stress predictions becomes weaker, and the difference between
 744 the SM and MSM results reduces substantially. These findings highlight that, to design a
 745 robust SGS model capable of providing accurate predictions of mean flow fields across
 746 various mesh resolutions for complex configurations, it is essential to model both the mean
 747 SGS stress and the SGS stress fluctuations effectively.

748 **5. Properties of SGS stress**

749 In this section, we examine the properties of the SGS stress and the underlying mechanism
 750 of the anisotropic SGS stress. The investigation focuses on the critical FPG region in front

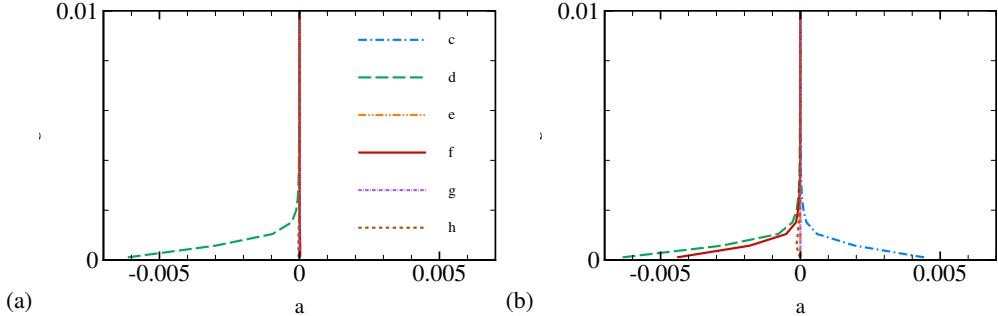


Figure 20: Mean SGS stress tensor components $\bar{\tau}_{ij}^{sgs}$ at $x/L = -0.1$ for medium-mesh simulations with the SM (a) and MSM (b).

751 of the bump peak, where the anisotropic SGS stress has a strong effect and significantly
752 influences the mean flow separation downstream of the bump peak.

753 5.1. Mean SGS stress

754 We first examine the mean SGS stress at $x/L = -0.1$, located near the center of the critical
755 FPG region where the TBL remains attached in all simulations. Figure 20 shows the wall-
756 normal distributions of the six independent components of the mean SGS stress from the
757 medium-mesh simulations using the SM and MSM. As discussed earlier, the medium mesh
758 exhibits the strongest discrepancy in downstream mean-flow prediction between the two
759 models.

760 In both simulations, the mean SGS stress is significant only in the very near-wall region,
761 with the dominant component being the shear stress $\bar{\tau}_{12}^{sgs}$, as expected from the large wall-
762 normal gradient of the streamwise velocity. In the SM case, the remaining components
763 are negligible relative to this dominant shear stress. In contrast, the MSM produces two
764 additional stress components of appreciable magnitude, $\bar{\tau}_{11}^{sgs}$ and $\bar{\tau}_{22}^{sgs}$, which modify the
765 principal directions of the mean SGS stress tensor and alter the associated momentum
766 transfer. Although not shown, this qualitative behaviour persists throughout the FPG region.
767 Since $\bar{\tau}_{11}^{sgs}$, $\bar{\tau}_{22}^{sgs}$, and $\bar{\tau}_{12}^{sgs}$ are the three main components of the mean SGS stress tensor and
768 others are negligible, only these are presented in the subsequent figures for clarity.

769 Figures 21 and 22 show the wall-normal distributions of the three main components of the
770 mean SGS stress tensor at $x/L = -0.1$ for different mesh resolutions. In all cases, refining
771 the mesh reduces the magnitude of the dominant SGS stress components and narrows the
772 wall-normal region over which the SGS shear stress is significant.

773 For the SM, the dominant component of the mean SGS stress tensor is always the shear
774 stress $\bar{\tau}_{12}^{sgs}$, regardless of mesh resolution. However, when the fine mesh is used, the normal
775 stress components $\bar{\tau}_{11}^{sgs}$ and $\bar{\tau}_{22}^{sgs}$ become non-negligible in the near-wall region. This behaviour
776 indicates that the anisotropic dynamics of near-wall turbulence begin to be resolved, and the
777 principal directions of both the mean SGS stress tensor and the mean strain-rate tensor shift
778 relative to the coarser-mesh cases. Notably, the signs of these normal stress components are
779 consistent with the MSM simulations, suggesting that the principal direction of the mean
780 SGS stress in the fine-mesh SM case begins to align with that of the MSM.

781 For the MSM, by contrast, the near-wall dominance of $\bar{\tau}_{12}^{sgs}$, $\bar{\tau}_{11}^{sgs}$, and $\bar{\tau}_{22}^{sgs}$ is present at

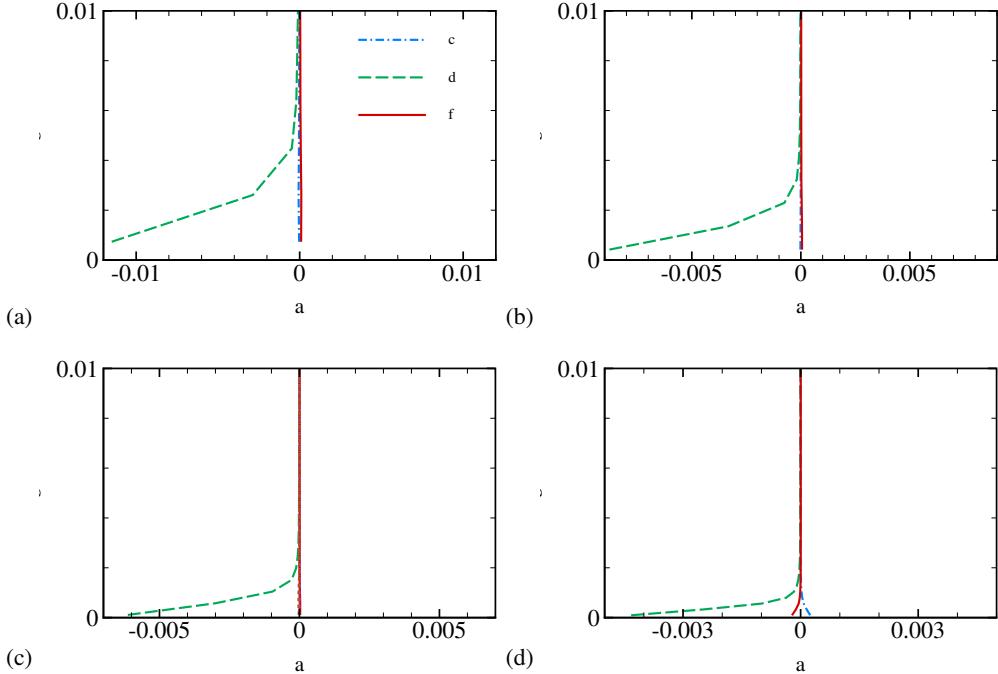


Figure 21: Mean SGS stress tensor components ($\overline{\tau}_{11}^{\text{sgs}}$, $\overline{\tau}_{12}^{\text{sgs}}$, and $\overline{\tau}_{22}^{\text{sgs}}$) at $x/L = -0.1$ for simulations with the SM using the coarsest mesh (a), coarse mesh (b), medium mesh (c), and fine mesh (d).

782 all mesh resolutions, and the qualitative behaviour of these components remains unchanged
783 with mesh refinement.

784 As mentioned earlier, the SGS stress provided by the MSM can be expressed as equa-
785 tion (2.4), consisting of an isotropic component τ_{ij}^{iso} and an anisotropic component τ_{ij}^{ani} .
786 Figure 23 shows the contributions of these two terms to the mean SGS stress at $x/L = -0.1$
787 for the medium-mesh MSM simulation. Again, only the three main components are plotted,
788 since the remaining components are much smaller in magnitude.

789 The mean isotropic stress behaves almost identically to that in the SM case (see figure 20),
790 indicating that adding the anisotropic term does not significantly modify the isotropic part
791 of the model. A similar trend is also observed in the eddy-viscosity distributions within the
792 FPG region (shown in figure 3). Moreover, since the SGS dissipation in the MSM arises
793 exclusively from the isotropic stress term, this similarity implies that the SGS dissipation of
794 kinetic energy is comparable between the SM and MSM at this location.

795 In contrast, the mean anisotropic stress exhibits a distinctly different behaviour, where
796 the shear stress component are negligible while the normal stress components dominate.
797 Comparing these results with the total mean SGS stress in figure 20 reveals that the normal
798 stress in the MSM originate almost entirely from the anisotropic term. This confirms that the
799 anisotropic SGS stress term is the primary source of the difference in the principal directions
800 of the mean SGS stress tensor between the SM and MSM simulations.

801 The above comparison shows that the differences in the mean SGS stress between the
802 SM and MSM arise from the normal stress components, $\overline{\tau}_{11}^{\text{sgs}}$ and $\overline{\tau}_{22}^{\text{sgs}}$, which originate from
803 the additional anisotropic SGS stress term in the MSM. However, as shown in the mean
804 streamwise momentum budget analysis in §4.1 and §4.4, these mean normal stresses have

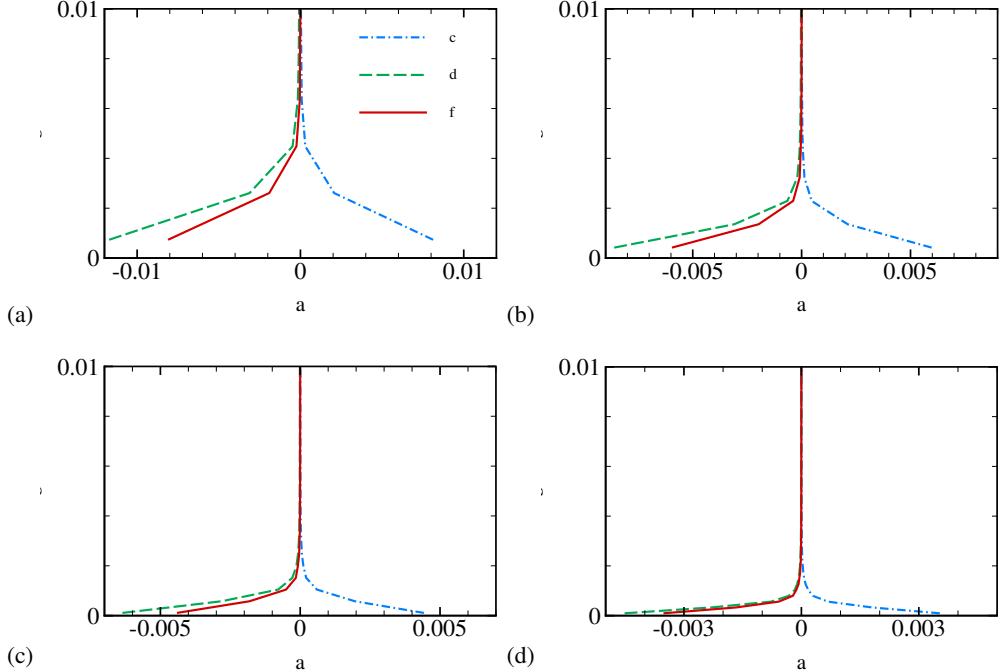


Figure 22: Mean SGS stress tensor components ($\overline{\tau}_{11}^{\text{sgs}}$, $\overline{\tau}_{12}^{\text{sgs}}$, and $\overline{\tau}_{22}^{\text{sgs}}$) at $x/L = -0.1$ for simulations with the MSM using the coarsest mesh (a), coarse mesh (b), medium mesh (c), and fine mesh (d).

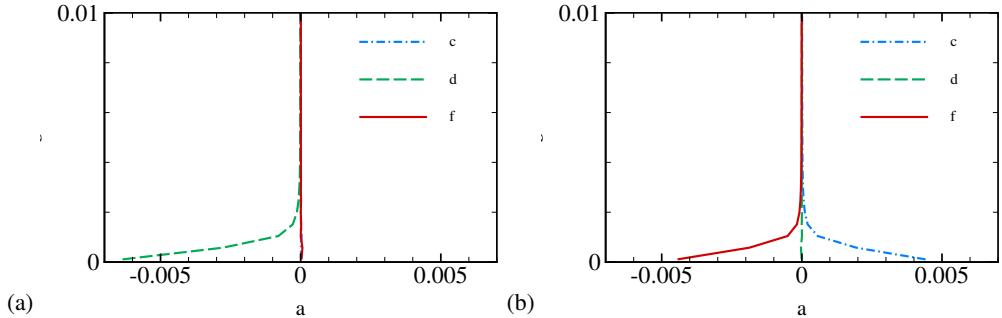


Figure 23: Mean isotropic SGS stress tensor components ($\overline{\tau}_{11}^{\text{iso}}$, $\overline{\tau}_{12}^{\text{iso}}$, and $\overline{\tau}_{22}^{\text{iso}}$) (a) and mean anisotropic SGS stress tensor components ($\overline{\tau}_{11}^{\text{ani}}$, $\overline{\tau}_{12}^{\text{ani}}$, and $\overline{\tau}_{22}^{\text{ani}}$) (b) at $x/L = -0.1$ for medium-mesh simulations with the MSM.

805 limited contributions to the mean streamwise momentum. In contrast, the mean shear stress
 806 component $\overline{\tau}_{12}^{\text{sgs}}$, which is the component most relevant to momentum transport and the onset
 807 of separation on relatively coarse meshes, is predicted similarly by both SGS models within
 808 the critical FPG region. This explains why the coarsest- and coarse-mesh simulations exhibit
 809 similar separation behaviour for the SM and MSM.

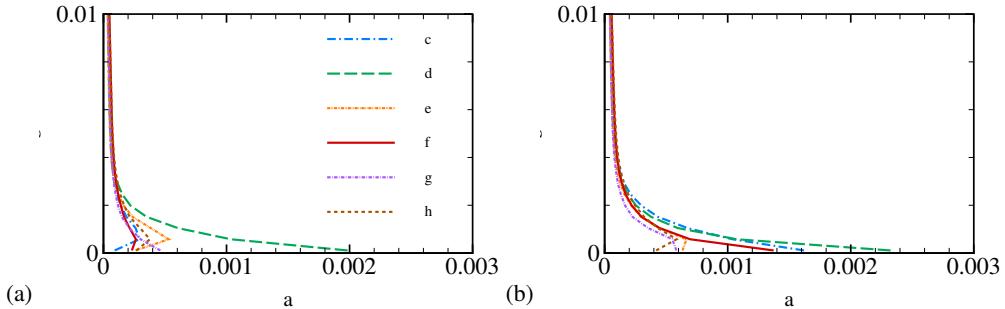


Figure 24: SGS stress tensor r.m.s. components $\tau_{ij, \text{rms}}^{\text{sgs}}$ at $x/L = -0.1$ for medium-mesh simulations with the SM (a) and MSM (b).

810

5.2. SGS stress fluctuations

811 To obtain a more complete understanding of the SGS stress properties, it is also necessary
 812 to examine the SGS stress fluctuations, as these fluctuations can significantly influence
 813 the Reynolds stress distributions (see §4.3). Figure 24 shows the wall-normal distributions
 814 of the six independent components of the root-mean-square (r.m.s.) values of SGS stress
 815 fluctuations at $x/L = -0.1$ for the medium-mesh simulations. As with the mean SGS
 816 stresses, the SGS stress fluctuations are largest close to the wall, with τ_{12}^{sgs} exhibiting the
 817 strongest fluctuations in both simulations.

818 In the MSM simulation, however, the normal stress components τ_{11}^{sgs} and τ_{22}^{sgs} also display
 819 substantial fluctuations, unlike in the SM. Because fluctuations of the normal stresses
 820 contribute directly to both SGS dissipation and SGS diffusion in the Reynolds stress transport
 821 equation, these enhanced fluctuations help explain the distinct SGS dissipation and diffusion
 822 behaviour observed for the MSM in §4.3. Examination at other streamwise locations shows
 823 that this qualitative behaviour of SGS stress fluctuations remains largely consistent throughout
 824 the FPG region.

825 Figures 25 and 26 show the r.m.s. values of the SGS stress fluctuations at $x/L = -0.1$
 826 for simulations using different mesh resolutions with the SM and MSM, respectively. Here,
 827 only the results corresponding to the three main components are exhibited. Within each SGS
 828 model, the qualitative behaviour of the fluctuations remains similar as the mesh is refined.
 829 In contrast to the mean SGS stresses, which decrease rapidly with mesh refinement, the
 830 magnitudes of SGS stress fluctuations only mildly decrease with refinement. This difference
 831 in scaling implies that the relative importance of SGS stress fluctuations increases as the grid
 832 is refined. Furthermore, at this streamwise location, the MSM consistently produces larger
 833 fluctuations in all these SGS stress components than the SM for a given mesh resolution.

834 For the MSM simulations, we further examined the SGS stress fluctuations at $x/L = -0.1$
 835 by separating the isotropic and anisotropic contributions, shown in figure 27. Similar to the
 836 mean SGS stress results, the fluctuations associated with the isotropic term behave similarly
 837 to those in the SM (see figure 25), again indicating that the addition of the anisotropic
 838 term does not substantially alter the isotropic component of the model. In contrast, the
 839 fluctuations of anisotropic stress term are dominated by the normal stress components τ_{11}^{ani}
 840 and τ_{22}^{ani} , consistent with the behaviour of the mean anisotropic stress. Comparison with the
 841 total SGS stress fluctuations shown in figure 26 reveals that the large fluctuations in these
 842 normal components primarily originate from the anisotropic term.

843 These observations confirm that the differences in SGS dissipation and diffusion of
 844 Reynolds stresses discussed in §4.3 stem mainly from the additional anisotropic stress term

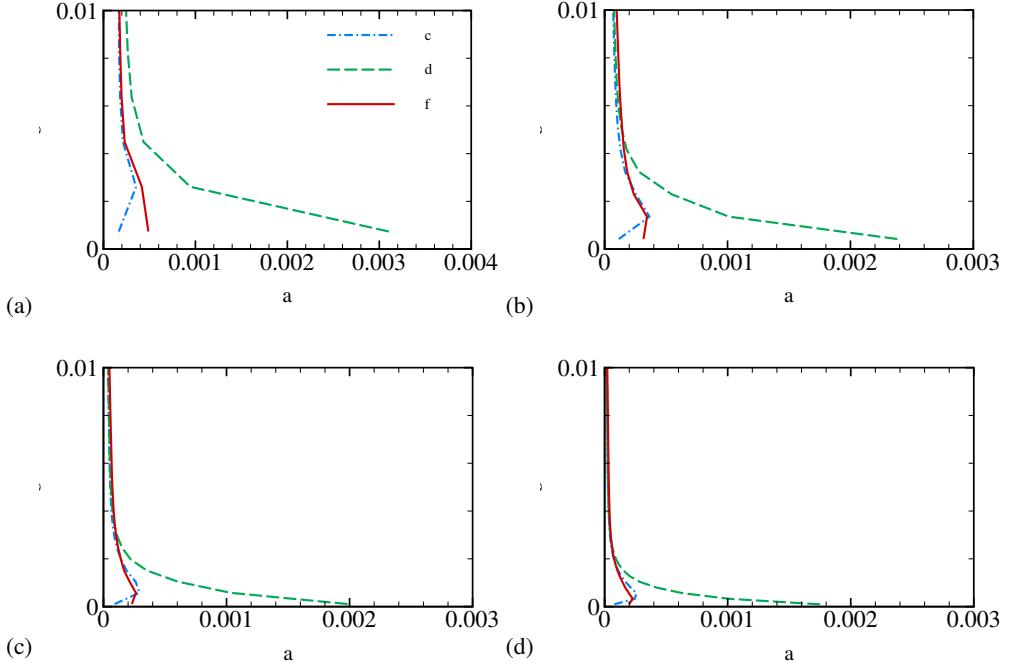


Figure 25: SGS stress tensor r.m.s. components ($\tau_{11, \text{rms}}^{\text{sgs}}$, $\tau_{12, \text{rms}}^{\text{sgs}}$, and $\tau_{22, \text{rms}}^{\text{sgs}}$) at $x/L = -0.1$ for simulations with the SM using the coarsest mesh (a), coarse mesh (b), medium mesh (c), and fine mesh (d).

845 in the MSM, not from modifications to the isotropic stress term. This also suggests that
 846 optimizing the coefficient and formulation of the anisotropic stress term in anisotropic SGS
 847 models may provide an effective means of controlling SGS stress fluctuations and, in turn,
 848 improving the prediction of Reynolds stress distributions and the mean velocity field.

849 *5.3. A priori analysis of filtered DNS*

850 Previously, based on a series of WMLES, we conducted a comprehensive *a posteriori* analysis
 851 of the mean SGS stress and the fluctuations of SGS stress within the critical FPG region on
 852 the windward side of the bump. To further validate those conclusions and to gain additional
 853 insight into the characteristics of SGS stress in wall-bounded turbulence under FPG, we
 854 perform an *a priori* analysis using Gaussian-filtered DNS of turbulent Couette-Poiseuille
 855 flow. The DNS is conducted at a Reynolds number of $Re_H = U_c H / \nu = 2,500$, where H is
 856 the half-channel height and U_c is the wall motion speed. Additional details of the DNS and
 857 the filtering operation are provided in Appendices C and D.

858 The *a priori* analysis focuses on the lower half of the channel, where the flow near the
 859 bottom wall experiences an FPG and behaves qualitatively similarly to a TBL with FPG.
 860 Gaussian filtering of the velocity field is applied only in the streamwise (x) and spanwise (z)
 861 directions, since the DNS grid is non-uniform in the wall-normal (y) direction. To examine
 862 a range of moderate to coarse filter widths, the standard deviations of the Gaussian kernel
 863 are set to $\sigma_x / \Delta_x = \sigma_z / \Delta_z = 1, 2$ and 4 , where Δ_x and Δ_z are the uniform DNS grid
 864 spacings in x and z . Based on the filtered velocity field, the SGS stress can be calculated as
 865 $\tau_{ij}^{\text{sgs}} = \widehat{u_i u_j} - \widehat{u_i} \widehat{u_j}$, where $\widehat{(\cdot)}$ denotes Gaussian filtering. For the present analysis, we only
 866 consider the deviatoric, trace-free part of the SGS stress tensor.

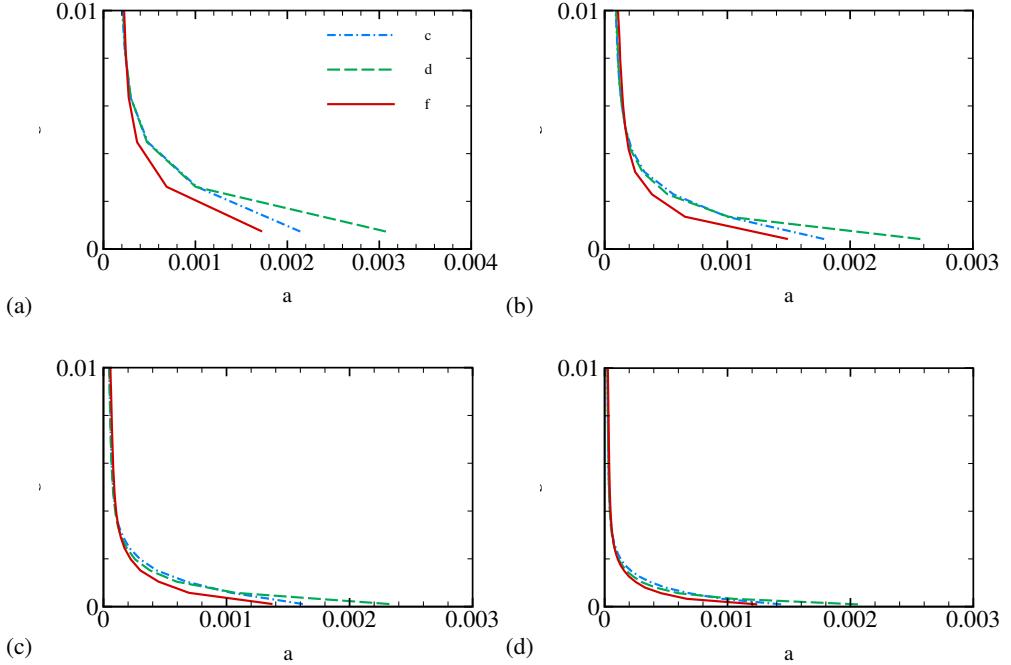


Figure 26: SGS stress tensor r.m.s. components ($\tau_{11, \text{rms}}^{\text{sgs}}$, $\tau_{12, \text{rms}}^{\text{sgs}}$, and $\tau_{22, \text{rms}}^{\text{sgs}}$) at $x/L = -0.1$ for simulations with the MSM using the coarsest mesh (a), coarse mesh (b), medium mesh (c), and fine mesh (d).

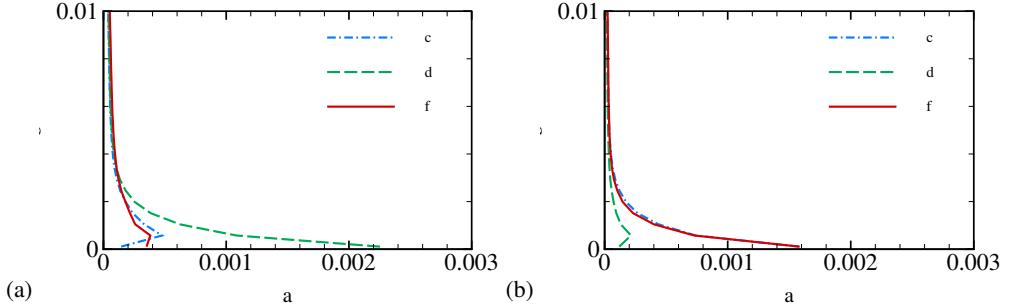


Figure 27: Isotropic SGS stress tensor r.m.s. components ($\tau_{11, \text{rms}}^{\text{iso}}$, $\tau_{12, \text{rms}}^{\text{iso}}$, and $\tau_{22, \text{rms}}^{\text{iso}}$) (a) and anisotropic SGS stress tensor r.m.s. components ($\tau_{11, \text{rms}}^{\text{ani}}$, $\tau_{12, \text{rms}}^{\text{ani}}$, and $\tau_{22, \text{rms}}^{\text{ani}}$) (b) at $x/L = -0.1$ for medium-mesh simulations with the MSM.

Figure 28(a) shows the wall-normal distributions of the mean SGS stress components obtained from the filtered DNS data using a Gaussian kernel with $\sigma_x/\Delta_x = \sigma_z/\Delta_z = 2$. The magnitudes of the mean SGS stresses are largest near the wall, with peak values occurring at $y/H \approx 0.06$ (approximately 20 wall units). A key observation is that the normal stress components, τ_{11}^{sgs} and τ_{22}^{sgs} , are significantly larger than the other components. This indicates strong SGS anisotropy near the wall, with the streamwise and wall-normal directions dominating the interscale energy transfer. By contrast, although the mean shear is large in this region, the small-scale cross-correlation between streamwise and wall-normal

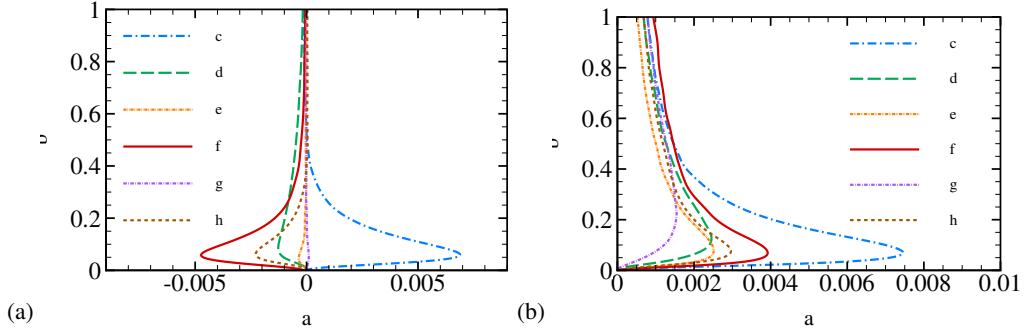


Figure 28: Mean SGS stress tensor components τ_{ij}^{sgs} (a) and SGS stress tensor r.m.s. components $\tau_{ij, \text{rms}}^{\text{sgs}}$ (b) obtained from the Gaussian filtering of velocity field from the DNS of turbulent Couette-Poiseuille flow with the standard deviations of the Gaussian kernel $\sigma_x/\Delta_x = \sigma_z/\Delta_z = 2$.

875 velocity fluctuations is weaker than the variance of each component, causing the mean shear
 876 stress τ_{12}^{sgs} to remain comparatively small.

877 When compared with the mean SGS stress in the TBL within the FPG region of the
 878 present WMLES, the filtered DNS results exhibit behaviour more consistent with the MSM
 879 predictions. In both cases, the anisotropic stress introduces crucial normal stress components
 880 in the near-wall region, and the signs of the dominant τ_{11}^{sgs} and τ_{22}^{sgs} components agree between
 881 the two flows. However, due to the coarse resolution along the wall-normal direction in the
 882 WMLES, the peaks of the mean SGS stress components are not fully captured.

883 It is also worth noting that the qualitative behaviour of the mean SGS stresses remains
 884 similar across different standard deviations of the Gaussian filter, or equivalently, different
 885 effective filter widths. For brevity, results for other filter widths (e.g., $\sigma_x/\Delta_x = \sigma_z/\Delta_z = 1$
 886 or 4) are not shown. Examination of these cases indicates that increasing the filter standard
 887 deviation leads to larger mean SGS stress magnitudes, consistent with the fact that wider
 888 filters remove more turbulent scales and therefore attribute a greater portion of the momentum
 889 transfer to the unresolved motions.

890 Figure 28(b) shows the wall-normal distributions of the r.m.s. values of SGS stress
 891 fluctuations from filtered DNS. As expected, the fluctuation intensities are largest near the
 892 bottom wall, with peak values occurring at approximately the same wall-normal location as
 893 the mean SGS stresses in figure 28(a). While the mean SGS stresses represent the average
 894 interscale momentum transfer, the r.m.s. values reflect its temporal and spatial variability
 895 and are therefore more sensitive to localized turbulent events. The strong peaks near the wall
 896 indicate that the energy transfer between resolved and subgrid scales is highly intermittent
 897 in this region, driven by the bursting and ejection-sweep cycles characteristic of near-wall
 898 turbulence. The particularly large fluctuations in τ_{11}^{sgs} and τ_{22}^{sgs} suggest substantial temporal
 899 variability in the normal stress components, likely associated with rapid distortion of streaks
 900 and vortical structures.

901 The strong normal SGS stress fluctuations are also better captured by the MSM in the
 902 WMLES, whereas they are nearly absent in the SM results within the FPG region. This
 903 reinforces the role of the anisotropic stress term in reproducing the correct near-wall SGS
 904 dynamics. Finally, although results for other filter widths ($\sigma_x/\Delta_x = \sigma_z/\Delta_z = 1$ and 4) are not
 905 shown, their qualitative behaviour is similar: the fluctuation intensities increase with filter
 906 width, consistent with the enhanced contribution from unresolved scales.

907 From the filtered DNS analysis and its comparison with the WMLES results, it is evident

908 that in wall-bounded turbulence under FPG the SGS dynamics are strongly anisotropic near
 909 the wall, with the normal SGS stress components playing a major role. Classical eddy-
 910 viscosity models are unable to represent these effects adequately. In contrast, the anisotropic
 911 SGS model reproduces the near-wall anisotropy much more realistically, consistent with
 912 the characteristics observed in the filtered DNS. These findings suggest that improving or
 913 optimizing the anisotropic stress term and its coefficient in SGS models offers a promising
 914 pathway for enhancing model performance in simulations of complex turbulent flows.

915 6. Conclusions

916 This study performed a comprehensive *a posteriori* analysis of the effect of anisotropic SGS
 917 stress on WMLES of separated turbulent flow over a spanwise-uniform Gaussian bump. An
 918 idealized wall boundary condition prescribing the local mean wall-shear stress from DNS
 919 data (Uzun & Malik 2022) was used to isolate the impact of the SGS model. Two models
 920 were compared: the classical Smagorinsky model (SM) and a modified Smagorinsky model
 921 (MSM) that includes an additional anisotropic stress term.

922 The main findings are summarized as follows. First, the predicted flow separation on the
 923 leeward side of the bump depends strongly on the SGS model. The isotropic SM exhibits
 924 non-monotonic convergence of the mean separation bubble length with mesh refinement,
 925 whereas the anisotropic MSM provides consistent predictions across resolutions. Second,
 926 the influence of anisotropic SGS stress is found to be most critical upstream of the bump
 927 peak, within the region of strong favorable pressure gradient (FPG). Changes to the SGS
 928 model in this region substantially alter the downstream separation, revealing a pronounced
 929 history effect in determining separation onset. Third, inclusion of anisotropic SGS stress
 930 improves the prediction of Reynolds shear and normal stress distributions in the FPG
 931 region. These modifications propagate downstream and influence the onset and size of the
 932 separation bubble. Analysis of the Reynolds stress budget shows that anisotropic SGS stress
 933 fluctuations enable both dissipation and backscatter, facilitating the bidirectional energy
 934 transfer that isotropic models fail to represent. The dependence of flow-separation prediction
 935 on mesh resolution is also clarified. On coarse meshes, the mean SGS shear stress dominates
 936 the streamwise momentum balance upstream of the separation point, and both models
 937 behave similarly. As the resolution increases, Reynolds stresses become more influential,
 938 and the anisotropic MSM better captures their distribution and yields more consistent flow
 939 predictions. At fine resolution, model differences diminish as more turbulent scales are
 940 resolved. The key physical distinction between the SM and MSM arises from the normal
 941 SGS stress components, τ_{11}^{sgs} and τ_{22}^{sgs} , which in the MSM significantly contribute to SGS
 942 dissipation and diffusion of Reynolds stresses, particularly under FPG. An *a priori* analysis
 943 based on filtered DNS of Couette–Poiseuille flow further confirms that near-wall turbulence
 944 under FPG is highly anisotropic and dominated by these normal stress components, which
 945 are not captured by isotropic eddy-viscosity models.

946 Taken together, these findings explain why isotropic and anisotropic SGS models yield
 947 qualitatively different predictions of separation behaviour and why the anisotropic model
 948 achieves more consistent convergence across mesh resolutions. The results emphasize that
 949 accurate WMLES predictions require proper representation of both mean and fluctuating
 950 SGS stresses, especially their anisotropy in the near-wall region.

951 Beyond elucidating the role of anisotropic SGS stress, this study highlights directions
 952 for improving WMLES of complex wall-bounded turbulence. Since the unresolved motions
 953 in WMLES carry substantial energy and momentum fluxes, the SGS model must account
 954 for anisotropic stress dynamics near the wall and under pressure gradients. Developing
 955 more advanced anisotropic SGS models, potentially through optimized extensions of eddy-

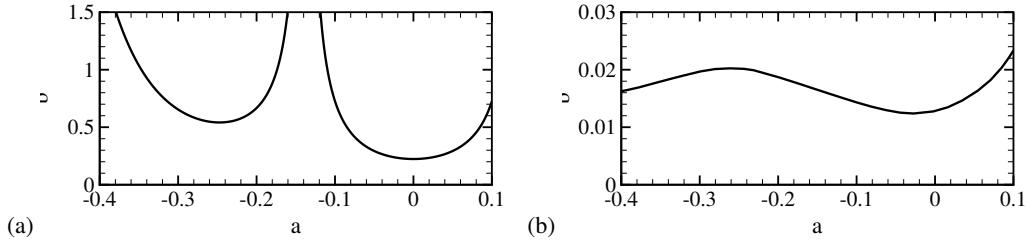


Figure 29: Curvature radius (a) of the Gaussian bump surface and local boundary layer thickness (b) for the medium-mesh simulation with the SM in $x/L \in [-0.4, 0.1]$.

viscosity formulations (Marstorp *et al.* 2009; Silvis & Verstappen 2019; Agrawal *et al.* 2022; Uzun & Malik 2025), is therefore a promising path forward. Although this work employed an idealized wall model to isolate SGS effects, realistic wall modeling and its coupling with the SGS model remain critical challenges. Unified SGS/wall modeling frameworks (Ling *et al.* 2022; Arranz *et al.* 2023, 2024; Zhou *et al.* 2025) represent a promising direction to enhance the robustness and predictive accuracy of WMLES for complex turbulent flows.

962 Acknowledgments

This work was supported by National Science Foundation (NSF) grant No. 2152705. Computer time was provided by the Discover project at Pittsburgh Supercomputing Center through allocation PHY240020 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by NSF grants No. 2138259, No. 2138286, No. 2138307, No. 2137603, and No. 2138296. The authors sincerely thank Dr. Ali Uzun and Dr. Mujeeb Malik for generously sharing their DNS data. We also extend our special gratitude to Dr. Meng Wang for his invaluable assistance.

970 Declaration of Interests

The authors report no conflict of interest.

972 Appendix A. Investigation of the curvature effect on the region upstream of 973 separation

Figure 29 shows the local curvature radius (r) of the present Gaussian bump surface and the local boundary layer thickness (δ) from the medium-mesh simulation with the SM in the region $x/L \in [-0.4, 0.1]$. The curvature radius reaches its minimum at the bump peak ($x/L = 0$), where the curvature is largest, while the curvature radius is substantially larger at all other locations. Even at the bump peak, the minimum curvature radius remains much larger than the local boundary layer thickness, with the ratio of curvature radius to boundary layer thickness exceeding 10. These observations indicate that curvature effects in this region are negligible, consistent with findings of previous studies (Prakash *et al.* 2024; Spalart *et al.* 2024).

983 Appendix B. Simulations using the mixed model

An additional anisotropic SGS model evaluated in the present study is the mixed model (MM) (Bardina 1983; Sarghini *et al.* 1999). It combines the SM (Smagorinsky 1963) with

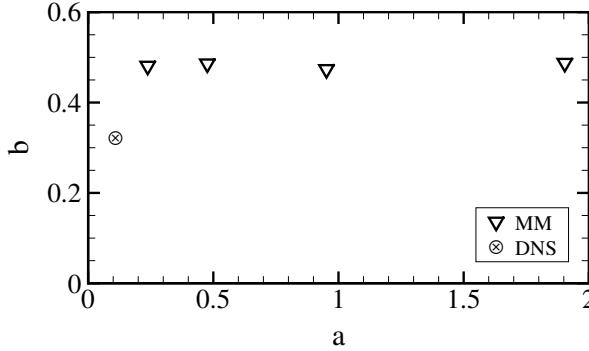


Figure 30: Mean separation bubble length on the leeward side of the bump from the simulations using the MM for different mesh resolutions and the reference DNS (Uzun & Malik 2022). Symbols represent data point for each case.

986 a scale-similarity term computed using explicit filtering (Meneveau & Katz 2000), which is
 987 given by

$$988 \quad \tau_{ij}^{\text{ani}} = \widehat{u_i u_j} - \hat{u}_i \hat{u}_j, \quad (\text{B } 1)$$

989 where $\widehat{(\cdot)}$ denotes an explicit filtering operation, chosen here as Gaussian filtering. With the
 990 use of Gaussian filtering, the anisotropic term can be approximated (Clark *et al.* 1979) by

$$991 \quad \tau_{ij}^{\text{ani}} = \widehat{u_i u_j} - \hat{u}_i \hat{u}_j \approx \frac{\Delta^2}{12} \frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_k} = \frac{\Delta^2}{12} [S_{ik} S_{kj} - R_{ik} R_{kj} - (S_{ik} R_{kj} - R_{ik} S_{kj})]. \quad (\text{B } 2)$$

992 In addition to introducing anisotropic SGS stress, this term can produce kinetic energy
 993 dissipation. In particular, it can also produce negative dissipation, which allows for local
 994 backscatter of kinetic energy. The isotropic SGS stress term in the MM is given by the SM
 995 with a coefficient of $C_s = 0.127$ (Bhushan & Warsi 2005; Bhushan *et al.* 2006), chosen to
 996 ensure that the total kinetic energy dissipation for homogeneous isotropic turbulence from
 997 both the isotropic and anisotropic stress terms matches that from the SM and MSM used in
 998 the present study. The MM simulations are carried out using the same computational meshes
 999 and boundary conditions described in §2.

1000 Figure 30 shows the mean separation bubble length on the leeward side of the bump as
 1001 a function of characteristic mesh resolution. The MM simulations consistently overpredict
 1002 the separation bubble length, but the predictions that remain nearly insensitive to mesh
 1003 refinement. This trend mirrors the behaviour observed for the MSM simulations (see figure 7),
 1004 further underscoring the robustness of anisotropic SGS models for WMLES.

1005 Additional analyses of the mean streamwise momentum, mean pressure, and Reynolds
 1006 stress transport equations using data from multiple mesh resolutions show that the MM
 1007 exhibits behaviour qualitatively similar to the MSM, particularly in its representation of
 1008 anisotropic stress effects. Thus, the conclusions drawn in the main text remain applicable to
 1009 the MM simulations.

1010 Appendix C. DNS of plane Couette–Poiseuille flow

1011 A DNS of turbulent plane Couette–Poiseuille flow is conducted at $Re_H = 2,500$, where
 1012 H denotes the half-channel height. In the simulation, the incompressible Navier–Stokes
 1013 equations are solved using a staggered finite-difference scheme that is second-order accurate
 1014 in space and advanced in time with an explicit third-order Runge–Kutta method. The flow

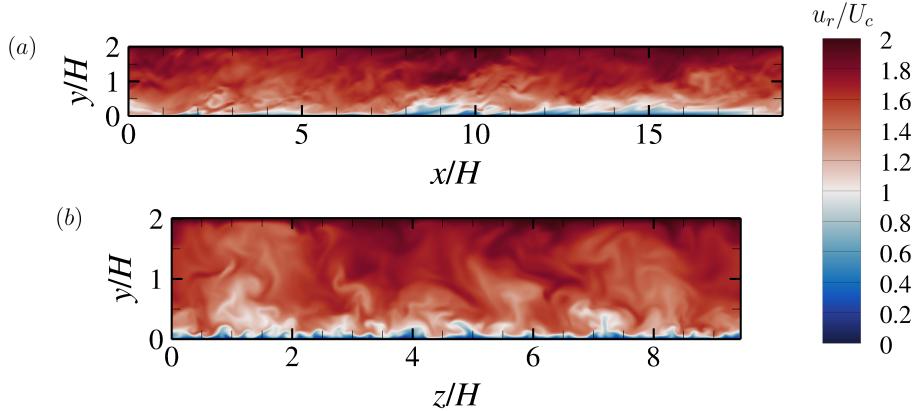


Figure 31: Isocontours of the instantaneous streamwise velocity relative to the bottom wall u_r/U_c in (a) an x - y plane and (b) a z - y plane from the DNS of turbulent Couette–Poiseuille flow.

1015 solver has been validated in previous studies of turbulent channel flows (Bae *et al.* 2018,
 1016 2019). In the computational domain, periodic boundary conditions are imposed in the
 1017 streamwise (x) and spanwise (z) directions. The top and bottom walls move parallel to
 1018 each other in opposite directions along the x axis. A Dirichlet boundary condition with
 1019 constant velocity $u_x = U_c = 1$ is applied at the top wall ($y/H = 2$), while a constant
 1020 velocity $u_x = -U_c = -1$ is imposed at the bottom wall ($y/H = 0$). A constant streamwise
 1021 pressure gradient, corresponding to $H/(\rho U_c^2) \frac{dp}{dx} = -0.003$, is applied to drive the flow,
 1022 indicating that the mean pressure decreases in the positive x direction. The computational
 1023 domain extends over $L_x/H = 6\pi$, $L_y/H = 2$, and $L_z/H = 3\pi$ in the streamwise, wall-
 1024 normal, and spanwise directions, respectively. Uniform grids with 512 points are used
 1025 in both the streamwise and spanwise directions. In the wall-normal direction, 256 non-
 1026 uniformly spaced points are distributed according to a hyperbolic tangent stretching, yielding
 1027 $\min(\Delta y)/H = 3.5 \times 10^{-4}$ and $\max(\Delta y)/H = 2.2 \times 10^{-2}$. The simulation is first advanced
 1028 for 100 flow-through times ($6\pi H/U_c$) to eliminate initial transients. After the flow reaches a
 1029 statistically stationary state, 1,500 temporal snapshots are collected for the present analysis.
 1030 Moreover, the statistical quantities in the present study are obtained by performing temporal
 1031 and spatial averaging along the homogeneous streamwise and spanwise directions of the
 1032 corresponding instantaneous fields.

1033 Figure 31 shows the instantaneous streamwise velocity relative to the bottom wall, $u_r =$
 1034 $u_x + U_c$, from the DNS. Due to the motion of the parallel walls and the imposed mean
 1035 pressure gradient, the wall-bounded turbulence in the upper half of the channel experiences
 1036 an APG and behaves similarly to an APG TBL containing many large-scale flow structures.
 1037 In contrast, the turbulence near the bottom wall is subjected to an FPG and qualitatively
 1038 similar to an FPG TBL. Figure 32 presents the profile of inner-scaled mean streamwise
 1039 velocity relative to the bottom wall, defined as $\bar{u}_r^+ = \overline{(u_x + U_c)/u_{\tau,b}}$. Here, the superscript
 1040 “+” denotes inner-scaled quantity by wall unit and $u_{\tau,b}$ is the bottom-wall friction velocity.

1041 Appendix D. Filtering of the DNS velocity field

1042 To obtain the filtered velocity field from the DNS of the turbulent Couette–Poiseuille flow, a
 1043 Gaussian filter is applied to the instantaneous velocity field $\mathbf{u} = (u_x, u_y, u_z)$. Since the DNS
 1044 grid is non-uniform in the wall-normal (y) direction, the filtering operation is performed only

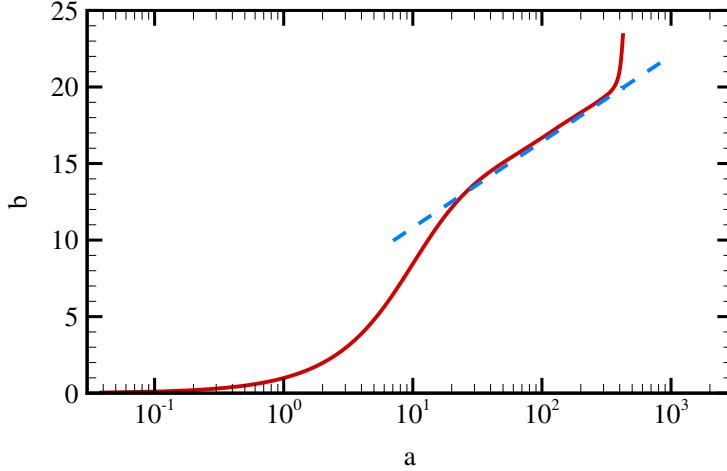


Figure 32: Mean streamwise velocity relative to the bottom wall from the DNS of turbulent Couette-Poiseuille flow. The dashed line represents the classical log law of the wall $u_r^+ = (1/0.41) \ln(y^+) + 5.2$.

1045 in the streamwise (x) and spanwise (z) directions to avoid commutation errors. The filtered
 1046 velocity field $\hat{\mathbf{u}} = (\hat{u}_x, \hat{u}_y, \hat{u}_z)$ is obtained through a two-dimensional convolution in the x
 1047 and z directions,

$$1048 \quad \hat{u}_i(x, y, z) = \iint G(x - r_x, z - r_z) u_i(r_x, y, r_z) dr_x dr_z, \quad (D 1)$$

1049 where the Gaussian kernel is defined as

$$1050 \quad G(r_x, r_z) = \frac{1}{2\pi \sigma_x \sigma_z} \exp \left[-\frac{1}{2} \left(\frac{r_x^2}{\sigma_x^2} + \frac{r_z^2}{\sigma_z^2} \right) \right]. \quad (D 2)$$

1051 Here, r_x and r_z denote spatial separations in the streamwise and spanwise directions, and σ_x
 1052 and σ_z are the corresponding standard deviations of the Gaussian kernel. Since the DNS grid
 1053 is uniform in both directions, the filtering is implemented as a discrete convolution using
 1054 symmetric one-dimensional Gaussian kernels applied successively in x and z .

1055 The effective filter width $\Delta_{f,i}$ in each direction $i \in \{x, z\}$ is defined by matching the second
 1056 moment of the Gaussian filter with that of a top-hat filter, giving

$$1057 \quad \Delta_{f,i} = 2\sqrt{3} \sigma_i. \quad (D 3)$$

1058 In this study, the standard deviations are set as multiples of the uniform DNS grid spacings
 1059 such that $\sigma_x/\Delta_x = \sigma_z/\Delta_z = 1, 2$, and 4 , corresponding to moderate to coarse filter widths
 1060 that remove small-scale motions while retaining large-scale flow structures. The resulting
 1061 effective filter widths $\Delta_{f,x}$ and $\Delta_{f,z}$ are approximately 3.464 , 6.928 , and 13.856 times the
 1062 grid spacings Δx and Δz , respectively.

1063 Figure 33 shows the filtered instantaneous streamwise velocity relative to the bottom
 1064 wall \hat{u}_r/U_c in an x - y plane for these three filter widths, along with the DNS field. As the
 1065 standard deviations increase, progressively finer structures are removed, demonstrating how
 1066 the Gaussian filter systematically isolates the larger-scale motions.

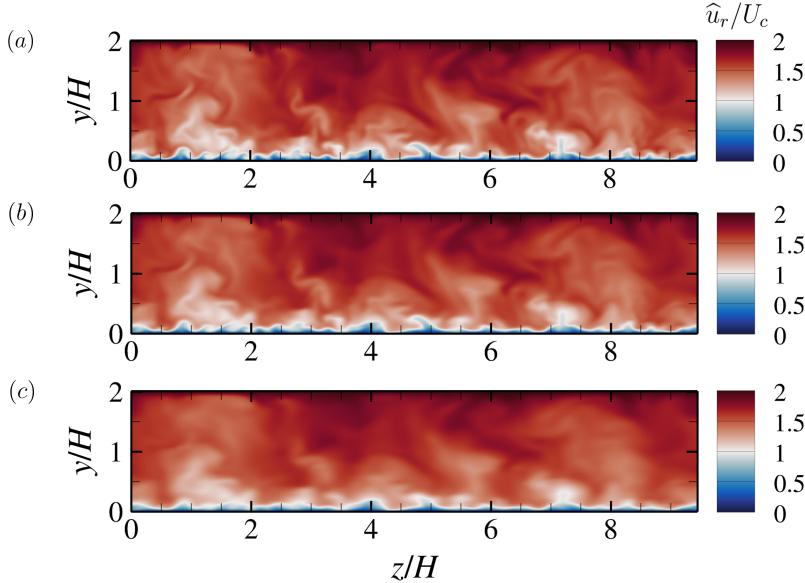


Figure 33: Isocontours of the filtered streamwise velocity \hat{u}_r/U_c with $\sigma_x/\Delta x = \sigma_z/\Delta z = 1$ (a), 2 (b), and 4 (c).

REFERENCES

1067 ABE, K. 2013 An improved anisotropy-resolving subgrid-scale model with the aid of a scale-similarity
1068 modeling concept. *Int. J. Heat Fluid Flow* **39**, 42–52.

1069 ABE, K. 2014 An investigation of SGS stress anisotropy modeling in complex turbulent flow fields. *Flow*
1070 *Turbul. Combust.* **92** (1), 503–525.

1071 ABE, K. 2019 Notable effect of the subgrid-scale stress anisotropy on mean-velocity prediction through
1072 budget of the grid-scale Reynolds-shear stress. *Phys. Fluids* **31** (10), 105103.

1073 AGRAWAL, R., BOSE, S. T. & MOIN, P. 2024 Reynolds-number-dependence of length scales governing
1074 turbulent-flow separation in wall-modeled large eddy simulation. *AIAA J.* **62** (10), 3686–3699.

1075 AGRAWAL, R., WHITMORE, M. P., GRIFFIN, K. P., BOSE, S. T. & MOIN, P. 2022 Non-Boussinesq subgrid-scale
1076 model with dynamic tensorial coefficients. *Phys. Rev. Fluids* **7** (7), 074602.

1077 ARRANZ, G., LING, Y., COSTA, S., GOC, K. & LOZANO-DURÁN, A. 2024 Building-block-flow computational
1078 model for large-eddy simulation of external aerodynamic applications. *Commun. Eng.* **3** (1), 127.

1079 ARRANZ, G., LING, Y. & LOZANO-DURAN, A. 2023 Wall-modeled LES based on building-block flows:
1080 Application to the Gaussian bump. In *AIAA Aviation 2023 Forum*, p. 3984.

1081 BAE, H. J., LOZANO-DURÁN, A., BOSE, S. T. & MOIN, P. 2018 Turbulence intensities in large-eddy simulation
1082 of wall-bounded flows. *Phys. Rev. Fluids* **3** (1), 014610.

1083 BAE, H. J., LOZANO-DURÁN, A., BOSE, S. T. & MOIN, P. 2019 Dynamic slip wall model for large-eddy
1084 simulation. *J. Fluid Mech.* **859**, 400–432.

1085 BALIN, R. & JANSEN, K. E. 2021 Direct numerical simulation of a turbulent boundary layer over a bump
1086 with strong pressure gradients. *J. Fluid Mech.* **918**, A14.

1087 BARDINA, J. 1983 *Improved turbulence models based on large eddy simulation of homogeneous,*
1088 *incompressible turbulent flows*. Stanford University.

1089 BHUSHAN, S. & WARSZ, Z. U. A. 2005 Large eddy simulation of turbulent channel flow using an algebraic
1090 model. *Int. J. Numer. Methods Fluids* **49** (5), 489–519.

1091 BHUSHAN, S., WARSZ, Z. U. A. & WALTERS, D. K. 2006 Modeling of energy backscatter via an algebraic
1092 subgrid-stress model. *AIAA J.* **44** (4), 837–847.

1093 BOSE, S. T. & MOIN, P. 2014 A dynamic slip boundary condition for wall-modeled large-eddy simulation.
1094 *Phys. Fluids* **26** (1), 015104.

1095 BOSE, S. T. & PARK, G. I. 2018 Wall-modeled large-eddy simulation for complex turbulent flows. *Annu. Rev.*
1096 *Fluid Mech.* **50**, 535–561.

1097 CHOI, H., CHO, C., KIM, M. & PARK, J. 2025 Perspective on machine-learning-based large-eddy simulation.
 1098 *Phys. Rev. Fluids* **10** (11), 110701.

1099 CHOI, H. & MOIN, P. 2012 Grid-point requirements for large eddy simulation: Chapman's estimates revisited.
 1100 *Phys. Fluids* **24** (1), 011702.

1101 CIMARELLI, A., LEONFORTE, A., DE ANGELIS, E., CRIVELLINI, A. & ANGELI, D. 2019 Resolved dynamics
 1102 and subgrid stresses in separating and reattaching flows. *Phys. Fluids* **31** (9), 095101.

1103 CLARK, R. A., FERZIGER, J. H. & REYNOLDS, W. C. 1979 Evaluation of subgrid-scale models using an
 1104 accurately simulated turbulent flow. *J. Fluid Mech.* **91** (1), 1–16.

1105 DOMARADZKI, J. A. & SAIKI, E. M. 1997 A subgrid-scale model based on the estimation of unresolved
 1106 scales of turbulence. *Phys. Fluids* **9** (7), 2148–2164.

1107 DURAISAMY, K. 2021 Perspectives on machine learning-augmented Reynolds-averaged and large eddy
 1108 simulation models of turbulence. *Phys. Rev. Fluids* **6** (5), 050504.

1109 GATSKI, T. B. & JONGEN, T. 2000 Nonlinear eddy viscosity and algebraic stress models for solving complex
 1110 turbulent flows. *Prog. Aerosp. Sci.* **36** (8), 655–682.

1111 GLUZMAN, I., GRAY, P. D., MEJIA, K., CORKE, T. C. & THOMAS, F. O. 2022 A simplified photogrammetry
 1112 procedure in oil-film interferometry for accurate skin-friction measurement over arbitrary geometries.
 1113 *Exp. Fluids* **63** (7), 118.

1114 GOC, K. A., LEHMKUHL, O., PARK, G. I., BOSE, S. T. & MOIN, P. 2021 Large eddy simulation of aircraft at
 1115 affordable cost: a milestone in computational fluid dynamics. *Flow* **1**, E14.

1116 GOC, K. A., MOIN, P., BOSE, S. T. & CLARK, A. M. 2024 Wind tunnel and grid resolution effects in large-eddy
 1117 simulations of the high-lift common research model. *J. Aircr.* **61** (1), 267–279.

1118 GRAY, P. D., GLUZMAN, I., THOMAS, F. O. & CORKE, T. C. 2022a Experimental characterization of smooth
 1119 body flow separation over wall-mounted Gaussian bump. In *AIAA Scitech 2022 Forum*, p. 1209.

1120 GRAY, P. D., GLUZMAN, I., THOMAS, F. O., CORKE, T. C., LAKEBRINK, M. T. & MEJIA, K. 2021 A new
 1121 validation experiment for smooth-body separation. In *AIAA Aviation 2021 Forum*, p. 2810.

1122 GRAY, P. D., GLUZMAN, I., THOMAS, F. O., CORKE, T. C., LAKEBRINK, M. T. & MEJIA, K. 2022b Benchmark
 1123 characterization of separated flow over smooth Gaussian bump. In *AIAA Aviation 2022 Forum*, p.
 1124 3342.

1125 HAERING, S. W., LEE, M. & MOSER, R. D. 2019 Resolution-induced anisotropy in large-eddy simulations.
 1126 *Phys. Rev. Fluids* **4** (11), 114605.

1127 HORIUTI, K. 1997 A new dynamic two-parameter mixed model for large-eddy simulation. *Phys. Fluids*
 1128 **9** (11), 3443–3464.

1129 HORIUTI, K. 2003 Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in
 1130 turbulence generation. *J. Fluid Mech.* **491**, 65–100.

1131 INAGAKI, K. & KOBAYASHI, H. 2020 Role of various scale-similarity models in stabilized mixed subgrid-scale
 1132 model. *Phys. Fluids* **32** (7).

1133 INAGAKI, K. & KOBAYASHI, H. 2023 Analysis of anisotropic subgrid-scale stress for coarse large-eddy
 1134 simulation. *Phys. Rev. Fluids* **8** (10), 104603.

1135 IYER, P. S. & MALIK, M. R. 2022 Wall-modeled LES of turbulent flow over a two dimensional Gaussian
 1136 bump. In *Eleventh International Conference on Computational Fluid Dynamics*, p. 0204.

1137 IYER, P. S. & MALIK, M. R. 2024 Efficient dynamic mixed subgrid-scale model. *Phys. Rev. Fluids* **9** (9),
 1138 L092601.

1139 IYER, P. S. & MALIK, M. R. 2025 Insights from targeted grid refinement for WMLES of turbulent smooth-
 1140 body separation. *Flow Turbul. Combust.* **115** (4), 1435–1443.

1141 JIMENEZ, J. & MOSER, R. D. 2000 Large-eddy simulations: where are we and what can we expect? *AIAA J.*
 1142 **38** (4), 605–612.

1143 KAWAI, S. & LARSSON, J. 2013 Dynamic non-equilibrium wall-modeling for large eddy simulation at high
 1144 Reynolds numbers. *Phys. Fluids* **25** (1), 015105.

1145 KERR, R. M., DOMARADZKI, J. A. & BARBIER, G. 1996 Small-scale properties of nonlinear interactions and
 1146 subgrid-scale energy transfer in isotropic turbulence. *Phys. Fluids* **8** (1), 197–208.

1147 KOBAYASHI, H. 2018 Improvement of the SGS model by using a scale-similarity model based on the analysis
 1148 of SGS force and SGS energy transfer. *Int. J. Heat Fluid Flow* **72**, 329–336.

1149 KOBAYASHI, H. & SHIMOMURA, Y. 2001 The performance of dynamic subgrid-scale models in the large
 1150 eddy simulation of rotating homogeneous turbulence. *Phys. Fluids* **13** (8), 2350–2360.

1151 KOSOVIĆ, B. 1997 Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary
 1152 layers. *J. Fluid Mech.* **336**, 151–182.

1153 LARSSON, J., KAWAI, S., BODART, J. & BERMEJO-MORENO, I. 2016 Large eddy simulation with modeled
1154 wall-stress: recent progress and future directions. *Mech. Eng. Rev.* **3** (1), 15–00418.

1155 LEHMKUHL, O., PARK, G. I., BOSE, S. T. & MOIN, P. 2018 Large-eddy simulation of practical aeronautical
1156 flows at stall conditions. In *Proceedings of the 2018 Center for Turbulence Research Summer
1157 Program*, pp. 87–96.

1158 LI, Y. & MENEVEAU, C. 2004 Analysis of mean momentum flux in subgrid models of turbulence. *Phys.
1159 Fluids* **16** (9), 3483–3486.

1160 LING, Y., ARRANZ, G., WILLIAMS, E., GOC, K., GRIFFIN, K. & LOZANO-DURÁN, A. 2022 Wall-modeled large-
1161 eddy simulation based on building-block flows. In *Proceedings of the 2022 Center for Turbulence
1162 Research Summer Program*, pp. 5–14.

1163 LIU, S., MENEVEAU, C. & KATZ, J. 1994 On the properties of similarity subgrid-scale models as deduced
1164 from measurements in a turbulent jet. *J. Fluid Mech.* **275**, 83–119.

1165 LOZANO-DURÁN, A. & BAE, H. J. 2019 Error scaling of large-eddy simulation in the outer region of
1166 wall-bounded turbulence. *J. Comput. Phys.* **392**, 532–555.

1167 LUND, T. S. & NOVIKOV, E. A. 1992 Parameterization of subgrid-scale stress by the velocity gradient tensor.
1168 In *Center for Turbulence Research Annual Research Briefs*, pp. 27–43.

1169 LUND, T. S., WU, X. & SQUIRES, K. D. 1998 Generation of turbulent inflow data for spatially-developing
1170 boundary layer simulations. *J. Comput. Phys.* **140** (2), 233–258.

1171 MARSTORP, L., BRETHOUWER, G., GRUNDESTAM, O. & JOHANSSON, A. V. 2009 Explicit algebraic subgrid
1172 stress models with application to rotating channel flow. *J. Fluid Mech.* **639**, 403–432.

1173 MENEVEAU, C. 1994 Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental
1174 tests. *Phys. Fluids* **6** (2), 815–833.

1175 MENEVEAU, C. & KATZ, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. *Annu.
1176 Rev. Fluid Mech.* **32** (1), 1–32.

1177 MONTECCHIA, M., BRETHOUWER, G., JOHANSSON, A. V. & WALLIN, S. 2017 Taking large-eddy simulation
1178 of wall-bounded flows to higher Reynolds numbers by use of anisotropy-resolving subgrid models.
1179 *Phys. Rev. Fluids* **2** (3), 034601.

1180 MOSER, R. D., HAERING, S. W. & YALLA, G. R. 2021 Statistical properties of subgrid-scale turbulence
1181 models. *Annu. Rev. Fluid Mech.* **53** (1), 255–286.

1182 PARK, G. I. 2017 Wall-modeled large-eddy simulation of a high Reynolds number separating and reattaching
1183 flow. *AIAA J.* **55** (11), 3709–3721.

1184 PARK, G. I. & MOIN, P. 2014 An improved dynamic non-equilibrium wall-model for large eddy simulation.
1185 *Phys. Fluids* **26** (1), 015108.

1186 PARK, N., YOO, J. Y. & CHOI, H. 2005 Toward improved consistency of *a priori* tests with *a posteriori* tests
1187 in large eddy simulation. *Phys. Fluids* **17** (1), 015103.

1188 PRAKASH, A., BALIN, R., EVANS, J. A. & JANSEN, K. E. 2024 A streamline coordinate analysis of a turbulent
1189 boundary layer subject to pressure gradients and curvature on the windward side of a bump. *J. Fluid
1190 Mech.* **984**, A23.

1191 RASAM, A., WALLIN, S., BRETHOUWER, G. & JOHANSSON, A. V. 2017 Improving separated-flow predictions
1192 using an anisotropy-capturing subgrid-scale model. *Int. J. Heat Fluid Flow* **65**, 246–251.

1193 REZAEIRAVESH, S., MUKHA, T. & LIEFVENDAHL, M. 2019 Systematic study of accuracy of wall-modeled
1194 large eddy simulation using uncertainty quantification techniques. *Comput. Fluids* **185**, 34–58.

1195 SARGHINI, F., PIOMELLI, U. & BALARAS, E. 1999 Scale-similar models for large-eddy simulations. *Phys.
1196 Fluids* **11** (6), 1596–1607.

1197 SILVIS, M. H. & VERSTAPPEN, R. 2019 Nonlinear subgrid-scale models for large-eddy simulation of rotating
1198 turbulent flows. In *Direct and large-eddy simulation XI*, pp. 129–134. Springer.

1199 SLOTNICK, J. P. 2019 Integrated CFD validation experiments for prediction of turbulent separated flows for
1200 subsonic transport aircraft. In *Separated Flow: Prediction, Measurement and Assessment for Air and
1201 Sea Vehicles, STO Publication STO-MP-AVT-307-06*.

1202 SMAGORINSKY, J. 1963 General circulation experiments with the primitive equations: I. the basic experiment.
1203 *Mon. Weather Rev.* **91** (3), 99–164.

1204 SPALART, P., JANSEN, K. & COLEMAN, G. 2024 Direct numerical simulation of two boundary layers with the
1205 same pressure distribution but different surface curvatures. *arXiv preprint arXiv:2409.00555*.

1206 UZUN, A. & MALIK, M. R. 2022 High-fidelity simulation of turbulent flow past Gaussian bump. *AIAA J.
1207* **60** (4), 2130–2149.

1208 UZUN, A. & MALIK, M. R. 2025 Application of a new nonlinear subgrid-scale model to a Gaussian bump
1209 flow. *AIAA J.* **63** (1), 354–360.

1210 VOLLANT, A., BALARAC, G. & CORRE, C. 2016 A dynamic regularized gradient model of the subgrid-scale
1211 stress tensor for large-eddy simulation. *Phys. Fluids* **28** (2), 025114.

1212 VAN DER VORST, H. A. 1992 Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
1213 of nonsymmetric linear systems. *SIAM J. Sci. Comput.* **13** (2), 631–644.

1214 VREMAN, B., GEURTS, B. & KUERTEN, H. 1994 On the formulation of the dynamic mixed subgrid-scale
1215 model. *Phys. Fluids* **6** (12), 4057–4059.

1216 VREMAN, B., GEURTS, B. & KUERTEN, H. 1997 Large-eddy simulation of the turbulent mixing layer. *J. Fluid
1217 Mech.* **339**, 357–390.

1218 WANG, B. & BERGSTROM, D. J. 2005 A dynamic nonlinear subgrid-scale stress model. *Phys. Fluids* **17** (3),
1219 035109.

1220 WANG, M. & MOIN, P. 2002 Dynamic wall modeling for large-eddy simulation of complex turbulent flows.
1221 *Phys. Fluids* **14** (7), 2043–2051.

1222 WHITMORE, M. P., GRIFFIN, K. P., BOSE, S. T. & MOIN, P. 2021 Large-eddy simulation of a Gaussian bump
1223 with slip-wall boundary conditions. In *Center for Turbulence Research Annual Research Briefs*, pp. 45–58.

1224 WHITMORE, M. P., LOZANO-DURÁN, A. & MOIN, P. 2020 Requirements and sensitivity analysis of RANS-free
1225 wall-modeled LES. In *Center for Turbulence Research Annual Research Briefs*, pp. 97–108.

1226 WILLIAMS, O., SAMUELL, M., SARWAS, E. S., ROBBINS, M. & FERRANTE, A. 2020 Experimental study of a
1227 CFD validation test case for turbulent separated flows. In *AIAA Scitech 2020 Forum*, p. 0092.

1228 XU, N. & BERMEJO-MORENO, I. 2024 Wall-modeled large-eddy simulations of the flow over a Gaussian-
1229 shaped bump with a sensor-based blended wall model. *Phys. Rev. Fluids* **9** (11), 114605.

1230 YANG, Q. & WANG, M. 2013 Boundary-layer noise induced by arrays of roughness elements. *J. Fluid Mech.*
1231 **727**, 282–317.

1232 YANG, X. I. A. & GRIFFIN, K. P. 2021 Grid-point and time-step requirements for direct numerical simulation
1233 and large-eddy simulation. *Phys. Fluids* **33** (1), 015108.

1234 YOU, D., HAM, F. & MOIN, P. 2008 Discrete conservation principles in large-eddy simulation with application
1235 to separation control over an airfoil. *Phys. Fluids* **20**, 101515.

1236 ZANG, Y., STREET, R. L. & KOSEFF, J. R. 1993 A dynamic mixed subgrid-scale model and its application to
1237 turbulent recirculating flows. *Phys. Fluids A* **5** (12), 3186–3196.

1238 ZHOU, D. & BAE, H. J. 2024a Sensitivity analysis of wall-modeled large-eddy simulation for separated
1239 turbulent flow. *J. Comput. Phys.* **506**, 112948.

1240 ZHOU, D. & BAE, H. J. 2024b Wall modeling of turbulent flows with varying pressure gradients using
1241 multi-agent reinforcement learning. *AIAA J.* **62** (10), 3713–3727.

1242 ZHOU, D., WANG, K. & WANG, M. 2020 Large-eddy simulation of an axisymmetric boundary layer on a
1243 body of revolution. In *AIAA Aviation 2020 Forum*, p. 2989.

1244 ZHOU, D., WANG, K. & WANG, M. 2024 Rotor aeroacoustic response to an axisymmetric turbulent boundary
1245 layer. *J. Fluid Mech.* **981**, A25.

1246 ZHOU, D., WHITMORE, M. P., GRIFFIN, K. P. & BAE, H. J. 2023 Large-eddy simulation of flow over Boeing
1247 Gaussian bump using multi-agent reinforcement learning wall model. In *AIAA Aviation 2023 Forum*,
1248 p. 3985.

1249 ZHOU, Z., ZHANG, X., HE, G. & YANG, X. 2025 A wall model for separated flows: embedded learning to
1250 improve *a posteriori* performance. *J. Fluid Mech.* **1002**, A3.