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We examine the role of anisotropic subgrid-scale (SGS) stress in wall-modeled large-
eddy simulation (WMLES) of flow over a spanwise-uniform Gaussian-shaped bump, with
emphasis on predicting flow separation. The simulations show that eddy-viscosity-based
SGS models often yield non-monotonic predictions of the mean separation bubble size
on the leeward side under grid refinement, whereas models incorporating anisotropic SGS
stress produce more consistent results. To identify where SGS anisotropy is most critical,
we introduce anisotropic SGS stress in selected regions of the domain. The results reveal
that the windward side, where a strong favorable pressure gradient (FPG) occurs, is crucial
in determining downstream separation. Analysis of the Reynolds stress transport equation
shows that fluctuations of anisotropic SGS stress modify SGS dissipation and diffusion in
this region, thereby altering the Reynolds stress and the onset of separation. Examination of
the mean streamwise momentum equation indicates that at coarse resolutions, the mean SGS
shear stress dominates, and the differences between the eddy-viscosity-based and anisotropic
models remain minor. With grid refinement, resolved Reynolds stresses increasingly govern
the near-wall momentum transport, and the influence of SGS stress fluctuations grows as they
determine the SGS dissipation and diffusion of Reynolds stresses. Component-wise analysis
of the SGS stress tensor further shows that the improvement arises mainly from including
significant normal stress contributions. An a priori study using filtered direct numerical
simulation of turbulent Couette-Poiseuille flow confirms that wall-bounded turbulence under
FPG is highly anisotropic and that anisotropic SGS models provide a more realistic SGS
stress representation than eddy-viscosity-based models.

MSC Codes 76F65, 76F40

1. Introduction

Complex turbulent flows with separation are commonplace in various aerodynamic and
hydrodynamic vehicles, significantly influencing their performance and stall characteristics.
The ability to accurately predict such flows is therefore crucial for the design and assessment
of these systems. A potentially suitable and feasible tool for this purpose is wall-modeled
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large-eddy simulation (WMLES) (Larsson et al. 2016; Park 2017; Bose & Park 2018), as it
resolves the energy-containing and dynamically important scales of turbulence away from
the wall while employing a reduced-order model to account for the effects of energetic
near-wall eddies. Compared with classical wall-resolved large-eddy simulation (WRLES),
WMLES not only significantly reduces the grid resolution requirement but also allows for
a larger time-step sizes; therefore, it is computationally more efficient. Recent studies (Choi
& Moin 2012; Yang & Griffin 2021) have shown that the computational cost of WMLES
is one to two orders of magnitude smaller than that for the WRLES in attached flow over a
finite aspect-ratio wing at varying Reynolds numbers. Because of these advantages, WMLES
has been anticipated as the next step toward the broader use of high-fidelity simulation in
realistic engineering applications. In recent years, WMLES has been applied to complex
flow configurations in practical engineering contexts (Lehmkuhl ef al. 2018; Goc et al.
2021, 2024). These simulations have highlighted the capability of WMLES in predicting
critical flow-performance quantities, particularly in comparison with approaches based
on Reynolds-averaged Navier—Stokes (RANS) closures. Moreover, by leveraging modern,
massively parallel computer architectures, these simulations achieve turnaround times of
less than a few days with modest computational resources.

Currently, the primary challenge in applying WMLES to realistic applications lies in
achieving both robustness and accuracy across a range of flow regimes and configurations.
However, many existing wall models are built upon the assumption of statistically equilibrium
wall-bounded turbulence, which applies to only a limited class of turbulent flows. To go
beyond the equilibrium assumption, developing more capable techniques that can address
a wider range of non-equilibrium flows has become a key focus within the wall-modeling
community. A widely used approach has been to develop wall models based on the thin
boundary-layer equations while incorporating some or all of the effects of unsteadiness,
convection, and pressure gradients (Wang & Moin 2002; Kawai & Larsson 2013; Park &
Moin 2014). An alternative approach is dynamic slip wall modeling (Bose & Moin 2014; Bae
et al. 2019), which is derived directly from the filtered Navier—Stokes equations instead of
relying on thin boundary-layer approximations. Despite these advancements in wall modeling
techniques, accurate numerical prediction of complex separated flows remains a significant
challenge for WMLES. Recent studies (Lozano-Durdn & Bae 2019; Rezaeiravesh et al. 2019;
Zhou & Bae 2024a) have demonstrated that this challenge arises not only from the less-than-
ideal performance of wall-modeling approaches but also, and perhaps more importantly,
from the insufficient capability of existing subgrid-scale (SGS) models in WMLES, a topic
that has received relatively little attention. Specifically, Zhou et al. (2023) and Zhou & Bae
(2024a) have shown that the influence of SGS models on WMLES of turbulent flow with
separation is profound, significantly limiting the robustness and applicability of WMLES.

In large-eddy simulations (LES), the large scales of turbulent flow are explicitly resolved,
while the effects of small-scale motions are modeled using SGS models. It is often
assumed that turbulence at the small, unresolved scales is largely isotropic. Based on
this assumption, the original development of SGS models focused on WRLES using fine-
resolution computational meshes, and the effects of SGS were modeled using simple isotropic
models such as eddy-viscosity models. However, computational meshes with much coarser
resolution employed in WMLES were not fully considered in the development of SGS
models. To date, eddy-viscosity models still represent the most commonly used class of SGS
models in LES (Moser et al. 2021; Duraisamy 2021; Choi et al. 2025). While they can provide
a statistically accurate energy transfer rate from resolved scales to SGS (i.e., dissipation of
kinetic energy), several studies (Clark ez al. 1979; Kerr et al. 1996; Domaradzki & Saiki 1997)
have highlighted that the output of these models is poorly correlated with the exact SGS stress
computed from direct numerical simulation (DNS). Beyond dissipation, there are statistical
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characteristics that the SGS model must satisfy to enable reliable simulations (Moser et al.
2021), for example, accurately predicting the mean SGS stress. Unfortunately, investigations
(Meneveau 1994; Jimenez & Moser 2000; Li & Meneveau 2004) have shown that eddy-
viscosity models may not sufficiently capture both the energy transfer and SGS stress
behaviour in turbulent flows. It has also been observed that eddy-viscosity models produce
a non-monotonic convergence behaviour for separation bubble prediction at coarser mesh
resolutions (Whitmore et al. 2021; Agrawal et al. 2022; Zhou & Bae 2024a). Consequently,
they often require the LES resolution to be fine enough for the mean SGS stress to become
negligible. This reliance on finer resolution limits their practical applicability, underscoring
the need for SGS models compatible with WMLES that can still yield accurate predictions
of complex turbulent flows.

The central challenge in advancing SGS models is overcoming the so-called well-resolved
barrier, where the majority of turbulence is adequately captured. For coarser resolutions, SGS
models must fulfill roles beyond simple energy dissipation, as subgrid motions contribute
increasingly to mean momentum and energy transport. Moreover, the effects of SGS
anisotropy, both in dissipation and stress, cannot be ignored, especially at the smallest
resolved scales that are dynamically active and energy-containing. The primary limitation of
traditional eddy-viscosity models arises from their single degree of freedom, which restricts
their ability to represent both stress and dissipation simultaneously. Reliable WMLES at
coarse resolutions therefore requires enhanced formulations beyond the isotropic models
to represent both stress and dissipation simultaneously. To achieve these goals, a variety
of anisotropic SGS models have been proposed over the past decades, including mixed
similarity models (Zang et al. 1993; Liu et al. 1994; Vreman et al. 1994, 1997; Horiuti
1997; Meneveau & Katz 2000; Kobayashi & Shimomura 2001; Inagaki & Kobayashi 2020;
Iyer & Malik 2024), algebraic models (Gatski & Jongen 2000; Marstorp et al. 2009; Rasam
et al. 2017; Montecchia et al. 2017; Silvis & Verstappen 2019), and other nonlinear SGS
models (Kosovi¢ 1997; Wang & Bergstrom 2005; Abe 2013, 2014; Vollant et al. 2016;
Kobayashi 2018; Agrawal et al. 2022; Uzun & Malik 2025). These models have been shown
to outperform traditional eddy-viscosity models in canonical turbulent flows such as channel
flows and turbulent boundary layers (TBLs). However, their performance in more complex
and realistic configurations remains insufficiently explored. Furthermore, despite the wide
range of proposed models, detailed analyses of their underlying mechanisms and the effects
of SGS anisotropy are still limited. It is therefore necessary to investigate the effects of
anisotropic SGS stress in complex turbulent flows, particularly as model development in this
area has progressed relatively slowly.

Investigations into the effect of anisotropic SGS stress have recently gained momentum.
Several studies have focused on a priori analyses (Horiuti 2003; Abe 2019; Cimarelli et al.
2019; Inagaki & Kobayashi 2023) based on filtered DNS data, showing that SGS anisotropy
significantly influences the evolution of Reynolds stress, vorticity, and enstrophy, particularly
in wall-bounded turbulence. However, previous studies (Vreman et al. 1997; Park et al.
2005; Duraisamy 2021; Choi et al. 2025) on both traditional and data-driven SGS models
have revealed inconsistencies between the results of a priori and a posteriori evaluations.
Specifically, models that perform poorly in a priori tests may yield excellent a posteriori
results, and vice versa, highlighting a fundamental limitation of the a priori analysis. Given
this gap, and to fully evaluate the effects of anisotropic SGS stress on WMLES of separated
turbulent flows, we conduct a comprehensive a posteriori study.

In particular, this a posteriori investigation focuses on the flow over a Gaussian-shaped
bump at a relatively high Reynolds number (see figure 1), as proposed by Boeing Research
& Technology (Slotnick 2019). This configuration is closely related to realistic applications,
mimicking the smooth junctions between an aircraft wing and fuselage, where smooth-body
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separation of a TBL occurs under the combined influence of pressure gradients and surface
curvature. As a canonical flow configuration, it has been extensively studied, and a wealth of
experimental data is available (Williams et al. 2020; Gray et al. 2021, 2022a,b; Gluzman et al.
2022), establishing it as a benchmark for validating computational fluid dynamics techniques
(Balin & Jansen 2021; Whitmore et al. 2021; Iyer & Malik 2022; Agrawal et al. 2022; Uzun
& Malik 2022; Arranz et al. 2023; Zhou et al. 2023; Zhou & Bae 2024b; Agrawal et al. 2024;
Iyer & Malik 2025). Computational studies have consistently emphasized the challenge of
accurately predicting the extent and location of separation on the leeward side of the bump.
Recent WMLES studies have shown that mean separation prediction is highly sensitive to the
SGS model employed, affecting both accuracy and robustness (Iyer & Malik 2022; Agrawal
et al. 2022; Zhou & Bae 2024a). Furthermore, anisotropic SGS models have been found to
markedly improve the predictions of mean velocity field in WMLES (Agrawal et al. 2022;
Zhou & Bae 2024a; Iyer & Malik 2024; Uzun & Malik 2025). Given the complex physics of
smooth-body separation and the sensitivity of its separation prediction to the SGS model, the
flow over a Gaussian-shaped bump is an ideal test case for the present a posteriori analysis.
To avoid the complexities due to spanwise variations, this study focuses on a spanwise-
uniform Gaussian bump with periodic boundary conditions in the spanwise direction. The
flow configuration and simulation setup follow the hybrid DNS-WRLES study by Uzun &
Malik (2022), which also provides high-fidelity reference data. Through this study, we aim to
improve understanding of how anisotropic SGS models influence the statistics and dynamics
of separated flow in WMLES, particularly the mean velocity field and the onset of smooth-
body separation. We also seek to characterize the properties of anisotropic SGS stress and
identify key features required of SGS models for accurate and robust WMLES in complex
separated flows. Building on these insights, our ultimate goal is to provide guidance for future
SGS model development and enhance the overall predictive performance of WMLES.

The remainder of the paper is organized as follows. §2 describes the numerical approach,
flow configuration, and simulation setup, including computational meshes and boundary
conditions. In §3, the sensitivity of mean flow separation to the SGS models and grid
resolution is examined through a series of WMLES, and a numerical experiment that
introduces anisotropic SGS stress in different regions of the computational domain is
conducted to identify where SGS anisotropy is most critical. §4 presents detailed analyses
based on the simulation data to explain the mechanisms underlying the sensitivities of the
flow separation prediction, as well as the role of the anisotropic SGS stress in the flow
over the Gaussian bump. Specifically, the budgets of the mean streamwise momentum and
Reynolds stress transport equations are examined. In §5, the properties of the SGS stress in
these simulations are then investigated and compared with corresponding results from an a
priori study based on filtered DNS data of a turbulent Couette—Poiseuille flow. Finally, §6
summarizes the key findings and provides insights for further improvement of the WMLES
technique.

2. Computational methodology
2.1. Numerical approach

Flow simulations are conducted employing a finite-volume, unstructured-mesh LES code
(You et al. 2008). The reliability of this LES code in accurately simulating turbulent flows
has been demonstrated in various configurations, such as rough-wall TBLs (Yang & Wang
2013), flow over an axisymmetric body of revolution (Zhou et al. 2020), and rotor interactions
with thick axisymmetric TBL (Zhou et al. 2024). In this LES code, the spatially-filtered
incompressible Navier-Stokes equations are solved with second-order accuracy using cell-
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based, low-dissipative, and energy-conservative spatial discretization and a fully implicit,
fractional-step time-advancement method with the Crank—Nicolson scheme. The Poisson
equation for pressure is solved using the bi-conjugate gradient stabilized method (Van der
Vorst 1992). The governing equations for LES of incompressible turbulent flows are given
by
oi;
6xi B

0, (2.1

and
di; . O 10p d%ii; 0 e
——tij—=————+V - T
ot ox; 0 0x; Oxjox; 0x;
where u; is the instantaneous flow velocity, p is the instantaneous static pressure, p is fluid

density, v is fluid kinematic viscosity and (-) denotes grid-filtering operation. SGS stress
is given by the tensor T:;?’s = w;u; — ii;iij. The deviatoric part of the SGS stress tensor is
modeled using an SGS model for closure of the equations, and the isotropic component of
the SGS stress is absorbed into pressure. Without specific description, the SGS stress term in
the following discussion denotes the deviatoric part of the corresponding SGS stress tensor.
Additionally, in the following discussions, the tilde symbol, which denotes the grid filtering
operation, will be omitted for the sake of simplicity. Hence, u; and p will directly represent
the instantaneous physical quantity of resolved flow field.

In the current study, two SGS models are investigated. The first model is the classical
Smagorinsky model (SM) (Smagorinsky 1963), a widely used isotropic SGS model based
on the eddy-viscosity closure assumption. The corresponding SGS stress is given by

(2.2)

¥ = oM = =2(CsA)|SSi; (2.3)
where S;; represents the strain-rate tensor, and |S| = (25;;S; j)l/ 2. Furthermore, in the
Smagorinsky model, the eddy viscosity is represented by v; = (CsA)?|S|, where A denotes

the grid filter width, typically assumed to be the geometric mean of the local grid size.
The Smagorinsky coefficient, Cj, is typically between 0.1 and 0.2. In the present study, we
use Cg = 0.16, which was originally calibrated for homogeneous isotropic turbulence. The
second SGS model is an anisotropic SGS model that consist of the isotropic term ng.o given
by the SM (Smagorinsky 1963) and an additional anisotropic SGS stress term Tl.a;.li, such that

T;;gs = T};" + Tlfa]’.li = TS-M + Tl?jm . (2.4)
Specifically, we consider a modified SM (MSM), where the anisotropic SGS stress term
is defined as Tli“}‘i = C,A*(Sik R j = RixSkj), Cq is the corresponding coefficient and R;;
denotes the rotation-rate tensor. This anisotropic term is one of the six independent terms
that arise when expanding the SGS stress in terms of the strain-rate and rotation-rate tensors
(Lund & Novikov 1992; Gatski & Jongen 2000). It is explicitly incorporated in several
recently developed anisotropic SGS models (Agrawal et al. 2022; Uzun & Malik 2025),
which have shown promising predictions for flow over a Gaussian bump. Furthermore, this
anisotropic term does not directly contribute to energy transfer between resolved scale and
SGS (Lund & Novikov 1992; Silvis & Verstappen 2019; Inagaki & Kobayashi 2023), thus
the corresponding SGS dissipation of kinetic energy is Tliajf‘iSi ;7 = 0. This anisotropic term
allows us to study the physical properties of the anisotropic SGS stress in addition to the
energy transfer. To reduce the influence of different kinetic energy dissipation from these SGS
models, we set Cy = 0.16 for the MSM as well. For the coefficient of the anisotropic stress
term, C,, we conducted a series of tests with values ranging from —1/30 to —1/6. This range
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Figure 1: Simulation set-up for flow over a Guassian-shaped bump.

is chosen by referring to the value of the corresponding coefficient used in other anisotropic
SGS models (Bardina 1983; Kosovi¢ 1997; Sarghini et al. 1999; Wang & Bergstrom 2005;
Marstorp et al. 2009; Silvis & Verstappen 2019). For instance, as shown in Appendix B,
the same term in the mixed model (Bardina 1983; Sarghini et al. 1999) is approximately
—1/12. Across the tested range, the predicted separation bubble on the leeward side of the
bump shows no significant change. Therefore, C, in the MSM is chosen arbitrarily as —1/30,
which yields the smallest modification to the SM and avoids any optimization for the flow
simulations. Moreover, it should be noted that since the current study focuses on WMLES
with relatively coarse meshes, damping function for eddy viscosity is not employed in the
near-wall region for neither the SM or the MSM model.

2.2. Flow configuration and simulation set-up

The physical conditions for the present simulations are consistent with those in the hybrid
DNS-WRLES of Uzun & Malik (2022). The flow configuration and boundary conditions
are shown schematically in figure 1. The geometry of the bump is given by the analytic
function y = f(x) = hexp [— (x/x0)?], where f;, is the surface representing the geometry
of the wall-mounted bump, the maximum height of the bump is 2 = 0.085L, xo = 0.195L,
and L is the width of the bump. The Reynolds number is Re; = Us,L/v = 2 x 10° based
on the free-stream velocity U and the width of the bump, which is identical to that in the
referenced DNS (Uzun & Malik 2022).

Simulations are conducted in a rectangular domain of length 2L, height L and spanwise
depth 0.08L. The dimensions in the vertical and spanwise directions are chosen to be the
same values as those in the DNS of Uzun & Malik (2022). For convenience, both a Cartesian
coordinate system (x-y-z) with velocity components (x, v, w) and a localized coordinate
system (x1-x2-x3) with velocities (11, u, u3) are used simultaneously in this paper, and both
coordinates obey the right-hand rule. Specifically, the x-y-z system is defined as a global
coordinate system. The origin is placed at the base of the bump peak, which is located 0.85L
downstream from the inlet, as shown in figure 1. In the localized system, x; is tangential
to the bump surface in the flow direction, x; is normal to the surface and points toward the
flow field, and x3 is identical to the spanwise direction z. Correspondingly, u; is the local
streamwise velocity, u, is the local wall-normal velocity, u3 is identical to the spanwise
velocity u,.

The boundary conditions consist of a TBL inflow at the inlet, free-stream condition on
the top boundary, convective outflow condition at the exit, and periodic conditions on the
spanwise boundaries. The TBL inflow data for the simulations of flow over Gaussian bump
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are provided by a separate LES of flat-plate TBL using the rescale-and-recycle method of
Lund et al. (1998). The friction Reynolds number Re. of the TBL inflow is approximately
equal to 620 and the TBL thickness is di,/L = 0.0061, which is approximately 10% larger
than that in the DNS of Uzun & Malik (2022). The momentum thickness Reynolds number
of the inflow is Reg ~ 1074, compared to their slightly smaller value of approximately 1035.
More details of the TBL inflow and the corresponding simulation are refereed to our previous
publication (Zhou & Bae 2024a). Additionally, it should be noted that the inflow-generation
method used in the study of Uzun & Malik (2022) is different from the current method. The
current study focuses on investigating the SGS model effect on WMLES, thus in order to
sidestep the complexity associated with the modeling of wall-shear stress and its interaction
with the SGS model, the physical no-slip condition at the solid surface is replaced by an ideal
boundary condition based on the mean wall-shear stress from DNS. Specifically, it adopts a
time-independent Neumann boundary condition given by the form

ou
6)( 2
where 7

w.1 s the mean wall-shear stress known a priori from the DNS (Uzun & Malik
2022), u is the fluid dynamic viscosity, and the subscript w denotes the quantities evaluated
at the solid wall. This boundary condition can be treated as an idealized wall model supplying
the exact mean wall-shear stress. The distribution of the mean skin-friction coefficient on
the bottom solid surface can be referred to the paper of Uzun & Malik (2022). Meanwhile, a
no-penetration condition is enforced at the solid surface for the wall-normal velocity u;.

TDNS
w,1

= ) (2.5)

w o PV

DNS

The computational mesh consists of structured-mesh blocks around the bottom surface
and unstructured-mesh blocks in the outer region. To avoid resolution-induced anisotropy
(Haering et al. 2019) and to more clearly analyse the effect of mesh resolution, we used
isotropic computational meshes with increasing resolutions within the structured-mesh block.
The parameters of these computational meshes are detailed in Table 1, which are identical
to those computational meshes employed in our previous investigation (Zhou & Bae 2024a).
Based on the TBL thickness at x/L = —0.65 from the DNS of Uzun & Malik (2022), the
TBL is resolved by approximately 5 cells in the coarsest mesh, 9 cells in the coarse mesh,
18 cells in the medium mesh, and 36 cells in the fine mesh. In particular, the resolution
of the fine mesh, determined based on the mesh-cell size and the mean skin friction from
the reference DNS (Uzun & Malik 2022), ranges from 10 to 30 wall units within regions
of attached flow. Although this resolution is comparable to that of the standard WRLES
mesh in the streamwise and spanwise directions, it is order of magnitude coarser in the
wall-normal direction within the near-wall region. For the DNS computational mesh (Uzun
& Malik 2022), the characteristic cell size A., which is the geometric mean of the mesh cell
dimension, is approximately equal to 1.10 x 10~*L. This estimate is derived from the mesh
resolution at the location of the thickest separation bubble. In the outer unstructured-mesh
blocks of the current computational meshes, the mesh cell size is smaller than 0.1L, and the
control volumes are gradually refined towards the bottom surface.

A maximum Courant—Friedrichs—Lewy number of 1.0 is used for time advancement in all
simulations. The simulations are first run for two flow-through times (4L /U ) to wash out
initial transients, and then another three flow-through times (6L/U) to obtain converged
statistics.
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Mesh label Ac/L Cell number

Coarsest mesh 1.90 X 1073 1050 x 44 x 42 ~ 1.94 million
Coarse mesh ~ 9.52x 10™* 2100 x 88 x 84 ~ 15.5 million
Medium mesh 4.76 x 10™# 4200 x 176 x 168 ~ 124 million
Fine mesh 2.38x 10™% 8400 x 352 x 336 ~ 993 million

Table 1: Parameters of the computational meshes utilizing isotropic cells.
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Figure 2: Isocontours of mean velocity uy /Us from the medium-mesh simulations with
the SM (a) and MSM (b) and from the reference DNS (Uzun & Malik 2022) (c).

3. Sensitivity of mean flow separation prediction to SGS model
3.1. Separation prediction and grid convergence test

The flow field around the Gaussian-shaped bump, obtained using the medium mesh for the
two SGS models, is shown in figure 2. Here, (-) denotes both temporal averaging and spatial
averaging along the homogeneous directions. With this definition, an instantaneous quantity
¢ can be decomposed as ¢ = ¢ + ¢’. For reference, the DNS results from Uzun & Malik
(2022) are also included in the figure.

In the DNS flow field, the incoming TBL accelerates upstream of the bump peak and
then decelerates downstream under the influence of an adverse pressure gradient (APG),
leading to rapid thickening of the boundary layer on the leeward side. Farther downstream, a
pronounced separation bubble forms. In contrast, for the present medium-mesh WMLES, the
predicted separation behaviour is highly sensitive to the SGS model. The simulation using
the SM does not predict any flow separation, whereas the simulation using the MSM exhibits
a separation bubble that is larger than the one observed in the DNS.

The contours of the mean eddy viscosity in SGS model, denoted by v,/v, from the
medium-mesh simulations in an x-y plane are shown in figure 3. For the MSM, the eddy
viscosity arises solely through the isotropic stress term of the Smagorinsky model, as defined
in equation (2.4). The magnitude of the eddy viscosity within the TBL is on the same order
of magnitude as the fluid viscosity. Upstream of the bump peak, the eddy viscosity produced
by the two SGS models are similar. However, farther downstream, noticeable differences
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Figure 3: Isocontours of mean eddy viscosity v; /v from the medium-mesh simulations
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Figure 4: Mean pressure coefficient on the bottom surface from the medium-mesh
simulations with the SM and MSM along with the reference DNS (Uzun & Malik 2022).

emerge. In particular, although the MSM uses the same model coefficient C; as the SM, the
eddy viscosity distribution on the leeward side of the bump is significantly modified by the
additional anisotropic stress term. The change in eddy viscosity indicates the SGS dissipation
of kinetic energy introduced by the MSM differs substantially from that of the SM in this
region.

In figure 4, the distribution of the mean pressure coefficient, C,, = (p,, — Pw)/ (% pU?),
on the bottom surface is compared with the DNS data (Uzun & Malik 2022). Here, py
denotes the instantaneous static pressure at the wall, and the reference pressure P, is taken
near the top boundary at the inlet. The C,, distributions obtained from the medium-mesh
simulations show a strong favorable pressure gradient (FPG) on the windward side of the
bump near the bump peak. Downstream of the peak, the flow experiences a strong APG,
followed by a milder APG over the majority of the leeward side. For the two medium-mesh
simulations, the results agree reasonably well upstream of the bump peak and in the flat
region downstream of the bump, but clear differences appear near the peak and along the
leeward side. The comparison indicates that the MSM provides better agreement with the
DNS data. In particular, the MSM predicts a plateau in C;, on the leeward side of the bump,
corresponding to the presence of a separation bubble.

A comparison of boundary layer profiles from the medium-mesh simulations with the DNS
results of Uzun & Malik (2022) is shown in figure 5, where the mean streamwise velocity u is
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Figure 5: The profiles of mean streamwise velocity at x/L = —0.7 (a), x/L = —0.2 (b),
x/L=-0.1(c),x/L=0(d),x/L=0.05(),x/L=0.1(f)and x/L = 0.2 (g) for the SM,
MSM, and the reference DNS (Uzun & Malik 2022).

plotted at seven streamwise stations in the computational domain. The results capture the flow
acceleration on the windward side of the bump, followed by deceleration and boundary-layer
thickening or separation on the leeward side. Upstream of the bump peak, the simulations
employing the two SGS models agree reasonably well with each other and with the DNS
data (Uzun & Malik 2022). Downstream of the peak, however, clear differences emerge. In
particular, the boundary layer thickens more rapidly in the MSM simulation, leading to the
formation of a separation bubble, while the boundary layer in the SM simulation remains
attached throughout the domain.

Since all simulations impose a wall-shear stress matched to the local mean wall-shear
stress from the reference DNS (Uzun & Malik 2022), the length of the predicted separation
bubble is estimated using the mean streamwise velocity at the first off-wall cell center, as
shown in figure 6. A closer examination of the mean velocity distributions reveals noticeable
differences between the two medium-mesh simulations. Upstream of the bump peak, the
mean velocity at the first off-wall cell center agrees well across all simulations. Downstream
of the peak, however, the flow in the SM simulation approaches separation but remains
attached, whereas the MSM simulation clearly exhibits a separation bubble.

To quantitatively assess the effects of mesh resolution and SGS model on predicting
the mean separation bubble size, figure 7 shows the mean horizontal length (Ls/L) of the
predicted separation bubble as a function of the characteristic mesh resolution (A./L). For
reference, the corresponding DNS data (Uzun & Malik 2022) is also included, where the
mean horizontal length of the separation bubble is approximately 0.32L. The variations in
separation bubble length with mesh resolution show a complex trend. For the SM simulations,
convergence with mesh refinement is non-monotonic, producing a spurious reduction of the
separation bubble upon as the mesh is refined. Such non-monotonic convergence toward DNS
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Figure 6: Mean streamwise velocity at the first off-wall cell center from the medium-mesh
simulations with the SM and MSM, and the reference DNS results (Uzun & Malik 2022)
at the same wall-normal location. | = 0 is indicated by the horizontal line.
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Figure 7: Mean separation bubble length on the leeward side of the bump from the
simulations using the SM and MSM for different mesh resolutions and the reference DNS
(Uzun & Malik 2022). Symbols represent data point for each case.

or experimental results has also been reported in previous studies with various isotropic SGS
models and wall models (Whitmore et al. 2021; Agrawal et al. 2022; Zhou & Bae 2024a),
supporting the view that this behaviour stems from limitations in the SGS model.

In contrast, the MSM predicts a larger separation bubble but yields results that are consistent
across mesh resolutions, suggesting that including an anisotropic SGS stress term provides a
beneficial effect. Similar consistency in separation-bubble prediction has also been observed
with the mixed model (Bardina 1983; Sarghini ez al. 1999), as discussed in Appendix B and
(Zhou & Bae 2024a). Since the current MSM has not been optimized and employs fixed
coeflicients, further improvement may be achieved through dynamic coefficients or other
optimization strategies.

As the mesh is refined to the fine-mesh resolution, results from all simulations converge and
approach the DNS data. This fine mesh achieves a resolution close to WRLES, particularly
within the separation bubble, where the boundary layer thickness is resolved by more than
150 cells. Under such resolution, the dependence of the mean flow prediction on the SGS
model is significantly reduced.

The results presented in this section highlight the sensitivity of the predicted mean velocity
field in WMLES to both the SGS model and mesh resolution, consistent with observations
from previous studies (Rezaeiravesh et al. 2019; Lozano-Duran & Bae 2019; Whitmore et al.
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2020; Iyer & Malik 2022; Zhou & Bae 2024a). Because the mean velocity is one of the most
important first-order statistical quantities that WMLES aims to predict, understanding the
underlying mechanisms behind the sensitivity is essential. This leads to two key questions.
First, why does the predicted mean velocity on the leeward side of the bump differ qualitatively
between simulations using isotropic and anisotropic SGS models, particularly at medium
mesh resolution? Second, why do simulations employing anisotropic SGS models yield more
consistent predictions of the mean separation bubble size across different mesh resolutions
compared with isotropic SGS models? To answer these questions, a series of analyses are
conducted, as detailed in the following sections.

3.2. Identification of the critical region for SGS anisotropy effect

According to the aforementioned results, the prediction of the separation bubble is strongly
influenced by the choice of SGS model. In particular, compared with the SM, the MSM
provides more consistent and accurate predictions of the separation bubble on the leeward
side of the bump, underscoring the importance of SGS anisotropy. To better understand the
role of anisotropic SGS stress in the mean flow field and in the formation of the separation
bubble, a numerical experiment is designed to identify where the anisotropy effects becomes
most critical. In this experiment, a series of LES are performed using the same computational
domain as before and the previously defined medium mesh. However, the domain is divided
into upstream and downstream sections, as illustrated in figure 8. In each section, a different
SGS model is employed. At the virtual interface between the two sections, a logistic function
is used to smoothly transition from one SGS model to another. All simulations use the same
boundary conditions as before.

Regarding the SGS models, the classical SM and the MSM discussed earlier are selectively
assigned to the two domain sections. Based on previous studies of flow over a Gaussian bump
(Uzun & Malik 2022; Prakash et al. 2024; Xu & Bermejo-Moreno 2024), the flow near the
bump peak plays an important role in the formation of the downstream separation bubble.
Therefore, in this experiment, five different locations of the virtual interface within this
region are considered. The details of the interface locations and the selected SGS models
for each case are listed in Table 2. In the first group SM-MSM, the upstream section of the
domain employs the SM and the downstream section uses the MSM, while in the second
group MSM-SM, the upstream section employs the MSM and the downstream section uses
the SM. The virtual interface dividing the domain is aligned with the local normal direction
of the bump surface, and the x coordinate of its intersection with the bump surface is defined
as the interface location, xo. Based on this setup, the SGS stress is given by

sgs __ _iso ani _ _SM ani
_Tij +g-‘[‘ij _Tij +g-‘r.. . (31)

T ij

ij
Here, g is a logistic function used to achieve a smooth transition from one SGS model to
another in the computational domain, and its form for the two groups of simulations is given
by

80

Trody  (SM-MSM)
g= 2 , (3.2)
Trobay  (MSMSM)

where go = 1, d is the spatial distance from a point in the domain to the virtual interface at
X, and k controls the effective width of the interface. In the present setup, k = 5000, giving
an approximate effective width of 5 x 1073 L, which corresponds to ten cells in the medium
mesh. Tests with interface widths ranging from 1 x 107> L to 1 x 10~2L showed no significant
influence on the resulting mean velocity fields. The parameter ¢ is equal to 1 upstream of
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Figure 8: Virtual-interface setup dividing the domain into upstream and downstream
regions using different SGS models for the flow over a Gaussian bump.

Group index  Virtual interface location xg/L  SGS models in the upstream / downstream

-0.3

SM-MSM _o2 SM/MSM
-0.1
0.0

MSM-SM MSM / SM
0.05

Table 2: List of parameters for the virtual interface setup.

the centerline of the interface and —1 downstream of it. Moreover, for each simulation in the
experiment, the first two flow-through times are discarded to remove initial transients, and
flow statistics are collected over the following three flow-through times.

Figure 9 shows the predicted mean separation bubble size (Lg/L), as well as the location of
the mean separation point (xs/L) from the simulations in the experiment. The results indicate
that when the interface is placed at the most upstream location (xy/L = —0.3), the predictions
are similar to those from the simulation using only the SGS model applied in the downstream
section over the entire domain. As the interface is shifted downstream, the predictions become
increasingly similar to those obtained using the SGS model applied in the upstream section
over the entire domain. For example, in the cases of the group SM-MSM, when the interface
is located at xo/L = —0.3, the predicted downstream separation bubble closely matches that
from the simulation with the MSM over the entire domain, for which the separation bubble
size reaches 0.44L. As the interface is shifted downstream, the separation bubble on the
leeward side of the bump gradually decreases in size. When the interface reaches the leeward
side of the bump (xo/L = 0.05), the separation bubble disappears, and the flow field becomes
similar to that of the simulation with the SM applied over the entire domain. An opposite
trend is observed for the cases of the group MSM-SM. The most pronounced variations occur
as the interface moves from xo/L = —0.2 to the bump peak, where the FPG remains strong.
Beyond the bump peak, shifting the interface farther downstream has a smaller influence,
and the predicted separation bubble remains nearly unchanged.

To examine how the TBL changes with the variation of the virtual interface locations within
the critical FPG region (x € [-0.2,0]), the velocity statistics at the bump peak (x/L = 0)
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Figure 9: Mean separation bubble length on the leeward side of the bump (a) and the
location of mean separation point (b) from medium-mesh simulations using the SM-MSM
and MSM-SM with different virtual interface locations. Horizontal lines indicate the
results from the medium-mesh simulation with MSM.

are analysed. In addition to the mean streamwise velocity u;, the Reynolds shear stress

m and the wall-normal Reynolds normal stress uéué are examined, since these stresses
play important roles in shaping the near-wall mean flow, as will be illustrated later in §4.1
and §4.3. The results from the two groups of simulations are shown in figures 10 and 11.
The comparison again demonstrate that as the interface is shifted downstream, the results
gradually approach those obtained using the SGS model applied in the upstream section
throughout the domain. Furthermore, the DNS data exhibit pronounced internal peaks in
the profiles of Reynolds stresses at this location. According to the investigation from Uzun
& Malik (2022), these internal peaks play a crucial role in determining the downstream
evolution of the TBL and the onset of flow separation on the leeward side. Compared with
the DNS, the WMLES predictions of the Reynolds stresses deviate to different degrees, which
could be attributed to the use of constant, non-optimized model coefficients in these SGS
models. Moreover, as will be discussed in §4.1 and §4.3, it is the wall-normal gradients of
the Reynolds stresses, rather than their magnitudes, that more directly influence momentum
transport and mean pressure distribution. From the comparisons among the simulations,
it is found that applying the MSM within the critical FPG region on the windward side
improves the capture of the internal peaks in the Reynolds stress profiles at the bump peak.
These results suggest that the predicted size of the separation bubble on the leeward side
is strongly influenced by the SGS model used in the upstream region where the FPG is
strong. In particular, the ability of the SGS model to reproduce the near-wall trends of
the Reynolds stress internal peaks appears to have an important effect on the downstream
separation behaviour. This finding is consistent with the DNS observations of Uzun & Malik
(2022) and will be further examined in the following sections. Overall, the results of this
designed numerical experiment highlight that the effect of anisotropic SGS stress on the
windward side of the bump is critical. Applying an anisotropic SGS model in the region of
strong FPG alters the wall-normal distributions of Reynolds stress and subsequently affects
the downstream flow separation.

4. Budget analyses

In this section, we first study the mean streamwise momentum and pressure equations slightly
upstream of the mean separation point to isolate the effects of the individual budget terms.

We demonstrate that the Reynolds stresses, particularly u}u) and uju), have a significant
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Figure 10: Mean streamwise velocity u; (a), Reynolds shear stress u; u’2 (b), and Reynolds

normal stress 1,4'214’2 (c) profiles at the bump peak (x/L = 0) for SM-MSM with the virtual
interface located at xo/L = —0.2, —0.1, and 0. DNS (Uzun & Malik 2022), SM and MSM
results are shown for reference.
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Figure 11: Mean streamwise velocity u; (a), Reynolds shear stress u'lu'2 (b), and Reynolds

normal stress 14'214'2 (c) profiles at the bump peak (x/L = 0) for MSM—SM with the virtual
interface located at xo/L = —0.2, —0.1, and 0. DNS (Uzun & Malik 2022), SM and MSM
results are shown for reference.

impact on the mean flow field. We then analyse the Reynolds stress transport equations to
understand how the distributions within the TBL are influenced by anisotropic SGS stress.
This analysis considers the original simulations with the SM and the MSM applied over
the entire computational domain. These SGS models nominally share the same kinetic
energy dissipation mechanism but differ in their treatment of anisotropic SGS stress. Only
the medium mesh simulations are analysed in §4.1-4.3, as this resolution shows the most
pronounced differences in separation bubble prediction between the two models (see figure 7).
We then study the effect of mesh resolution on the separation bubble prediction in §4.4. The
analysis aims to address why the predicted flow on the leeward side of the bump differs
qualitatively between the simulations using these two SGS models.
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4.1. Mean streamwise momentum

Considering the homogeneity of the current statistically stationary flow in the spanwise
direction, the streamwise mean momentum equation can be expressed as

—:Pg+V11+V12+T11+T12+R11+R12, “4.1)

where the seven terms on the right-hand side of the equation are

P, = —%g—z, Vip = aixl (2081).  via= aixz (2v512). 4.2)
= (7). = o (). “3)
Ry = (’)ixl (—m) , Rip = (')ixz (—m) . 4.4)

Specifically, P, corresponds to the contribution from the mean pressure gradient. V;; and Vi,
denote contributions from viscosity. 771 and 7T}, represent contributions from the mean SGS
stress. The last two terms, Rj; and R, denote contributions from the Reynolds stress. The
magnitudes of these terms influence the distribution of mean momentum and, consequently,
the mean velocity field. It should be noted that curvature effects are neglected in the derivation
of the mean momentum equation, since their influence in the region upstream of the mean
separation point, where x /L < 0.1, is negligible. The corresponding investigation is described
in appendix A.

Figure 12 shows the mean streamwise momentum budget at x/L = 0.05, approximately
one boundary-layer thickness upstream of the separation point in the MSM simulation. The
same location is used for the SM case for consistency. Although both simulations exhibit
the same dominant balance, the adverse pressure-gradient term, P, and the Reynolds shear-
stress gradient term, R, differ quantitatively in ways that directly influence the downstream
separation.

In both cases, P, is strongly negative across the boundary layer, reflecting the strong
APG. However, the MSM produces a noticeably larger magnitude of Py, indicating stronger
deceleration of the mean flow. The distributions of R, also differ in a manner essential
to the separation mechanism. While the peak magnitude of R, is similar between the two
simulations, the MSM exhibits a significantly broader region over which Ry, is negative. This
extended negative region implies that momentum is extracted over a thicker portion of the
boundary layer and redistributed toward the near-wall region. Consequently, less streamwise
momentum remains available farther from the wall to resist the APG, making the near-wall
mean flow more susceptible to decelerating to zero and initiating separation in the MSM
case. In contrast, the SM confines the momentum deficit to a thinner layer, helping the flow
remain attached despite the strong APG.

4.2. Mean pressure equation
The Poisson equation for the mean pressure of the flow is given by
p 77 x; ox; T oxiox; 4.5)
=Un+Un+Un+Wii+Wi+Wp,
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Figure 12: Mean streamwise momentum budget terms at x/L = 0.05 from medium-mesh
simulations with the SM (a) and MSM (b). All terms are nondimensionalized using Ueo, L
and p. The line notations correspond to equations (4.2)—(4.4).
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Figure 13: Mean pressure budget terms at x/L = 0.05 from medium-mesh simulations
with the SM (a) and MSM (b). All terms are nondimensionalized using Uw, L and p. The
line notations correspond to equations (4.6) and (4.7).

where the six terms on the right-hand side of the equation are

L 0m 2 (0 (012
Un = (6_x1) , U = 2(6_x26_x1) , Uy = ((9_x2) , (4.6)
O’ 0% u! O%ulu!
Wi=—=L11,  Wp=2—~L12 Wp=—22. 4.7
n=—3 2= 22 2 4.7

The three terms in equation (4.6) represent the contributions from the mean velocity field
to the mean pressure, and the remaining three terms in equation (4.7) account for the
contributions from the Reynolds stresses.

Figure 13 shows the profiles of all six terms in the mean pressure equation at the streamwise
locationx/L = 0.05. The results are qualitatively similar for the two simulations with different
SGS models. Within the TBL, the term that has the dominant effect on the mean pressure field
is Wy, which is associated with the wall-normal Reynolds normal stress, u}u. This indicates
that variations in the wall-normal turbulent fluctuations are the primary contributors to the
local mean pressure distribution.

Taken together with the momentum budget analysis, these results highlight a consistent
picture: in the medium-mesh simulations, the Reynolds stresses, not the mean SGS stresses,
govern both the mean velocity and mean pressure fields immediately upstream of the
separation point. Although the two SGS models produce different downstream separation
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behaviour, those differences arise primarily from how each model shapes the Reynolds-stress
distributions within the upstream FPG region. The mean SGS stresses, by comparison, make
only a minor contribution at this location.

4.3. Reynolds stress transport equation

Based on the mean momentum and pressure budget analyses, we examine the Reynolds shear
stress u/ ), u’ u’, and the Reynolds normal stress uu, at three streamwise locations within the FPG
region upstream of the bump peak. Figure 14 shows the wall-normal profiles of the Reynolds
stresses from the two medium-mesh simulations, along with DNS results from Uzun & Malik
(2022) for reference.

The DNS data indicate that, along the streamwise direction, the magnitudes of the Reynolds
shear and normal stresses gradually increase in the near-wall region and exhibit a distinct
internal peak in the FPG region. Both medium-mesh simulations deviate noticeably from
the DNS data, with both overpredicting Reynolds stresses in the outer layer. It should be
mentioned that the SGS models in these simulations use constant model coefficients and have
not been optimized for WMLES of this flow configuration. The most prominent distinction

between the two simulations is that the MSM reproduces clear internal peaks of u{u} and
u2u2 at xo/L ~ 1.3 x 1073, slightly above the DNS location, while the SM does not capture

these features. This upward shift of the internal peaks in the MSM case is partly due to the
coarse mesh resolution in the present WMLES.

As shown in §4.1, the wall-normal gradlent of u ), uj

u, is closely related to mean momentum

transport, while the gradient of w}u} is assomated with the mean pressure distribution.
Therefore, accurately capturing the Wall normal variation of these stresses, which determines
the sign and magnitudes of these gradients, is essential for predicting downstream flow
separation. The improved prediction of Reynolds stress profiles in the MSM simulation,
particularly the internal stress peak under FPG conditions, demonstrates the benefit of
incorporating anisotropic SGS stress. As discussed by Uzun & Malik (2022), these internal
peaks evolve downstream and strongly influence the mean flow and separation onset. This is
consistent with the present as well as the earlier analysis in §3.2. Taken together, the results
indicate that the improved prediction of flow separation in the MSM simulation is linked to its
ability to better reproduce Reynolds stress distributions, particularly the internal peak in the
FPG region. This improvement is closely associated with changes in downstream Reynolds
stresses, the mean velocity field, and ultimately the separation bubble development

To better understand the 1mpact of the SGS model on the Reynolds shear stress uu, and the

Reynolds normal stress u}u), it is necessary to analyse the Reynolds stress transport equation,
with particular attention to the individual contributions from the SGS model. Based on the
Reynolds decomposition and the assumption of homogeneity in the spanwise direction, the
transport equation for the resolved Reynolds stresses in LES can be expressed as

ou'u’. ouu’

0
iy = J
5 Tk o =Pij—8ij+¢ij+§ij+a—xk(&jk+Dijk+Tijk+Jijk), (4.8)
where
’.,7 6ﬁj 7 aﬁi
Pij = _uiuka_xk _Lljlxtkan s (49)
2v(s; s 6”;) 2 (614:' au;) 4.10
&ij = lk3k+ ]kaxk Vaxkaxk > (4.10)
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Oxy
The terms given in equations (4.9)—(4.16) correspond to production, viscous dissipation,
pressure strain, SGS dissipation, SGS diffusion, viscous diffusion, turbulent diffusion, and
pressure diffusion, respectively. In particular, the terms expressed in equations (4.12) and
(4.13) are associated with SGS stress fluctuations and directly represent the contributions
from the SGS model. While the magnitudes of these terms in the Reynolds-stress transport
equations are generally smaller than leading-order contributions such as production and
pressure redistribution in the near-wall region, they remain physically meaningful and can
be influential. The SGS dissipation represents the local transfer of resolved-scale energy to
unresolved scales, whereas the SGS diffusion corresponds to the spatial redistribution of
energy. Their importance also lies in how they modulate the expression of other budget terms
in the resolved flow, thereby influencing the overall distribution of Reynolds stresses.
Figure 15 shows the comparison of SGS dissipation and SGS diffusion from the medium-
mesh simulations with the SM and the MSM at the three streamwise locations discussed
above. The wall-normal range in each plot focuses on the near-wall region of the boundary
layer, where the effects of SGS dissipation and diffusion are most pronounced. The SGS
dissipation results indicate that the SM and MSM produce qualitatively different behaviours
for both u’ u, and u/,u’, uyu)y. Inthe SM, the SGS dissipation remains positive for u’ u, u’u), and negative

0 (— —
Sk =g (p’uiéjk +7 ujéik) . (4.16)

for uzu’z, showmg that the SGS stress fluctuations consistently act as a smk of Reynolds
stresses, with a net removal of resolved energy into the SGS scales. In contrast, the MSM
yields negative SGS dissipation for u’ u!, uju), in the inner layer and positive values for ulu’, uyu’y in the
very near-wall region. This behaviour mdlcates that the SGS stress fluctuations in the MSM
can produce a net backscatter of energy, transferring it from unresolved to resolved scales
and locally enhancing the Reynolds stresses. This backscatter effect is physically significant.
On a coarse mesh, the cutoff lies in the energy-containing range or in the energetic part of
the inertial range, so the unresolved motions carry a substantial fraction of turbulent energy
and momentum fluxes. Consequently, the SGS stress must not only remove resolved energy
but also be capable of returning energy into the resolved field. Moreover, in the near-wall
region, turbulence is highly anisotropic and the near-wall cycle involves essential small-scale
dynamics. These mechanisms become even more crucial in TBLs with pressure gradients,
such as in the present case. A coarse-mesh LES that does not capture these near-wall scales
omits an important pathway by which energy is both removed from and supplied back to the
larger scales.

The SGS diffusion results for both u u’, and u u), reveal important differences between

the SM and MSM. For the Reynolds shear stress uuj}, the SM produces negative SGS
diffusion very close to the wall, which then becomes posmve away from the wall before
eventually decaying to zero. In contrast, the MSM yields negative SGS diffusion throughout
the near-wall region, monotonically approaching zero with wall-normal distance. Since SGS
diffusion represents movement of Reynolds stresses by unresolved motions, with negative
values indicating movement into a location and positive values indicating movement away,
the positive region in the SM profile implies that SGS motions redistribute u}u}, away from
the near wall region to | pa.rts where the SGS diffusion is negative. The MSM however,
continuously moves u}u’, toward the near-wall region.

For the Reynolds normal stress u }» the SM gives positive SGS diffusion near the wall,
decreasing with distance, becoming shghtly negative, and then approaching zero. The MSM,
by contrast, shows negative diffusion very close to the wall, positive values near the internal
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Figure 15: SGS dissipation &;; (solid square) and diffusion a—‘zk{i ik (dashed) for the

Reynolds shear stress u/u’, (a—c) and the wall-normal Reynolds normal stress u/u’ (d-f)
atx/L =-0.2 (a,d), x/L = —=0.1 (b,e), and x/L = 0 (c,f) for SM (red) and MSM (blue)
simulations on the medium-mesh. All terms are nondimensionalized using Ue, L and p.

peak of u/u’,, and negative values again farther out. This pattern indicates that the MSM moves

uyu)y into the internal-peak region from both sides, while the SM primarily redistributes it

from the outer region toward the wall.
These SGS diffusion behaviours, combined with the differences in SGS dissipation, help

explain why the MSM produces the internal Reynolds-stress peaks observed in figure 14,
whereas the SM does not.

As described in §2, the MSM expresses the SGS stress Tl.sj.;s as equation (2.4), which
contains the isotropic stress term T}j." from the SM and an additional anisotropic term ‘rf‘;“ To
clarify their roles, the individual contributions from them are analysed separately. Figure 16
shows the wall-normal distributions of SGS dissipation and diffusion in the medium-mesh
simulation with the MSM. For the SGS dissipation associated with both the Reynolds shear
stress 1/ u’, and the Reynolds normal stress @, the contribution of the isotropic stress
term behaves similarly to the SM that shown in figure 15. It consistently acts as a sink of
resolved energy, with a magnitude larger than in the SM alone. In contrast, the contribution
of the anisotropic stress term generates significant local production in the near-wall inner
layer. This indicates that the anisotropic term is the primary source of backscatter in the
MSM, transferring energy from unresolved to resolved scales and enhancing the Reynolds
stresses. For the SGS diffusion associated with Reynolds shear stress, the contribution of
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Figure 16: SGS dissipation &;; (solid square) and diffusion %{i jk (dashed) from the
isotropic (red) and anisotropic (blue) stress components of the MSM for the Reynolds
shear stress u}u, (a~c) and the wall-normal Reynolds normal stress u}u7 (d-f) at
x/L =-0.2(a,d), x/L =-0.1 (b,e), and x/L = 0 (c,f). All terms are nondimensionalized
using Ue, L and p.

isotropic stress term again resembles the SM. It is negative very close to the wall, becomes
positive away from the wall, and decays toward zero, reflecting a wall-normal redistribution
of u}u’, from locations with positive diffusion toward locations with negative diffusion. The
contribution of anisotropic stress term shows the opposite pattern, with negative values near
xp/L ~13x 1073, which is the wall-normal location of the internal shear-stress peak. For the
SGS diffusion of the Reynolds normal stress, the isotropic part redistributes energy from the
outer region toward the very near-wall region, while the anisotropic part redistributes energy
into the internal-peak location from its neighbouring wall-normal regions. Taken together,
the dissipation and diffusion decompositions indicate that the anisotropic SGS stress in the
MSM is responsible for the redistribution of energy toward the wall-normal locations around
the internal peak of the Reynolds stresses.

The analyses in this section demonstrate that fluctuations of the SGS stress strongly
influence the distributions of Reynolds stresses within the critical FPG region. In this region,
the fluctuations of isotropic SGS stress act primarily as a dissipative sink for the Reynolds
shear stress m and the wall-normal normal stress u’zu’z. In contrast, the fluctuations of
anisotropic SGS stress provide significant backscatter and wall-normal redistribution of
energy, which facilitates the formation of the internal peaks of these stresses in the near-wall
region of the TBL. This mechanism further impacts the downstream development of the
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Figure 17: Mean separation point from simulations using the SM and MSM for different
mesh resolutions and from the reference DNS (Uzun & Malik 2022). No separation is

detected in the medium-mesh simulation (Ac/L ~ 4.76 X 10~%) with the SM.

Reynolds stresses and, in turn, alters the mean flow field on the leeward side of the bump,
particularly the onset of separation. These results indicate that enabling accurate WMLES
predictions requires accurately representing the complex near-wall SGS dynamics, which in
turn relies on properly accounting for SGS stress fluctuations in the SGS model.

4.4. Influence of mesh resolution

Through the analysis and comparison of the medium-mesh simulations with isotropic and
anisotropic SGS models in the previous sections, we have answered the first question raised
in §3, namely why the predicted flow on the leeward side of the bump differs qualitatively
between these medium-mesh simulations. The second question, which asks why simulations
with anisotropic SGS models provide more consistent predictions of the separation bubble
size across different mesh resolutions compared to those with isotropic SGS models, remains
to be addressed. To gain further insight into this question, we analyse the simulation results
across different mesh resolutions. In particular, to assess the relative contributions of the mean
SGS stress and Reynolds stress to the mean velocity field and the onset of flow separation, we
examine the budgets of the mean streamwise momentum equation at a location immediately
upstream of the mean separation point, following the same approach as in §4.1.

The predicted mean separation points in the simulations with the SM and the MSM are
shown in figure 17. When the coarsest mesh is used, both simulations capture flow separation
on the leeward side of the bump. Not only are the predicted mean separation bubble sizes
similar (see figure 7), but the predicted mean separation points are also consistent, with their
locations close to the bump peak. As the mesh resolution is refined, the mean separation
location gradually shifts downstream and the difference between the two simulations becomes
larger. In particular, with the medium mesh, the separation bubble disappears in the simulation
with the SM. When the mesh is further refined to the fine resolution, both simulations again
predict a separation bubble on the leeward side of the bump, and the mean separation point
approaches the reference location from the DNS (Uzun & Malik 2022).

In examining the budgets of the mean streamwise momentum equation (2.2) for each
simulation, the analysis is performed at a position 0.02L upstream of the corresponding
mean separation point along the x direction, which is approximately one boundary layer
thickness upstream of separation. For the medium-mesh simulation with the SM, where no
separation bubble forms on the leeward side of the bump, the same location as in the medium-
mesh MSM simulation is used for consistency. The results for the SM and MSM simulations
are presented in figures 18 and 19, respectively. With the coarsest mesh, both simulations
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Figure 18: Mean streamwise momentum budget terms at 0.02L upstream of the mean
separation point along the x direction from cases with SM for the coarsest mesh (a),
coarse mesh (b), medium mesh (c), and fine mesh (d). All terms are nondimensionalized
using Uw, L and p. The line notations correspond to equations (4.2)—(4.4).

behave qualitatively similarly. The mean SGS shear-stress gradient term 7, dominates in the
lower half of the TBL, while other terms remain relatively small across the boundary layer.
It should be noted that this investigated spatial location lies slightly upstream of the bump
peak, where the pressure gradient is close to zero. On the coarse mesh, the predicted mean
separation point shifts further downstream in both simulations, and the APG effect becomes
stronger, particularly in the MSM case. At the same time, while 77, remains important, the
contribution of Ry, increases noticeably within the near-wall region in the MSM simulation.
As the resolution increases to the medium mesh, the predicted separation behaviour becomes
qualitatively different between the two SGS models, as discussed earlier. Compared with
coarser meshes, the contribution of 77, decreases substantially in both simulations. With

the

fine mesh, the behaviour of the budget terms in the SM and MSM cases becomes

similar again, with Ri, and P, emerging as the dominant contributions. Notably, in the

SM

case, the negative portion of Rj; extends over a wider wall-normal range than in the

medium-mesh SM case. This indicates that momentum is extracted over a thicker layer and

redi
the

stributed toward the near-wall region where Rj; is positive. Such redistribution reduces
streamwise momentum available downstream to resist the APG, ultimately leading to

mean flow separation in the fine-mesh simulation with the SM. In addition, the contribution

of Ry, associated with the Reynolds normal stress u’lu’l, also becomes important in both

simulations.
These results suggest that in the current WMLES, when coarse grid resolutions such as

the

coarsest and coarse meshes are used, many flow structures remain unresolved because

their scales are smaller than the grid size. Under these conditions, the mean SGS shear stress

sgs
T2

dominates the mean streamwise momentum balance upstream of the mean separation
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Figure 19: Mean streamwise momentum budget terms at 0.02L upstream of the mean
separation point along the x direction from cases with MSM for the coarsest mesh (a),
coarse mesh (b), medium mesh (c), and fine mesh (d). All terms are nondimensionalized
using Uw, L and p. The line notations correspond to equations (4.2)—(4.4).

point, while the contribution from Reynolds stress is relatively small. The difference between
the SM and the MSM lies in the anisotropic SGS stress term (see equation (2.4)); however,

as will be shown in §5, its contribution to the shear stress component Tlsgs in the near-wall
region is limited. Consequently, both models behave similarly in predicting the mean velocity
field. When the medium mesh, representative of typical WMLES resolution, is used, more
flow scales are resolved. As a result, the importance of the mean SGS shear stress decreases,
while Reynolds stresses play a more significant role in the mean momentum transport. As
discussed earlier in §4.3, the anisotropic SGS stress term in the MSM modifies the effect
of SGS stress fluctuations, which improves the prediction of Reynolds stresses and thereby
the prediction of downstream flow separation. For the fine mesh, which has a characteristic
resolution similar to typical WRLES, more flow scales are resolved, leaving the SGS model
to account only for the smallest motions. In this case, the influence of the SGS model on both
mean velocity and Reynolds stress predictions becomes weaker, and the difference between
the SM and MSM results reduces substantially. These findings highlight that, to design a
robust SGS model capable of providing accurate predictions of mean flow fields across
various mesh resolutions for complex configurations, it is essential to model both the mean
SGS stress and the SGS stress fluctuations effectively.

5. Properties of SGS stress

In this section, we examine the properties of the SGS stress and the underlying mechanism
of the anisotropic SGS stress. The investigation focuses on the critical FPG region in front
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Figure 20: Mean SGS stress tensor components T;gs at x/L = —0.1 for medium-mesh

simulations with the SM (a) and MSM (b).

of the bump peak, where the anisotropic SGS stress has a strong effect and significantly
influences the mean flow separation downstream of the bump peak.

5.1. Mean SGS stress

We first examine the mean SGS stress at x/L = —0.1, located near the center of the critical
FPG region where the TBL remains attached in all simulations. Figure 20 shows the wall-
normal distributions of the six independent components of the mean SGS stress from the
medium-mesh simulations using the SM and MSM. As discussed earlier, the medium mesh
exhibits the strongest discrepancy in downstream mean-flow prediction between the two
models.

In both simulations, the mean SGS stress is significant only in the very near-wall region,
with the dominant component being the shear stress Tlsgs, as expected from the large wall-
normal gradient of the streamwise velocity. In the SM case, the remaining components
are negligible relative to this dominant shear stress. In contrast, the MSM produces two

additional stress components of appreciable magnitude, TIS%S and T§§S, which modify the
principal directions of the mean SGS stress tensor and alter the associated momentum

transfer. Although not shown, this qualitative behaviour persists throughout the FPG region.

Since TIS%S, T2S§S, and Tlsgs are the three main components of the mean SGS stress tensor and

others are negligible, only these are presented in the subsequent figures for clarity.

Figures 21 and 22 show the wall-normal distributions of the three main components of the
mean SGS stress tensor at x/L = —0.1 for different mesh resolutions. In all cases, refining
the mesh reduces the magnitude of the dominant SGS stress components and narrows the
wall-normal region over which the SGS shear stress is significant.

For the SM, the dominant component of the mean SGS stress tensor is always the shear

sgs
stress 7,5,

stress components TIS “fs and T§§S become non-negligible in the near-wall region. This behaviour
indicates that the anisotropic dynamics of near-wall turbulence begin to be resolved, and the
principal directions of both the mean SGS stress tensor and the mean strain-rate tensor shift
relative to the coarser-mesh cases. Notably, the signs of these normal stress components are
consistent with the MSM simulations, suggesting that the principal direction of the mean
SGS stress in the fine-mesh SM case begins to align with that of the MSM.

sgs _sgs
127 711

regardless of mesh resolution. However, when the fine mesh is used, the normal

For the MSM, by contrast, the near-wall dominance of and T;%S is present at
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Figure 21: Mean SGS stress tensor components (T“ , lsgs, and ‘r;g )atx/L =-0.1 for
simulations with the SM using the coarsest mesh (a), coarse mesh (b), medium mesh (c),
and fine mesh (d).

all mesh resolutions, and the qualitative behaviour of these components remains unchanged
with mesh refinement.

As mentioned earlier, the SGS stress provided by the MSM can be expressed as equa-
tion (2.4), consisting of an isotropic component TI;O and an anisotropic component Ta]m
Figure 23 shows the contributions of these two terms to the mean SGS stress at x/L = —0.1
for the medium-mesh MSM simulation. Again, only the three main components are plotted,
since the remaining components are much smaller in magnitude.

The mean isotropic stress behaves almost identically to that in the SM case (see figure 20),
indicating that adding the anisotropic term does not significantly modify the isotropic part
of the model. A similar trend is also observed in the eddy-viscosity distributions within the
FPG region (shown in figure 3). Moreover, since the SGS dissipation in the MSM arises
exclusively from the isotropic stress term, this similarity implies that the SGS dissipation of
kinetic energy is comparable between the SM and MSM at this location.

In contrast, the mean anisotropic stress exhibits a distinctly different behaviour, where
the shear stress component are negligible while the normal stress components dominate.
Comparing these results with the total mean SGS stress in figure 20 reveals that the normal
stress in the MSM originate almost entirely from the anisotropic term. This confirms that the
anisotropic SGS stress term is the primary source of the difference in the principal directions
of the mean SGS stress tensor between the SM and MSM simulations.

The above comparison shows that the differences in the mean SGS stress between the

SM and MSM arise from the normal stress components, T“ * and 722 , which originate from
the additional anisotropic SGS stress term in the MSM. However, as shown in the mean

streamwise momentum budget analysis in §4.1 and §4.4, these mean normal stresses have
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mean anisotropic SGS stress tensor components (72, Ti““ and T"‘m) (b) atx/L = —0.1 for

limited contributions to the mean streamwise momentum. In contrast, the mean shear stress
component 7

similar separation behaviour for the SM and MSM.

medium-mesh simulations with the MSM

12 *, which is the component most relevant to momentum transport and the onset
of separation on relatively coarse meshes, is predicted similarly by both SGS models within
the critical FPG region. This explains why the coarsest- and coarse-mesh simulations exhibit
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Figure 24: SGS stress tensor r.m.s. components Tisjgsrms at x/L = —0.1 for medium-mesh

simulations with the SM (a) and MSM (b).

5.2. SGS stress fluctuations

To obtain a more complete understanding of the SGS stress properties, it is also necessary
to examine the SGS stress fluctuations, as these fluctuations can significantly influence
the Reynolds stress distributions (see §4.3). Figure 24 shows the wall-normal distributions
of the six independent components of the root-mean-square (r.m.s.) values of SGS stress
fluctuations at x/L = —0.1 for the medium-mesh simulations. As with the mean SGS
stresses, the SGS stress fluctuations are largest close to the wall, with Tfis exhibiting the
strongest fluctuations in both simulations.

In the MSM simulation, however, the normal stress components Tls ‘(l’ys and Tzsgs also display
substantial fluctuations, unlike in the SM. Because fluctuations of the normal stresses
contribute directly to both SGS dissipation and SGS diffusion in the Reynolds stress transport
equation, these enhanced fluctuations help explain the distinct SGS dissipation and diffusion
behaviour observed for the MSM in §4.3. Examination at other streamwise locations shows
that this qualitative behaviour of SGS stress fluctuations remains largely consistent throughout
the FPG region.

Figures 25 and 26 show the r.m.s. values of the SGS stress fluctuations at x/L = —0.1
for simulations using different mesh resolutions with the SM and MSM, respectively. Here,
only the results corresponding to the three main components are exhibited. Within each SGS
model, the qualitative behaviour of the fluctuations remains similar as the mesh is refined.
In contrast to the mean SGS stresses, which decrease rapidly with mesh refinement, the
magnitudes of SGS stress fluctuations only mildly decrease with refinement. This difference
in scaling implies that the relative importance of SGS stress fluctuations increases as the grid
is refined. Furthermore, at this streamwise location, the MSM consistently produces larger
fluctuations in all these SGS stress components than the SM for a given mesh resolution.

For the MSM simulations, we further examined the SGS stress fluctuations at x/L = —0.1
by separating the isotropic and anisotropic contributions, shown in figure 27. Similar to the
mean SGS stress results, the fluctuations associated with the isotropic term behave similarly
to those in the SM (see figure 25), again indicating that the addition of the anisotropic
term does not substantially alter the isotropic component of the model. In contrast, the

fluctuations of anisotropic stress term are dominated by the normal stress components Tﬂ‘i
and ngi, consistent with the behaviour of the mean anisotropic stress. Comparison with the
total SGS stress fluctuations shown in figure 26 reveals that the large fluctuations in these
normal components primarily originate from the anisotropic term.

These observations confirm that the differences in SGS dissipation and diffusion of

Reynolds stresses discussed in §4.3 stem mainly from the additional anisotropic stress term
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Figure 25: SGS stress tensor r.m.s. components (7, 1. rms’ 712, rms’ and T, ms) at

x/L = —0.1 for simulations with the SM using the coarsest mesh (a), coarse mesh (b),
medium mesh (c), and fine mesh (d).

in the MSM, not from modifications to the isotropic stress term. This also suggests that
optimizing the coefficient and formulation of the anisotropic stress term in anisotropic SGS
models may provide an effective means of controlling SGS stress fluctuations and, in turn,
improving the prediction of Reynolds stress distributions and the mean velocity field.

5.3. A priori analysis of filtered DNS

Previously, based on a series of WMLES, we conducted a comprehensive a posteriori analysis
of the mean SGS stress and the fluctuations of SGS stress within the critical FPG region on
the windward side of the bump. To further validate those conclusions and to gain additional
insight into the characteristics of SGS stress in wall-bounded turbulence under FPG, we
perform an a priori analysis using Gaussian-filtered DNS of turbulent Couette-Poiseuille
flow. The DNS is conducted at a Reynolds number of Reyy = U.H/v = 2,500, where H is
the half-channel height and U, is the wall motion speed. Additional details of the DNS and
the filtering operation are provided in Appendices C and D.

The a priori analysis focuses on the lower half of the channel, where the flow near the
bottom wall experiences an FPG and behaves qualitatively similarly to a TBL with FPG.
Gaussian filtering of the velocity field is applied only in the streamwise (x) and spanwise (z)
directions, since the DNS grid is non-uniform in the wall-normal (y) direction. To examine
a range of moderate to coarse filter widths, the standard deviations of the Gaussian kernel
are set to ox/Ax = o;/A; =1, 2 and 4, where A, and A, are the uniform DNS grid
spacings in x and z. Based on the filtered velocity field, the SGS stress can be calculated as

sgs

T = u;u; — u;uj, where (-) denotes Gaussian filtering. For the present analysis, we only

consider the deviatoric, trace-free part of the SGS stress tensor.
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Figure 26: SGS stress tensor r.m.s. components (Tf‘%srms, Tigsrms’ and T‘;%Srms) at
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Figure 27: Tsotropic SGS stress tensor r.m.s. components (T{S]0 s’ ‘r]iszo s> and T;SQO tms)
(a) and anisotropic SGS stress tensor r.m.s. components (‘rf“l1i s’ ‘rfgi rmg» @0 ngi ms) ®)

at x/L = —0.1 for medium-mesh simulations with the MSM.

Figure 28(a) shows the wall-normal distributions of the mean SGS stress components
obtained from the filtered DNS data using a Gaussian kernel with o /Ay = o0,/A; =
2. The magnitudes of the mean SGS stresses are largest near the wall, with peak values
occurring at y/H =~ 0.06 (approximately 20 wall units). A key observation is that the

sgs sgs I
normal stress components, 7,7 and 7,5, are significantly larger than the other components.
This indicates strong SGS anisotropy near the wall, with the streamwise and wall-normal
directions dominating the interscale energy transfer. By contrast, although the mean shear is
large in this region, the small-scale cross-correlation between streamwise and wall-normal
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Figure 28: Mean SGS stress tensor components T:]gs (a) and SGS stress tensor r.m.s.
sgs

components 7,7
DNS of turbulent Couette-Poiseuille flow with the standard deviations of the Gaussian

kernel ox /Ay = 07 /A, =2.

(b) obtained from the Gaussian filtering of velocity field from the

velocity fluctuations is weaker than the variance of each component, causing the mean shear
stress Tlsgs to remain comparatively small.

When compared with the mean SGS stress in the TBL within the FPG region of the
present WMLES, the filtered DNS results exhibit behaviour more consistent with the MSM
predictions. In both cases, the anisotropic stress introduces crucial normal stress components
in the near-wall region, and the signs of the dominant Tls ‘%s and Tzsgs components agree between
the two flows. However, due to the coarse resolution along the wall-normal direction in the
WMLES, the peaks of the mean SGS stress components are not fully captured.

It is also worth noting that the qualitative behaviour of the mean SGS stresses remains
similar across different standard deviations of the Gaussian filter, or equivalently, different
effective filter widths. For brevity, results for other filter widths (e.g., ox /Ay = 0, /A, = 1
or 4) are not shown. Examination of these cases indicates that increasing the filter standard
deviation leads to larger mean SGS stress magnitudes, consistent with the fact that wider
filters remove more turbulent scales and therefore attribute a greater portion of the momentum
transfer to the unresolved motions.

Figure 28(b) shows the wall-normal distributions of the r.m.s. values of SGS stress
fluctuations from filtered DNS. As expected, the fluctuation intensities are largest near the
bottom wall, with peak values occurring at approximately the same wall-normal location as
the mean SGS stresses in figure 28(a). While the mean SGS stresses represent the average
interscale momentum transfer, the r.m.s. values reflect its temporal and spatial variability
and are therefore more sensitive to localized turbulent events. The strong peaks near the wall
indicate that the energy transfer between resolved and subgrid scales is highly intermittent
in this region, driven by the bursting and ejection—sweep cycles characteristic of near-wall
turbulence. The particularly large fluctuations in TIS%S and Tzsgs suggest substantial temporal
variability in the normal stress components, likely associated with rapid distortion of streaks
and vortical structures.

The strong normal SGS stress fluctuations are also better captured by the MSM in the
WMLES, whereas they are nearly absent in the SM results within the FPG region. This
reinforces the role of the anisotropic stress term in reproducing the correct near-wall SGS
dynamics. Finally, although results for other filter widths (o /Ax = 0, /A, = 1 and 4) are not
shown, their qualitative behaviour is similar: the fluctuation intensities increase with filter
width, consistent with the enhanced contribution from unresolved scales.

From the filtered DNS analysis and its comparison with the WMLES results, it is evident
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that in wall-bounded turbulence under FPG the SGS dynamics are strongly anisotropic near
the wall, with the normal SGS stress components playing a major role. Classical eddy-
viscosity models are unable to represent these effects adequately. In contrast, the anisotropic
SGS model reproduces the near-wall anisotropy much more realistically, consistent with
the characteristics observed in the filtered DNS. These findings suggest that improving or
optimizing the anisotropic stress term and its coefficient in SGS models offers a promising
pathway for enhancing model performance in simulations of complex turbulent flows.

6. Conclusions

This study performed a comprehensive a posteriori analysis of the effect of anisotropic SGS
stress on WMLES of separated turbulent flow over a spanwise-uniform Gaussian bump. An
idealized wall boundary condition prescribing the local mean wall-shear stress from DNS
data (Uzun & Malik 2022) was used to isolate the impact of the SGS model. Two models
were compared: the classical Smagorinsky model (SM) and a modified Smagorinsky model
(MSM) that includes an additional anisotropic stress term.

The main findings are summarized as follows. First, the predicted flow separation on the
leeward side of the bump depends strongly on the SGS model. The isotropic SM exhibits
non-monotonic convergence of the mean separation bubble length with mesh refinement,
whereas the anisotropic MSM provides consistent predictions across resolutions. Second,
the influence of anisotropic SGS stress is found to be most critical upstream of the bump
peak, within the region of strong favorable pressure gradient (FPG). Changes to the SGS
model in this region substantially alter the downstream separation, revealing a pronounced
history effect in determining separation onset. Third, inclusion of anisotropic SGS stress
improves the prediction of Reynolds shear and normal stress distributions in the FPG
region. These modifications propagate downstream and influence the onset and size of the
separation bubble. Analysis of the Reynolds stress budget shows that anisotropic SGS stress
fluctuations enable both dissipation and backscatter, facilitating the bidirectional energy
transfer that isotropic models fail to represent. The dependence of flow-separation prediction
on mesh resolution is also clarified. On coarse meshes, the mean SGS shear stress dominates
the streamwise momentum balance upstream of the separation point, and both models
behave similarly. As the resolution increases, Reynolds stresses become more influential,
and the anisotropic MSM better captures their distribution and yields more consistent flow
predictions. At fine resolution, model differences diminish as more turbulent scales are
resolved. The key physwal d1st1nct10n between the SM and MSM arises from the normal
SGS stress components, ‘r”‘ and 722 , which in the MSM significantly contribute to SGS
dissipation and diffusion of Reynolds stresses, particularly under FPG. An a priori analysis
based on filtered DNS of Couette—Poiseuille flow further confirms that near-wall turbulence
under FPG is highly anisotropic and dominated by these normal stress components, which
are not captured by isotropic eddy-viscosity models.

Taken together, these findings explain why isotropic and anisotropic SGS models yield
qualitatively different predictions of separation behaviour and why the anisotropic model
achieves more consistent convergence across mesh resolutions. The results emphasize that
accurate WMLES predictions require proper representation of both mean and fluctuating
SGS stresses, especially their anisotropy in the near-wall region.

Beyond elucidating the role of anisotropic SGS stress, this study highlights directions
for improving WMLES of complex wall-bounded turbulence. Since the unresolved motions
in WMLES carry substantial energy and momentum fluxes, the SGS model must account
for anisotropic stress dynamics near the wall and under pressure gradients. Developing
more advanced anisotropic SGS models, potentially through optimized extensions of eddy-
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Figure 29: Curvature radius (a) of the Gaussian bump surface and local boundary layer
thickness (b) for the medium-mesh simulation with the SM in x/L € [-0.4,0.1].

viscosity formulations (Marstorp et al. 2009; Silvis & Verstappen 2019; Agrawal et al. 2022;
Uzun & Malik 2025), is therefore a promising path forward. Although this work employed
an idealized wall model to isolate SGS effects, realistic wall modeling and its coupling with
the SGS model remain critical challenges. Unified SGS/wall modeling frameworks (Ling
et al. 2022; Arranz et al. 2023, 2024; Zhou et al. 2025) represent a promising direction to
enhance the robustness and predictive accuracy of WMLES for complex turbulent flows.
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Appendix A. Investigation of the curvature effect on the region upstream of
separation

Figure 29 shows the local curvature radius (r) of the present Gaussian bump surface and
the local boundary layer thickness (6) from the medium-mesh simulation with the SM in
the region x/L € [-0.4,0.1]. The curvature radius reaches its minimum at the bump peak
(x/L = 0), where the curvature is largest, while the curvature radius is substantially larger
at all other locations. Even at the bump peak, the minimum curvature radius remains much
larger than the local boundary layer thickness, with the ratio of curvature radius to boundary
layer thickness exceeding 10. These observations indicate that curvature effects in this region
are negligible, consistent with findings of previous studies (Prakash et al. 2024; Spalart et al.
2024).

Appendix B. Simulations using the mixed model

An additional anisotropic SGS model evaluated in the present study is the mixed model
(MM) (Bardina 1983; Sarghini et al. 1999). It combines the SM (Smagorinsky 1963) with
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Figure 30: Mean separation bubble length on the leeward side of the bump from the
simulations using the MM for different mesh resolutions and the reference DNS (Uzun &
Malik 2022). Symbols represent data point for each case.

a scale-similarity term computed using explicit filtering (Meneveau & Katz 2000), which is
given by

T :uiuj—ﬁiﬁj, (Bl)

where (\) denotes an explicit filtering operation, chosen here as Gaussian filtering. With the
use of Gaussian filtering, the anisotropic term can be approximated (Clark et al. 1979) by

2 9y, Ou: 2
j =~ %2—;6—4 = % [SitSkj = RixRj — (SikRej — RixSaj)| - (B2)
In addition to introducing anisotropic SGS stress, this term can produce kinetic energy
dissipation. In particular, it can also produce negative dissipation, which allows for local
backscatter of kinetic energy. The isotropic SGS stress term in the MM is given by the SM
with a coefficient of Cy = 0.127 (Bhushan & Warsi 2005; Bhushan et al. 2006), chosen to
ensure that the total kinetic energy dissipation for homogeneous isotropic turbulence from
both the isotropic and anisotropic stress terms matches that from the SM and MSM used in
the present study. The MM simulations are carried out using the same computational meshes
and boundary conditions described in §2.

Figure 30 shows the mean separation bubble length on the leeward side of the bump as
a function of characteristic mesh resolution. The MM simulations consistently overpredict
the separation bubble length, but the predictions that remain nearly insensitive to mesh
refinement. This trend mirrors the behaviour observed for the MSM simulations (see figure 7),
further underscoring the robustness of anisotropic SGS models for WMLES.

Additional analyses of the mean streamwise momentum, mean pressure, and Reynolds
stress transport equations using data from multiple mesh resolutions show that the MM
exhibits behaviour qualitatively similar to the MSM, particularly in its representation of
anisotropic stress effects. Thus, the conclusions drawn in the main text remain applicable to
the MM simulations.

ani
T

ij :u,-uj—u,-u

Appendix C. DNS of plane Couette-Poiseuille flow

A DNS of turbulent plane Couette—Poiseuille flow is conducted at Rey = 2,500, where
H denotes the half-channel height. In the simulation, the incompressible Navier—Stokes
equations are solved using a staggered finite-difference scheme that is second-order accurate
in space and advanced in time with an explicit third-order Runge—Kutta method. The flow
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Figure 31: Isocontours of the instantaneous streamwise velocity relative to the bottom wall
uy /U, in (a) an x-y plane and (b) a z-y plane from the DNS of turbulent
Couette—Poiseuille flow.

solver has been validated in previous studies of turbulent channel flows (Bae et al. 2018,
2019). In the computational domain, periodic boundary conditions are imposed in the
streamwise (x) and spanwise (z) directions. The top and bottom walls move parallel to
each other in opposite directions along the x axis. A Dirichlet boundary condition with
constant velocity uy = U, = 1 is applied at the top wall (y/H = 2), while a constant
velocity uy = —U. = —1 is imposed at the bottom wall (y/H = 0). A constant streamwise
pressure gradient, corresponding to H/ (pUg)fl—I; = —0.003, is applied to drive the flow,
indicating that the mean pressure decreases in the positive x direction. The computational
domain extends over Ly/H = 6n, Ly/H = 2, and L;/H = 3n in the streamwise, wall-
normal, and spanwise directions, respectively. Uniform grids with 512 points are used
in both the streamwise and spanwise directions. In the wall-normal direction, 256 non-
uniformly spaced points are distributed according to a hyperbolic tangent stretching, yielding
min(Ay)/H = 3.5 x 10~* and max(Ay)/H = 2.2 x 1072. The simulation is first advanced
for 100 flow-through times (67 H/U,.) to eliminate initial transients. After the flow reaches a
statistically stationary state, 1,500 temporal snapshots are collected for the present analysis.
Moreover, the statistical quantities in the present study are obtained by performing temporal
and spatial averaging along the homogeneous streamwise and spanwise directions of the
corresponding instantaneous fields.

Figure 31 shows the instantaneous streamwise velocity relative to the bottom wall, u, =
uyx + Ue, from the DNS. Due to the motion of the parallel walls and the imposed mean
pressure gradient, the wall-bounded turbulence in the upper half of the channel experiences
an APG and behaves similarly to an APG TBL containing many large-scale flow structures.
In contrast, the turbulence near the bottom wall is subjected to an FPG and qualitatively
similar to an FPG TBL. Figure 32 presents the profile of inner-scaled mean streamwise
velocity relative to the bottom wall, defined as u) = (uy + U.)/ur . Here, the superscript
“+” denotes inner-scaled quantity by wall unit and u . j is the bottom-wall friction velocity.

Appendix D. Filtering of the DNS velocity field

To obtain the filtered velocity field from the DNS of the turbulent Couette—Poiseuille flow, a
Gaussian filter is applied to the instantaneous velocity field u = (uy, uy, u;). Since the DNS
grid is non-uniform in the wall-normal (y) direction, the filtering operation is performed only
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Figure 32: Mean streamwise velocity relative to the bottom wall from the DNS of
turbulent Couette-Poiseuille flow. The dashed line represents the classical log law of the

wall uf = (1/0.41) In(y*) +5.2.

in the streamwise (x) and spanwise (z) directions to avoid commutation errors. The filtered
velocity field w = (uy, iy, ;) is obtained through a two-dimensional convolution in the x
and z directions,

i (x,y,z) = // G(x =71y, 2—1)ui(ry,y,ry)drydry,, D1

where the Gaussian kernel is defined as

1 1(r2 12
G(rx,rz):mexp |:—§ (0_—)624'0_—22)} . (D2)
X X 7z

Here, r, and r, denote spatial separations in the streamwise and spanwise directions, and oy
and o, are the corresponding standard deviations of the Gaussian kernel. Since the DNS grid
is uniform in both directions, the filtering is implemented as a discrete convolution using
symmetric one-dimensional Gaussian kernels applied successively in x and z.

The effective filter width A 7 ; in each direction i € {x, z} is defined by matching the second
moment of the Gaussian filter with that of a top-hat filter, giving

Af,l-:2\/§0'i. (D3)

In this study, the standard deviations are set as multiples of the uniform DNS grid spacings
such that oy /Ax = 0, /A, = 1, 2, and 4, corresponding to moderate to coarse filter widths
that remove small-scale motions while retaining large-scale flow structures. The resulting
effective filter widths A¢ , and Ay . are approximately 3.464, 6.928, and 13.856 times the
grid spacings Ax and Az, respectively.

Figure 33 shows the filtered instantaneous streamwise velocity relative to the bottom
wall i, /U, in an x—y plane for these three filter widths, along with the DNS field. As the
standard deviations increase, progressively finer structures are removed, demonstrating how
the Gaussian filter systematically isolates the larger-scale motions.
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Figure 33: Isocontours of the filtered streamwise velocity ;- /U, with
ox/Ax = 0;/Az =1 (a), 2 (b), and 4 (¢).
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