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Abstract. We investigate transient separation using turbulent Couette–Poiseuille (C-
P) flow subjected to a sudden strong adverse pressure gradient (APG). Using a space-time
resolvent framework constructed around the time-varying mean flow, we identify spa-
tiotemporal forcing modes that are optimally amplified by the linearized Navier-Stokes
operator, along with their corresponding response modes. Our analysis shows that dif-
ferent streamwise and spanwise scales are preferentially amplified in different temporal
regions of the flow, with the trends consistent with statistics computed from direct nu-
merical simulations. Time-localized resolvent modes also indicate the causal relationship
between forcing and response modes, characterized by a temporal delay between their
amplitude peaks. Time-windowed analysis of the resolvent operator reveals how linear
amplification evolves over time, linking distinct time scales to different spatial scales
throughout the separation event. We further show that a reduced-order model featuring
a small number of space-time resolvent modes can be used as a simplified model for un-
steady separation events, with a three-mode model capable of accurately capturing the
extent of flow reversal over time at a near-wall location.

1 Motivation
Flow separation is a ubiquitous phenomena in aerodynamic flows, often associated with adverse effects
such as loss of lift, increase in drag, and noise generation [1, 2]. Separation typically occurs in turbulent
flow in the presence of an adverse pressure gradient (APG) or a geometric feature that inhibits the
boundary-layer attachment. Recent works have emphasized the dynamics and coherent structures of
separation events in spatially-evolving, statistically stationary flow configurations [3, 4]. Even in such
canonical settings, separation remains a complex process involving a broad range of spatial and temporal
scales.

To interpret the dynamics underlying such interactions, growing attention has been placed on linear
amplification mechanisms as drivers of separation-related motion in the near-wall region. Resolvent anal-
ysis provides a powerful framework for quantifying these mechanisms by linearizing the Navier–Stokes
equations around a turbulent mean and treating the nonlinear terms as an external forcing [5, 6]. The
resolvent operator thereby captures how specific forcing structures are amplified by the linear dynamics.
Variants of resolvent analysis have been used to study stationary separated flow events, in configurations
ranging from canonical to complex. For example, Soria, et al. [7] show how resolvent analysis can identify



nonlinear forcing and response modes in a self-similar turbulent boundary layer at the verge of separation
across different length and frequency scales. Similarly, spatial regions sensitive to optimal flow pertur-
bations and its corresponding energy amplification mechanisms have been identified in separated flows
around airfoils using resolvent analysis, providing insight on the behavior of laminar separation bubbles
[1, 4, 8]. The above studies indicate that resolvent analysis can be a valuable tool for understanding,
modeling, and prediction of stationary separation events.

However, transient separation events in turbulent boundary layers pose additional challenges. These
events are intermittent, often manifesting as extreme excursions from the mean state [9–11]. On smooth
surfaces without geometric confinement, the location and evolution of the separation point can vary
widely in space and time [10, 12]. Moreover, in highly complex turbulent flows, isolating the specific flow
physics leading to separation onset is nontrivial [3, 13]. Consequently, conventional modal analyses based
on stationary or periodic assumptions fail to isolate the mechanisms governing these rapid transitions.

To address this limitation, we employ a time-localized extension of resolvent analysis [14, 15] that
resolves the transient amplification mechanisms leading to separation. Using direct numerical simulations
(DNS) of turbulent Couette–Poiseuille (C-P) flow subjected to both a streamwise APG and upper-wall
motion [12, 16–18], we simulate the transition from attached to separated wall-bounded turbulent flow
through a sudden change of the mean APG. The characteristics of the flow at these conditions are similar
to a fully separated boundary layer, leading to a lower surface boundary exhibiting separation events
that are intermittent in both space and time; hence, the dynamics of this flow configuration is akin to
a transient turbulent separation bubble. Important to note is the presence of reverse flow events within
transient separation. Regions of critical points of zero velocity and rare backflow events of negative
streamwise velocity have been identified in DNS of stationary turbulent channel flows without APG
environments [19, 20]; the presence of reverse flow events has been studied experimentally in turbulent
boundary layers with and without a mean APG, where it was found that the reverse flow probability
nearly doubles under the influence of the APG [21]. In a similar spirit, this study utilizes an explicitly
time-dependent pressure gradient, where the number of reverse flow events is expected to increase in
time.

We examine two complementary extensions of resolvent analysis for time-varying systems. The first
approach involves analyzing the space-time resolvent operator directly, without assuming a form for the
temporal functions. This approach identifies space-time forcing and response modes associated with
maximum linear energy amplification. While this approach would reproduce Fourier modes in time given
a stationary mean, it will generally not do so for nonstationary systems [14]. While not explored here,
note that it is also possible to localize these structures through a modification of the usual energy-based
optimization problem associated with resolvent analysis [14]. The second approach involves forming the
resolvent operator using wavelet transforms rather than Fourier transforms in time. This preserves both
frequency and time information and allows for identification of nonlinear forcing modes that are optimally
amplified about a time-varying turbulent mean profile [15]. The use of wavelet transforms allows for time
and frequency windows to be supplied in the construction of the resolvent operator. Localized forcing and
response modes can subsequently be identified, illuminating the mechanisms associated with separation
occurring at different frequency scales in the temporal regions confined to high and low-shear at the lower
surface boundary.

The present work focuses on applying the methodologies developed in Refs. [14, 15] to study the
dynamics of transient C-P flow. In particular, we utilize space-time and wavelet-based resolvent analysis in
two contexts: (i) to identify cause-and-effect relationships between forcing and response dynamics during
transient separation, and (ii) to construct reduced-order models based on a small number of space–time
modes capable of reconstructing key features and statistics of near-wall separation. Comparisons with
DNS statistics across spatial and temporal scales, along with utilization of metrics unique to C-P flows,
provide new insight into the linear mechanisms governing unsteady separation in turbulent wall-bounded
flows containing pressure gradients with arbitrary time dependence.

This proceeding is organized as follows.§ 2 describes the DNS of the transient turbulent C-P flow and
mentions key statistics and their spatiotemporal trends. In § 3, we utilize the base flow from the DNS to
obtain space-time resolvent modes in two different formulations; one constructs the resolvent operator in
physical time (§ 3.1), while the other utilizes a wavelet basis to encode time and frequency information in
the resulting modes (§ 3.2). The results are subsequently analyzed in § 4 via the lens of cause-and-effect,
and in § 5 to model and visualize the evolution of reverse flow regions near the lower wall. Conclusions
are presented in § 6.



2 Direct numerical simulation setup
We perform a series of DNS of incompressible turbulent C-P flow subjected to a sudden imposition of a
strong APG. The calculation is initialized with a statistically stationary DNS of C-P flow representative
of an attached APG turbulent boundary layer. At t = 0, the mean APG is suddenly increased such that
the statistically stationary case will result in flow separation.

The simulations are performed by discretizing the incompressible Navier-Stokes equations with a
second-order accurate centered finite difference scheme in space [22], with a third-order Runge-Kutta
time advancement scheme [23], with a fractional step method to compute the pressure [24]. We note that
quantities are nondimensionalized by the channel half-height h, the half upper-wall velocity Uc = Uw/2,
and the density ρ. The size of the computational domain is (Lx × Ly × Lz) = (6π × 2 × 3π), where
x = (x, y, z) are the streamwise, wall-normal, and spanwise flow directions. The domain is discretized
uniformly in the streamwise and spanwise directions with Nx = Nz = 512 points, and a Chebyshev grid
with Ny = 256 is implemented in the wall-normal direction. Periodic boundary conditions are imposed
in the streamwise and spanwise direction. The bottom wall is stationary and the top wall is moving at a
constant velocity of Uw = 2.

The initial statistically stationary DNS is performed for C-P flow representative of attached wall-
bounded turbulent flow by applying a mean streamwise pressure gradient dP/dx = 0.003. We note
that the Couette Reynolds number Rec = Uch/ν = 2500, where ν is the kinematic viscosity. The
friction Reynolds number at the lower wall at this initial condition Reτ0,low = uτ0,lowh/ν = 57.5 and the
upper-wall friction Reynolds number Reτ0,up = uτ0,uph/ν = 215, where uτ0,up and uτ0,low are the initial
friction velocities at the upper and lower wall, respectively. Furthermore, we note that the direction
of dP/dx is chosen such that the lower wall experiences an APG, whereas the upper wall experiences
a favorable pressure gradient (FPG). The mean APG is then suddenly increased to dP/dx = 0.005 at
t = 0. An ensemble of 20 individual transient separation simulations are considered by initializing the
simulations with various temporally uncorrelated statistically stationary C-P flow. The simulations are
run for t = 620, which is 14.5 flow through times based on the initial friction velocity at the upper wall
uτ0,up and channel half height. We note that the average wall shear stress at the bottom wall decreases
in time, reaching a zero-crossing at t = 465, as seen in Figure 1.

We introduce the Reynolds decomposition of the velocity and pressure fields over a finite time
window u(x, t) = U(y, t) + u′(x, t), p(x, t) = P (y, t) + p′(x, t), where U(y, t) = [U(y, t),0,0] and
u′(x, t) = [u′(x, t), v′(x, t), w′(x, t)] are the mean and fluctuating velocity components, and P (y, t) and
p′(x, t) are the mean and fluctuating pressure components. The mean and r.m.s. velocity profiles for
the statistically stationary cases as well as the evolution of the transient case are given in Figure 1.
This time-varying mean U(y, t), obtained by averaging over x, z, and all ensembles for each y and t
value, will be utilized to form the resolvent operators described in § 3. Note that in general, fully-
converged time-varying mean states of temporally evolving flows are more difficult to obtain than means
for statistically-stationary flows, since time-averaging is not permitted. For this flow, streamwise and
spanwise homogeneity means that we achieve a converged mean state using a modest number of ensem-
bles, within needing any additional filtering or time-windowing of the data. The addition and removal
of ensemble members to the computation of the mean has little effect on the resolvent results. More
generally, note that the sensitivity of resolvent analysis to mean uncertainty is an active area of research
[25].

3 Space-time resolvent modes
The DNS yields a base flow U(y, t) that we will use to analyze linear energy amplification mechanisms in
the transient turbulent C-P flow. Due to the transient nature of this flow, traditional resolvent analysis
using Fourier transforms in time is not appropriate. Instead, we use generalized space-time resolvent
analysis tools as described in [14, 15]. In space-time resolvent analysis, the incompressible Navier–Stokes
equations are first linearized about the turbulent mean,

∂u′

∂t
+U ·∇u′ + u′ ·∇U +∇p′ − 1

Re
∆u′ = f ′, ∇·u′ = 0, (1)

where f are the nonlinear terms and Re = Uch/ν. The equations are then Fourier transformed in the
two homogeneous directions x and z giving the linear system

[
Dt +L ∇̂
∇̂T 0

] [
u′

p′

]
=

[
f ′

0

]
, L =

ikxU − ∆̂/Re DyU 0

0 ikxU − ∆̂/Re 0

0 0 ikxU − ∆̂/Re

 , (2)



0 200 400 600

t

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

u
=
=
U

c

(a)

0 1 2

y

0

0.5

1

1.5

2

U

(b)

0 1 2

y

0

0.05

0.1

0.15

0.2

0.25

0.3

h(
u
!

U
)2

i0
:5

0

100

200

300

400

500

600

t

(c)

Figure 1: (a) Friction velocity at the lower wall uτ evolving in time, plotted for t =
[3.14, 157, 314, 470, 620]. (b) Evolution of mean streamwise velocity U for the DNS of the transient C-P
flow with a sudden APG. Dashed lines indicate stationary mean streamwise velocity profiles for dP/dx =
0.003 (blue) and dP/dx = 0.005 (red). Solid lines indicate mean profile at t = [3.14, 157, 314, 470, 620].
(c) Evolution of the streamwise r.m.s. velocity ⟨(u− U)2⟩0.5 for the DNS of the transient C-P flow with
a sudden APG, with the dashed and solid lines indicating the same flow states as in (b).

where (̂·) represents Fourier-transformed quantities, Dt represents a first-order time derivative, ∇̂ =

[ikx, Dy, ikz]
T , and ∆̂ = −(k2x + k2z) + Dyy. Here kx and kz are the wavenumbers in the x and z

directions, respectively, and Dy and Dyy are respectively the first and second derivatives in y.
In the subsequent subsections, we introduce two types of space-time resolvent formulations under

the framework designed for this time-varying base flow. In both cases, the wall-normal coordinate is

discretized on a Chebyshev collocation grid {yj}
Ny

j=1, and the wall-normal differentiation operators Dy

and Dyy are Chebyshev differentiation matrices.

3.1 Direct space-time resolvent analysis
In direct space-time resolvent analysis, the complete temporal differential operator is retained and the
space-time resolvent operator follows directly from equation (2) as

Ht =

[
Dt +L ∇̂
∇̂T 0

]−1

. (3)

The singular value decomposition (SVD) of Ht = Ψ̂Σ̂Φ̂∗ is performed to identify the right and left

singular vectors Φ̂i = [ϕ̂u, ϕ̂v, ϕ̂w,0]
T
i and Ψ̂i = [ψ̂u, ψ̂v, ψ̂w, ψ̂p]

T
i , with the superscript ∗ indicating the

adjoint. Following Ballouz, et al. [26, 27], the perturbation kinetic energy norm is utilized to calculate
the inner product in the SVD. Note that unlike standard resolvent analysis, these singular vectors are
functions of both space and time. The leading right singular vectors reveal the inputs that are most
optimally amplified by the time-varying resolvent operator, with the left singular vectors giving the
(normalized) response of the system to these forcings to the system. The singular values σ̂i represent the
corresponding amplification factor between the forcing and response.

3.2 Wavelet-based resolvent modes
In wavelet-based resolvent analysis, rather than retaining the complete temporal differential operator, we
use a wavelet transformation in time [15, 28–30]. Thus, the equations in (2) are additionally transformed
in time using a wavelet basis such that

HwB =

[
D̃t +L ∇̂
∇̂T 0

]−1

B, (4)



where Hw is the wavelet-based resolvent operator, D̃t is the discrete wavelet-transformed time derivative,
and B is a windowing matrix. In the current study, the wavelet transform is given by a single-level,
Daubechies 16-tap wavelet transform [28] with smooth-padding edge conditions to minimize the presence
of numerical artifacts at the temporal extrema [29, 30].

The use of wavelet transforms allows for time and frequency windows to be supplied in the construction
of the resolvent operator. B windows the forcing modes in time and frequency via restriction onto a wavelet
with specified shift and scale, which correspond to frequency and time information, by setting specific
columns corresponding to time and frequency regions outside of the regions of interest to zero [1, 26, 27].
This serves as a means to localize the resolvent operator to only consider the nonlinear mechanisms
confined to a specific time and frequency band.

Subsequently, localized forcing and response modes can be identified via the SVD of HwB = Ψ̃Σ̃Φ̃∗,

where Φ̃i = [ϕ̃u, ϕ̃v, ϕ̃w,0]
T
i and Ψ̃i = [ψ̃u, ψ̃v, ψ̃w, ψ̃p]

T
i , represent the windowed resolvent forcing and

response modes. Similar to the direct space-time resolvent modes in § 3.1, these are spatiotemporal
modes where the leading forcing modes describe the constrained forcing that is most optimally amplified
by the wavelet-based resolvent operator. In turn, by constraining the forcing modes to specific time
regions in the transient C-P flow, the corresponding modes illuminate the mechanisms associated with
separation occurring at different frequency scales in confined temporal regions; the window provided by
the definition of B and the use of a wavelet basis acts as an extension of the direct space-time formulation
in § 3.1 to include localization in time. Note also that when B = I, this wavelet-based formulation
becomes equivalent to the space-time formulation, with the wavelet basis being the specific choice of
temporal discretization. In this sense, the use of a wavelet transform is motivated in part by the fact
that the wavelet basis aligns with the windowing operator, in the sense that windowing to specific time
and/or frequency ranges amounts to choosing a limited set of wavelet basis functions.

3.3 Treatment of temporal domain and boundary effect
In this subsection, we first clarify differences in our temporal discretizations. While both formulations
treat time as an explicit coordinate, the construction of Dt differs. In direct space-time resolvent analysis,
we construct Dt using a spectral Fourier method (though due to the time-varying mean flow, the Fourier
modes do not decouple as in standard resolvent analysis). In contrast, in the wavelet-based formulation,
we take Dt to be an explicit differentiation matrix constructed using a first-order finite difference scheme,
with Neumann-type boundary conditions in time, that is subsequently discrete wavelet-transformed as
described in § 3.2. In both formulations, time is treated as an explicit coordinate on a uniform grid.

In addition, special care is required near the boundaries of the finite time and spatial domains.
To mitigate spurious reflections at artificial boundaries, sponge layers have previously been used in
global stability analysis [31–33]. Building on this approach and adapting it to the present time-varying
framework, we first extend the time domain and apply a sponge region in both space and time. The
temporal sponge acts as an artificial boundary condition that allows for robust temporal modes that grow
compactly within the physical time domain, while ensuring that the modes decay at the boundaries, which
as discussed below are artificially extended.

Furthermore, the spatial sponge allows focus to be directed to the lower boundary, even though the
mean shear is small in this region. We note that without the spatial sponge, the modes will typically
peak in amplitude near the upper wall, where the global maximum of the mean shear is located.

The time domain is extended to [−Tbuf , T + Tbuf ], where T is the physical duration and Tbuf is
a buffer length at each end. This yields an extended window of length T + 2Tbuf , with a step size
∆text = (T + 2Tbuf)/Nt,ext. The subscript “ext” indicates that the temporal domain has been extended.
The domain is extended such that the mean velocity profile in the extended regions is constant in time
and equal to the profiles at the beginning and end of the simulations. We apply an overlapping sponge
function constructed directly in the (y, t) grid [34]. The total sponge field is defined as

s(y, t) =
Asp

2
max

[
tanh

(
y − δoffy
δtransy

)
+ 1, tanh

(
−t+ δofft,up
δtranst

)
+ tanh

(
t− δofft,down

δtranst

)
+ 2

]
.

where δoffy , δofft,up, and δ
off
t,down shift the onset of damping away from the physical boundaries in the wall-

normal and temporal directions, respectively, while δtransy and δtranst control the smoothness of the tran-
sition. The sponge amplitude is scaled by Asp = 70. With these parameters, the formulation yields
negligible damping over the physical window and ramps smoothly to its maximum in the extended re-
gions and in the upper half of the domain. It therefore forms two symmetric temporal damping layers at
the beginning and end of the extended time domain, overlapping the copied initial and final snapshots.



Each temporal sponge rises from zero at the edges of the physical domain and reaches its maximum
amplitude Asp near the midpoint of the extended buffer. In the wall-normal direction, the sponge limits
the influence of dynamics above a prescribed wall-normal cutoff (here, y ≃ 1), ensuring that our analysis
focuses on near-wall structures at the bottom wall.

The sponge region acts on both the direct space-time resolvent operator and wavelet-based resolvent
operator. The sponge acts as a linear damping that is added to velocity components of the resolvent
operator. Letting S denote the reshaped diagonal sponge matrix from s(y, t), which has the same size as
the linear operator L, the space-time resolvent with this sponge becomes

H(sp)
t =

[
Dt +L+ S ∇̂

∇̂T 0

]−1

,H(sp)
w =

[
D̃t +L+ S ∇̂

∇̂T 0

]−1

. (5)

Figure 2 illustrates the resulting (y, t)-dependent sponge field s and the physical region (DNS simula-
tion domain) bounded by the vertical lines.Despite the differences in the temporal differentiation operator,
we note that the modes grow compactly within the physical time domain and in the spatial region of
interest, and are robust between the two resolvent formulations.
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Figure 2: Temporal and spatial sponge enforcing decay near the extended-window boundaries and focusing
the analysis on the near-wall region; vertical lines mark the physical interval where DNS data define the
base flow. The sponge intensity increase toward white, while the non-sponge region is shown in gray. The
total duration of the simulation is T = 620 with a temporal buffer region of Tbuf = 63. Sponge function
parameters: δoffy = −0.0045, δtransy = 0.1, δofft,up = −30, δofft,down = 715.38, and δtranst = 0.5.

3.4 Resolvent parameters
In both resolvent formulations, a Fourier transform is performed in the homogeneous spatial directions
x and z. Hence, a choice of the streamwise and spanwise wavenumber (kx, kz) needs to be supplied
in order to construct the resolvent operator. To determine an appropriate spatial scale, we use the
premultiplied two-dimensional (2D) energy spectra of the streamwise velocity near the bottom wall at
various times computed from the DNS ensemble, displayed in Figure 3, which indicate the shortening
of streamwise scales and elongation of spanwise scales close to the bottom wall over time. Based on
this evolution of high-energy regions across spatial scales, we identify three characteristic streamwise and
spanwise wavelengths that represent the dominant energetic structures at different times. To emphasize
the streamwise-elongated scales at earlier times, the first length scale is chosen to be (λx, λz)1 = (6, 1),
or (λ+x , λ

+
z )1 = (345, 57.5), where the superscript + indicates nondimensionalization by the initial friction

velocity uτ0 and kinematic viscosity ν. The length scale representative of the flow state at later times
is chosen to be (λx, λz)3 = (1.98, 2.23) ((λ+x , λ

+
z )3 = (114, 128)) to capture the spanwise elongation over

time. An intermediate length scale, (λx, λz)2 = (4.83, 1.34) ((λ+x , λ
+
z )2 = (278, 77.1)), is also selected. We

note that these scales lie within the energetic scales of the premultiplied 2D energy spectra (see Figure
3); these representatives are streamwise-elongated beyond the peak of the 2D spectra at earlier times and
spanwise-elongated at later times to minimize the overlap between length scales.

4 Cause-and-effect analysis
The cause-and-effect mechanisms are quantified through the resolvent forcing and response modes. Cause
and effect has been studied through the lens of resolvent analysis in prior work. In Bae et al. [35], removal
of the principal nonlinear forcing modes at each time step is found to suppress turbulence; Ballouz et
al. [26, 27] emphasizes the importance of time-localized nonlinearities and their corresponding transient
effect via the wavelet-based resolvent forcing and response modes. Central to this interpretation is the
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Figure 3: Premultiplied two-dimensional energy spectrum of streamwise velocity fluctuations Euu at
y = 0.0392 for (a) t = 0 and (b) t = 620 plotted alongside the representative length scales (λx, λz)1 = (6, 1)
((λ+x , λ

+
z )3 = (345, 57.5)) (red), (λx, λz)2 = (4.83, 1.34) ((λ+x , λ

+
z )2 = (278, 77.1)) (green), and (λx, λz)3 =

(1.98, 2.23) ((λ+x , λ
+
z )3 = (114, 128)) (blue).

observation of the resolvent response mode peaking at a later time than that of the forcing. This highlights
a distinctive feature of space-time generalizations of resolvent analysis: while there is always a causal
relationship between forcing and response in resolvent analysis, this relationship and associated time lags
are more apparent when applying space-time resolvent methods where forcing and response modes are
localized in time [15]. Hence, in the ensuing analysis, the forcing mode is identified as the “cause”, with
the response mode representing the “effect”, with the intent of studying the cause-and-effect relationship
via quantities that effectively describe the linear mechanisms by which the forcing is amplified. More
specifically, the time delay between the forcing and response modes can quantify the extent of the causal
relation in time. Additionally, for a specified response mode, the corresponding singular value quantifies
the relative physical importance of its forcing modes, and therefore quantify the singular value as an
amplification factor, representing how strongly the forcing drives the response. These are impacted by
the choice of spatial scale and temporal localization used in constructing the resolvent operator, which
will be explored in the following subsections.

4.1 Resolvent time delay
The times at which the peak in energy of the forcing and the response modes is observed, tϕ̃max

and tψ̃max
,

are used to obtain the resolvent time delay ∆tres = tψ̃max
− tϕ̃max

. This time delay manifests differently
across varying streamwise and spanwise spatial scales. Figure 4 shows the resolvent time delay ∆tres
across different points in the (λx, λz) parameter space. Notably, the larger streamwise scales are where
the largest time delay is observed, whereas the response nearly instantaneously follows the forcing at
smaller streamwise scales; additionally, although not shown, the temporal extent of the mode follows the
same pattern, where the modes are wider temporally at larger streamwise scales and narrower at smaller
streamwise scales. The leading forcing mode at the scale with larger time delays develops from the high-
shear temporal region, and its corresponding response extends into the low-shear region. Compared with
the 2D energy spectrum at t = 0 (see Figure 3), agreement between the energetic spatial scales and the
scales illuminating larger time delays is observed, while the energetic scales in the energy spectrum at
later times result in modes with smaller temporal extents and time delays.

We next focus on the resolvent modes associated with the spatial scales at earlier and later times,

as described in § 3.4. The leading forcing and response modes ϕ̃u1
and ψ̃u1

alongside their y-integrated

resolvent kinetic energy
[
ϕ̃
]
=
∫ 2

0
|ϕu1

|2 dy and σ1

[
ψ̃
]
= σ1

∫ 2

0
|ψu1

|2 dy, are shown in Figure 5. This

representation showcases the temporal extent and kinetic energy peak of the leading forcing and response
modes. We note that ∆tres is on a similar order for both cases, with ∆tres = 28.7 for the modes whose
length scales are energetic at earlier times, and ∆tres = 22.8 for the modes whose length scales are
energetic at later times. To compare the resolvent time delay with an appropriate time scale from the
DNS statistics, we utilize the two-point autocorrelation in streamwise velocity Ruu(y, t, tref), where tref is
a reference time location. Ruu is shown for two different reference times in Figure 6. At both tref = 112
and tref = 557, Ruu peaks sharply at the reference time, with a decay forward and backward from the
reference location. A DNS time scale can be extracted via the temporal width of the autocorrelation
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Figure 4: Distribution of resolvent time delay ∆tres for different streamwise and spanwise wavelength
combinations.

signals at Ruu = 0.5 [36]; this time scale tuu = 25.1 for tref = 112, and increases slightly at tref = 557,
with tuu = 31.4. We note that the resolvent time delays of similar order compared to these DNS scales,
indicating that the resolvent operator, representative of a linear amplification process, is able to capture
temporal scales similar to those observed in the flow field.

We then apply time windowing to the resolvent operator. Time windows of width Twindow = 53.0
were centered at a location t0window

corresponding to the peak of the y−integrated kinetic energy in the
unwindowed modes. Figure 7 shows the time-windowed forcing and response modes for the candidate
spatial scales at earlier and later times. We note that the resolvent time delay and amplification, along
with the profile of the space-time forcing and response modes, change upon the use of time localization.
The time delay ∆tres = 21.3 at (λx, λz)1 is slightly smaller than that of the unwindowed case, and a
similar phenomenon occurs at (λx, λz)3, with ∆tres = 19.1. The extent of the windowed response modes
in time both decrease. Hence, upon time localization, the growth of response modes is confined due to
the restricted forcing window.

4.2 Resolvent amplification
In the ensuing analysis, we compare the singular values of the wavelet-based resolvent analysis before and
after time windowing. We consider the leading singular value σ1; the singular values from the resolvent
operator describe the linear kinetic energy amplification of unwindowed or time-windowed forcing per-
turbations that lead to the response mode. These amplification factors differ as the analysis is confined
temporally to the same time window used in Figure 7 (see § 4.1). Namely, the leading amplification of
the windowed case σ1,w is lower than that of the unwindowed case σ1; in the high-shear region using
scales (λx, λz)1, we observe σ1,w/σ1 = 0.753, and at the low-shear region at scales (λx, λz)3, this ratio
is slightly higher, with σ1,w/σ1 = 0.859. This indicates that the optimal forcing outside of the specified
window is purposefully excluded upon windowing in time, and any forcing outside of this window (which
has a corresponding response) does not provide any contribution to the amplification in this restricted
problem.

In addition, we can change the temporal location of the window to observe its effect on σ1, thereby
describing how the forcing drives the response over time at physically relevant temporal regions within
the domain. We perform a numerical experiment using windowed wavelet-based resolvent analysis that
incorporates time-localized forcing modes. Note that this is in contrast to the analysis in prior sections,
which have not imposed such restrictions on the modes. The width of the time window Twindow is
fixed to T/4, while the center of the time window t0window

is shifted to different positions in time, and
the resolvent operator is constructed separately for each time window prescribed. The leading singular
value σ1 is plotted across varying time windows at the corresponding scales in Figure 8. At (λx, λz)1,
the resolvent amplification is largest when localizing to initial times, with a subsequent decay as the
time window shifts to later times. At (λx, λz)3, the amplification is slightly greater when the forcing is
restricted to later times. Of particular note is how the change in the amplification is more subtle for the
latter spatial scale; further analysis is needed to understand the reason behind this trend.

The change in amplification as the forcing is restricted to earlier and later times, respectively, is also
observed across different spatial scales. At each spatial scale, a time-windowed wavelet-based resolvent
operator is constructed twice, with time localization in the forcing mode centered at initial and final times;
this corresponds to temporal windows of fixed width Twindow = T/4, but centered at t0window

= 78.5 and
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Figure 5: (a, c) Leading wavelet-based resolvent forcing and response modes ℜ(W−1ϕ̃u1) (top) and

ℜ(W−1ψ̃u1) (bottom) in the y–t plane at spatial scales (a) (λx, λz)1 and (c) (λx, λz)3. (b, d) The y-
integrated kinetic energy of the forcing (top) and response (bottom) mode at spatial scales (b) (λx, λz)1
and (d) (λx, λz)3.
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Figure 6: Two-point autocorrelation of streamwise velocity Ruu, plotted against temporal shift ∆t,
centered at times (a) tref = 112 and (b) tref = 557, with the dashed lines indicating Ruu = 0.5.

t0window
= 550. The difference between the leading singular values ∆σ1 for both operators across different

(λx, λz) combinations is shown in Figure 9. Similar to Figure 4, the larger streamwise scales capture
greater amplification in the resolvent operator windowed to initial times, while the smaller streamwise
(and larger spanwise) scales indicate more amplification in the modes windowed to later times. We note
that the modes corresponding to (λx, λz)1 and (λx, λz)3 are representative of the range of amplification



100 200 300 400 500 600

t

0

1

2

y

-0.05

0

0.05

100 200 300 400 500 600

t

0

1

2

y

-0.1

0

0.1

(a)

100 200 300 400 500 600

t

0

1

2

y

-0.1

0

0.1

100 200 300 400 500 600

t

0

1

2

y

-0.1

0

0.1

(b)

Figure 7: Leading time-windowed wavelet-based resolvent forcing and response modes ℜ(W−1ϕ̃u1) (top)

and ℜ(W−1ψ̃u1
) (bottom) in the y − t plane at spatial scales (a) (λx, λz)1 and (b) (λx, λz)3.
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Figure 8: Resolvent amplification σ1 calculated at time windows centered at different times for spatial
scales (a) (λx, λz)1 and (b) (λx, λz)3 for Twindow = T/4.
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Figure 9: Distribution of the difference in the resolvent amplification ∆σ1 with time windowing at
later times (t0window

= 550) and at earlier times (t0window
= 78.5), for different streamwise and spanwise

wavelength combinations.

across windows at the temporal extrema. These trends across spatial scales show agreement with the
energetic scales in the energy spectrum (see Figure 3). This indicates that resolvent analysis yields results
consistent with the DNS, in terms of the times at which certain spatial scales yield preferential energy
amplification.



Hence, via time localization and identification of quantities describing the relationship between forcing
and response modes, transient cause-and-effect mechanisms and their importance at different times can
be observed. The time delay and amplification both manifest differently at scales whose energy are
contained in the high- and low-shear time regions, and time localization can describe the importance of
impulse forcing at physically relevant times on the corresponding flow features.

5 Resolvent-based modeling of transient flow separation
In this section, we develop a reduced-order model to represent the dynamics of the turbulent C-P flow
using a small number of leading space-time resolvent modes [5, 37]. The reconstruction here is based on
a model consisting of the time-varying base flow U(y, t) and three space-time resolvent modes:

u(x, y, t) = U(y, t) +

3∑
i=1

AiRe
{
ψui

(x, y, t)
}
, (6)

where Ai is the amplitude of mode i, and ψui is the corresponding space-time resolvent mode in the
streamwise direction. Each mode represents the leading response at a specific streamwise-spanwise scale
selected from the candidate scales identified in § 3.4. To avoid ambiguity, the three modes are referred
to as long-streamwise/narrow-spanwise, intermediate, and short-streamwise/wide-spanwise modes.

5.1 Positive flow fraction
To quantitatively characterize the presence of forward-moving fluid at different wall-normal locations
and times, we define the positive flow fraction (PFF). This quantity represents the probability that the
streamwise velocity u is positive at a given wall-normal location y and time t. The PFF is mathematically
defined as

PFFDNS(y, t) = P{u(x, y, z, t) > 0}, (7)

where P{·} denotes the probability of positive streamwise flow over the (x, z) plane at fixed y and t.
In other words, for each y, we examine how often the local streamwise velocity is aligned with the bulk
flow direction. The value of PFFDNS(y, t) varies between 0 and 1. PFFDNS(y, t) = 1 indicates that
at this wall-normal position, the flow is entirely forward-moving. PFFDNS(y, t) = 0 indicates complete
flow reversal at that location. Intermediate values correspond to mixed states, where both forward and
backward motions coexist. Sometimes, it is useful to evaluate the PFF at a specific distance from the
wall, y = y0. In this case, the positive flow fraction simplifies to a time-dependent scalar,

PFFDNS(y0, t) = P{u(x, y0, z, t) > 0}, (8)

where y0 is fixed and the probability is still taken over the horizontal (x, z) plane. This scalar function
PFFDNS(y0, t) is particularly useful for tracking flow separation and reattachment dynamics near the
wall. By comparing PFFDNS(y0, t) computed from the full DNS data and from the reduced-order mode
built with the resolvent modes, we can quantitatively assess how well the resolvent model captures the
temporal behavior of separation events. Figure 10 shows the time evolution of PFFDNS evaluated at
y = 0.04, with the chosen parameters in equation (6)

A1(λx = 6, λz = 1) = 1.5,

A2(λx = 4.83, λz = 1.34) = 5,

A3(λx = 1.98, λz = 2.23) = 20.

The three modes are designed to represent different dynamical features of the flow. In this case,
we have prior knowledge of the DNS data, so we manually tune the coefficients Ai to match the DNS
results. However, this model also has the potential for predictive applications. A direction for future
work is to develop a framework that does not rely on prior knowledge of the DNS data. The long-
streamwise/narrow-spanwise mode at (λx, λz)1 captures the slowly varying, large structures associated
with near-wall separation. The intermediate scales mode at (λx, λz)2 captures medium-sized flow features.
Finally, the short-streamwise/wide-spanwise mode at (λx, λz)3 introduces smaller-scale oscillations in the
streamwise direction that are representative of higher-frequency turbulent motions. The combined effect
of these three modes, together with the time-varying base flow, allows the model to replicate the essential
temporal behavior of the PFF observed in DNS. In Figure 10, we show that the 3-mode model can
accurately capture the time evolution of PFF at a location near the lower wall. Initially, the PFF



remains close to 1, indicating predominantly forward flow across the entire domain. As time evolves,
the inclusion of the three resolvent modes causes localized backflow regions to develop, and the PFF
decreases monotonically. Overall, the comparison illustrates that a superposition of a small number
of physically interpretable space-time resolvent modes can provide a reduced-order description of the
temporal dynamics of near-wall flow reversal events.
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Figure 10: Positive flow fraction PFF(y = 0.04, t) from the resolvent model compared with DNS statistics.
Blue circles represent the model prediction, and the red dashed line shows the DNS data.

5.2 Flow visualization
With a model that accurately captures the positive flow fraction at y = 0.04, we can visualize it by
reconstructing the flow field in the (x, z) planes. This allows us to examine the dominant low-order
structures represented by our model within the flow field. This reduced-order representation is then
visualized by plotting the (y, t) plane direct space-time resolvent modes and the (x, z) plane streamwise
velocity field. The former emphasizes temporal modulation and wall-normal dynamics, while the latter
provides an intuitive physical interpretation of how the structures evolve in space.

Using the same coefficients Ai as before, Figure 11 illustrates the components of the proposed model.
Row i shows the superposition of the base flow and the leading resolvent response mode ψu1

at the
corresponding length scale (λx, λz)i on the y–t plane, with three representative time instants, t1, t2, and
t3, indicated. The three components differ in the choice of length scales and the coefficient, represented
by different pairs of streamwise and spanwise wavelengths which serve as parameters to the resolvent
formulation. It is clearly observed that different choices of length scales result in modes localized at
early, intermediate, and later times. Although the intensity varies due to the differences in coefficients,
the key point is that combining a few selected length scales provides a time-resolved model that cap-
tures the essential DNS statistics over the entire physical domain, using only a simple model with three
representative scales.

At a fixed wall-normal location, y = 0.04, figure 12 shows the reconstructed flow field using a single
mode (and the mean) in the x–z plane. Once again, differences in intensity can be observed at early,
intermediate, and later times. Moreover, the x–z visualization highlights more clearly how the streamwise
structures vary under different choices of characteristic length scales. The first wavelength pair, (λx, λz)1,
exhibits a longer streamwise structure that appears earlier in time. In contrast, the last wavelength
pair, (λx, λz)3, produces structures that emerge later and are shorter in the streamwise direction. This
observation is further supported by Figure 13, which shows a comparison with the corresponding DNS
snapshots.

Figure 13 presents the complete three-mode model on different planes, which consists of the mean
flow combined with the three selected direct space-time resolvent modes. At the initial time t1, both the
model and the DNS exhibit elongated flow structures in the streamwise direction on the x − z plane.
As the time progresses to t2 and t3, a similar trend can be observed in both the model and the DNS:
the streamwise structures on the x–z plane at y = 0.04 become increasingly less pronounced over time.
It is also important to note that the model reconstruction is based on only three modes. As a result,
while the temporal evolution and the large-scale organization of near-wall structures are approximated,
the finer details of turbulent flow cannot be fully captured. However, the agreement between the model
predictions and the DNS snapshots further supports that the proposed PFF acts as an effective indicator
of near-wall dynamics. Specifically, when the model successfully captures the temporal evolution of the



near-wall PFF consistent with DNS, the corresponding spatial variations in the flow field are expected
to exhibit similar trends.
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Figure 11: Instantaneous streamwise velocity from the model combining only mean flow and the response
modes at a single length scales, visualized on the (y, t) plane. Each row corresponds to a representative
wavelength pair (λx, λz)1, (λx, λz)2, and (λx, λz)3. Vertical lines denote three selected time instants t1,
t2, and t3.
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Figure 12: Instantaneous streamwise velocity from the model consisting only mean flow and the response
modes at a single length scales, visualized on the (x, z) plane. Each row corresponds to a different length
scale (λx, λz)1, (λx, λz)2, and (λx, λz)3, while the columns (from left to right) represent the temporal
evolution at t1, t2, and t3, respectively, consistent with Figure 11.
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Figure 13: Comparison between the complete three-mode model and DNS snapshots. The top panel
shows the complete three-mode model on the y–t plane, with three time instants indicated. The left
column presents the model on the x–y plane at these corresponding times, the middle column shows the
x–z plane, and the right column displays the corresponding DNS snapshots.

6 Conclusion
Unlike traditional resolvent analysis, our space-time resolvent frameworks allow for an arbitrarily time-
varying base flow. Consequently, our analysis emphasizes the transient temporal evolution rather than
assuming statistical stationarity.

Our first objective is to examine whether a cause-and-effect relationship exists in the time domain.
Due to the resolvent forcing and response modes illuminating a causal relationship, we can define the
resolvent time delay and amplification both as means by which the forcing and response (i.e. cause and
effect) are linked. Using the wavelet-based resolvent, we can effectively apply temporal windowing to
identify which length scales exhibit more pronounced time delays. The amplification and time delay
differ upon time localization, but the trends in the response modes given an impulse forcing indicate that
even though there are contributions in the forcing/response pairs that are excluded via time windowing,
the effect of flow perturbations earlier in time are observable and comparable with the unwindowed case.
In future studies, it may be interesting to further investigate the mode shapes via the mode tilt angles
and frequency content and connect them to relevant DNS quantities.

Additionally, to construct a reduced-order model more intuitively, we employ the direct space-time
resolvent, in which the temporal differential operator is explicitly formulated. By combining the mean
flow with only three leading resolvent modes at distinct scales, we reconstruct a low-dimensional model
that successfully captures the positive flow fraction (PFF) near the lower wall. This quantity serves as
an indicator of reversal flow or flow separation in the near-wall region.

Furthermore, visualization of the reconstructed flow field in the x–z plane reveals that the model
reproduces the characteristic flow evolution observed in the DNS data, namely, the gradual shortening
of streamwise structures over time and their transition into dominant spanwise structures. This con-
firms that the proposed model not only captures key temporal dynamics but also reflects the underlying
structural transformation of the turbulent flow.
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[10] Vinuesa R, Örlü R and Schlatter P 2017 J. Turbul. 18 170–185 ISSN null
[11] Parthasarathy A and Saxton-Fox T 2025 Journal of Fluid Mechanics 1010 A61
[12] Pirozzoli S, Bernardini M and Orlandi P 2011 J. Fluid Mech. 680 534–563 ISSN 0022-1120, 1469-7645
[13] Samson A, Naicker K and Diwan S S 2021 Physics of Fluids 33 094106 ISSN 1070-6631
[14] Lopez-Doriga B, Ballouz E, Bae H J and Dawson S T M 2024 J. Fluid Mech. 999 A87 ISSN 0022-

1120, 1469-7645
[15] Ballouz E, Lopez-Doriga B, Dawson S T M and Bae H J 2024 J. Fluid Mech. 999 A53 ISSN 0022-

1120, 1469-7645
[16] Cheng W, Pullin D, Samtaney R and Luo X 2023 J. Fluid Mech. 955 A4 ISSN 0022-1120, 1469-7645
[17] Choi Y K, Lee J H and Hwang J 2021 Int. J. Heat Fluid Flow 90 108836 ISSN 0142727X
[18] Wu Z 2021 The Study of Coherent Structures in Adverse Pressure Gradient Turbulent Couette-

Poiseuille Flows with Zero Mean Skin Friction Ph.D. thesis Monash University
[19] Chong M S, Monty J P and Marusic I 2011 The Topology of Surface Skinfriction and Vorticity

Fields in Wall-bounded Flows Proceeding of Seventh International Symposium on Turbulence and
Shear Flow Phenomena (Ottawa Convention Centre, Ottawa, Canada: Begellhouse) pp 1–6

[20] Cardesa J I, Monty J P, Soria J and Chong M S 2019 Journal of Fluid Mechanics 880 R3 ISSN
0022-1120, 1469-7645

[21] Willert C, Soria J, Cuvier C, Foucaut J M and Laval J P 2018 Flow Reversal in Turbulent Boundary
Layers with Varying Pressure Gradients (Lisbon, Portugal)

[22] Orlandi P and Moreau R (eds) 2000 Fluid Flow Phenomena: A Numerical Toolkit (Fluid Mechanics
and Its Applications vol 55) (Dordrecht: Springer Netherlands) ISBN 978-1-4020-0389-9 978-94-011-
4281-6

[23] Wray A 1991 NASA Ames Research Center
[24] Kim J and Moin P 1985 Journal of Computational Physics 59 308–323 ISSN 00219991
[25] Gomez S R and Jaroslawski T 2025 arXiv preprint arXiv:2511.00258
[26] Ballouz E, Dawson S T M and Bae H J 2024 J. Phys.: Conf. Ser. 2753 012002 ISSN 1742-6588,

1742-6596
[27] Ballouz E, Dawson S T M and Bae H J 2025 J. Fluid Mech. 1016 A19 ISSN 0022-1120, 1469-7645
[28] Daubechies I 2006 Ten lectures on wavelets 9th ed (Regional conference series in applied mathematics

no 61) (Philadelphia, Pa: Society for Industrial and Applied Mathematics) ISBN 978-0-89871-274-2
[29] Mallat S 2009 A Wavelet Tour of Signal Processing (Elsevier) ISBN 978-0-12-374370-1
[30] Najmi A H 2012 Wavelets: A Concise Guide (Johns Hopkins University Press) ISBN 978-1-4214-

0496-7 978-1-4214-0495-0 978-1-4214-0559-9
[31] Ran W, Zare A, Nichols J W and Jovanovic M R 2017 The effect of sponge layers on global stability

analysis of Blasius boundary layer flow 47th AIAA Fluid Dynamics Conference (Denver, Colorado:
American Institute of Aeronautics and Astronautics) ISBN 978-1-62410-500-5

[32] Mani A 2012 Journal of Computational Physics 231 704–716 ISSN 0021-9991
[33] Colonius T 2004 Annual Review of Fluid Mechanics 36 315–345 ISSN 1545-4479
[34] Martini E and Schmidt O 2024 Theoretical and Computational Fluid Dynamics 38 665–685 ISSN

1432-2250
[35] Bae H J, Lozano-Durán A and McKeon B J 2021 J. Fluid Mech. 914 A3 ISSN 0022-1120, 1469-7645
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