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A wall model for large-eddy simulation (LES) is proposed by devising the flow as a
combination of building blocks. The core assumption of the model is that a finite set
of simple canonical flows contains the essential physics to predict the wall shear stress
in more complex scenarios. The model is constructed to predict zero/favourable/adverse
mean pressure gradient wall turbulence, separation, statistically unsteady turbulence with
mean flow three-dimensionality, and laminar flow. The approach is implemented using
two types of artificial neural networks: a classifier, which identifies the contribution of
each building block in the flow, and a predictor, which estimates the wall shear stress via
a combination of the building-block flows. The training data are obtained directly from
wall-modelled LES (WMLES) optimised to reproduce the correct mean quantities. This
approach guarantees the consistency of the training data with the numerical discretisation
and the gridding strategy of the flow solver. The output of the model is accompanied
by a confidence score in the prediction that aids the detection of regions where the
model underperforms. The model is validated in canonical flows (e.g. laminar/turbulent
boundary layers, turbulent channels, turbulent Poiseuille–Couette flow, turbulent pipe)
and two realistic aircraft configurations: the NASA Common Research Model High-lift
and NASA Juncture Flow experiment. It is shown that the building-block-flow wall
model outperforms (or matches) the predictions by an equilibrium wall model. It is
also concluded that further improvements in WMLES should incorporate advances in
subgrid-scale modelling to minimise error propagation to the wall model.
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1. Introduction

The use of computational fluid dynamics (CFD) for external aerodynamic applications has
been a key tool for aircraft design in the modern aerospace industry (Casey et al. 2000).
However, flow predictions from state-of-the-art solvers are still unable to comply with the
stringent accuracy requirements and computational efficiency demanded by the industry
(Mauery et al. 2021). In recent years, wall-modelled large-eddy simulation (WMLES)
has gained momentum as a high-fidelity tool for routine industrial design (Goc et al.
2021). In WMLES, only the large-scale motions in the outer region of the boundary layer
are resolved, which enables a competitive computational cost compared with other CFD
approaches (Chapman 1979; Choi & Moin 2012; Yang & Griffin 2021). As such, NASA
has recognised WMLES as an important pacing item for ‘developing a visionary CFD
capability required by the notional year 2030’ (Slotnick et al. 2014). In the present work,
we introduce a wall model based on flow-state classification applicable to a wide variety
of flow regimes that also provides a confidence score for the prediction.

Several strategies for modelling the near-wall region have been explored in the literature,
and comprehensive reviews can be found in Cabot & Moin (2000), Piomelli & Balaras
(2002), Spalart (2009), Larsson et al. (2016) and Bose & Park (2018). One of the most
widely used approaches for wall modelling is the wall flux approach (or approximate
boundary conditions), where the no-slip and thermal wall boundary conditions are
replaced with shear stress and heat flux boundary conditions provided by the wall model.
This category of wall models utilises the large-eddy simulation (LES) solution at a given
location in the domain as input, and returns the wall fluxes needed by the solver as
boundary conditions. Examples of the most popular approaches are those computing the
wall shear stress using the law of the wall (Deardorff 1970; Schumann 1975; Piomelli et al.
1989), the full/simplified Reynolds-averaged Navier–Stokes equations (Balaras, Benocci
& Piomelli 1996; Wang & Moin 2002; Bodart & Larsson 2011; Kawai & Larsson 2013;
Bermejo-Moreno et al. 2014; Park & Moin 2014; Yang et al. 2015), structural vortex
models (Chung & Pullin 2009) or dynamic wall models (Bose & Moin 2014; Bae et al.
2019). Despite the progress, recent results from the American Institute of Aeronautics
and Astronautics Workshop on high-lift prediction (Kiris et al. 2022) have evidenced
the deficiencies of state-of-the-art WMLES in realistic aircraft configurations. Even
simulations with over 350 million degrees of freedom, which are too costly for routine
industrial design cycle, are unable to match accurately the experimental results (Rumsey,
Carlson & Ahmad 2019; GMGW-HLPW 2022; Goc, Bose & Moin 2022; Lozano-Durán,
Bose & Moin 2022).

The need for improved predictions has incited the adoption of machine learning (ML)
tools to complement and enhance existing turbulence models. The reader is referred to the
multiple reviews in the literature for a comprehensive overview of ML for fluid mechanics
(Brenner, Eldredge & Freund 2019; Duraisamy, Iaccarino & Xiao 2019; Brunton, Noack
& Koumoutsakos 2020; Pandey, Schumacher & Sreenivasan 2020; Beck & Kurz 2021;
Duraisamy 2021; Vinuesa & Brunton 2022; Vinuesa et al. 2022). Most models follow the
supervised learning paradigm, i.e. the ML task of learning a function that maps an input
to an output based on known input–output pairs. The first ML-based models for LES were
introduced in the form of subgrid-scale (SGS) models. Early approaches used artificial
neural networks (ANNs) to emulate and speed up a conventional, but computationally
expensive, SGS model (Sarghini, De Felice & Santini 2003). More recently, SGS models
have been trained to predict the (so-called) perfect SGS terms using data from filtered
direct numerical simulation (DNS) (Gamahara & Hattori 2017; Xie et al. 2019). Other
approaches include deriving SGS terms from optimal estimator theory (Vollant, Balarac
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& Corre 2017), deconvolution operators (e.g. Hickel et al. 2004; Maulik & San 2017;
Fukami, Fukagata & Taira 2019) or optimised SGS tensor accounting for numerical errors
(Ling et al. 2022).

One of the first attempts at using supervised learning for wall models in LES can
be found in Yang et al. (2019). The authors noted that a model trained on turbulent
channel flow data at a single Reynolds number could be extrapolated to higher Reynolds
numbers in the same configuration. Similar approaches for data-driven wall models using
supervised learning were developed for various flow configurations, such as a spanwise
rotating channel flow (Huang, Yang & Kunz 2019), flow over periodic hills (Zhou, He &
Yang 2021), turbulent flows with separation (Zangeneh 2021), and boundary layer flow
in the presence of shock–boundary layer interaction (Bhaskaran et al. 2021), with mixed
results in a posteriori testing. The first attempt at semi-supervised learning for WMLES
can be found in Bae & Koumoutsakos (2022), where the authors used reinforcement
learning to train on turbulent channel flow data at relatively low Reynolds numbers. The
model was able to extrapolate to higher Reynolds numbers for turbulent channel flows and
zero pressure gradient turbulent boundary layers. The reinforcement learning wall model
has recently been extended to account for pressure gradient effects (Zhou et al. 2022).
Nonetheless, most of the models cited above rely on information about the flow that is
typically inaccessible in real-world applications, such as the boundary layer thickness, and
is limited to simple flow configurations. One exception is the ML wall model introduced by
Lozano-Durán & Bae (2020), which is applicable directly to arbitrary complex geometries
and provides the foundations for the present modelling effort.

Currently, one major challenge for WMLES of realistic external aerodynamic
applications is achieving the robustness and accuracy necessary to model the myriad
different flow regimes that are characteristic of these problems. Examples include
turbulence with mean flow three-dimensionality, laminar-to-turbulent transition, flow
separation, secondary flow motions at corners, and shock wave formation, to name a
few. The wall stress generation mechanisms in these complex scenarios differ from those
in flat-plate turbulence. However, the most widespread wall models are built upon the
assumption of statistically in equilibrium wall-bounded turbulence without mean flow
three-dimensionality, which applies to only a handful number of flows. The latter raises the
question of how to devise models capable of accounting seamlessly for such a vast and rich
collection of flow physics in a single unified approach. Another important consideration is
the data required for training the ML models and consistency with the numerical schemes
and grid generation strategy.

In this work, we develop a wall model for LES using building-block flows. The
model is formulated to account for various flow configurations, such as wall-attached
turbulence, wall turbulence under favourable/adverse pressure gradients, separated
turbulence, statistically unsteady turbulence, and laminar flow. The model comprises
two components: a classifier and a predictor. The classifier is trained to place the flows
into separate categories along with a confidence score, while the predictor outputs the
modelled wall stress based on the likelihood of each category. The training data are
obtained directly from WMLES with an ‘exact’ model for mean quantities to guarantee
consistency with the numerical discretisation and grid structure. The model is validated in
canonical flows outside the training set and complex flows. The latter includes two realistic
aircraft configurations, namely, the NASA Common Research Model High-lift and NASA
Juncture Flow experiment.

This paper is organised as follows. The formulation of the new model is discussed in
§ 2. The numerical approach and traditional wall models that serve as a comparison point
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Figure 1. Schematic of the building-block flow wall model (BFWM). Details of the formulation are provided
in § 2.

are introduced in § 3. The model is validated in § 4 and compared with an equilibrium
wall model. The model limitations are discussed in § 5. Finally, conclusions are offered
in § 6.

2. Model formulation

The working principle of the proposed model is summarised in figure 1. The model is
referred to as the building-block-flow wall model (BFWM) and was first introduced by
Lozano-Durán & Bae (2020). The BFWM is comprised of two elements: a classifier
and a predictor. First, the classifier is fed data from the LES solver and quantifies the
similarities of the input with a collection of known building-block flows. The predictor
leverages the information of the classifier together with the input to generate the wall
shear stress prediction via a combination of the building-block flows from the database.
Each building block is dedicated to modelling different flow physics (e.g. wall-attached
turbulence, adverse/favourable pressure-gradient effects, separation, laminar flow), and
the model provides a blending between flows using information from the classifier. A
confidence score is generated based on the similarity between the input data and the
building-block flows. If the input data look extraneous, then the model prompts a low
confidence score, which essentially means that the flow is unknown and does not match any
knowledge from the database. In the following, we elaborate on the model requirements,
assumptions, input/output data, training data, and ANN architecture.

2.1. Model requirements
We consider the following model requirements.

(i) The wall model should be able to account for different flow physics (e.g. laminar
flow, wall-attached turbulence, separated flow) in a unified manner (i.e. the input
and output structure of the model must be identical regardless of the case).

(ii) The model must be scalable to incorporate additional building-block flows if needed
in future versions.
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(ii) The model must provide a confidence score in the prediction at each point at the
wall.

(iv) The model formulation must be directly applicable to complex geometries
(e.g. realistic aircraft configuration) without any additional modifications. This
requirement will constrain the allowable input variables and the parameters used
for their non-dimensionalisation (i.e. they will need to be local in space).

(v) The model must account for the numerical errors of the schemes employed to
integrate the LES equations. This implies that the input data used to train the model
must be consistent with the data from the LES solver rather than from filtered DNS.

(vi) The inputs and outputs of the model must be given in non-dimensional form to
comply with dimensional consistency.

(vii) The model must be invariant under constant space/time translations and rotations of
the frame of reference.

(viii) The model must be Galilean invariant.

2.2. Model assumptions
The main modelling assumptions are as follows.

(i) There is a finite set of simple flows (referred to as building-block flows) that contains
the essential flow physics to formulate generalisable wall models.

(ii) The effect of the (missing) near-wall SGS in WMLES of complex flows
is representable by a linear combination of the near-wall behaviour of the
building-block flows.

(iii) A set of N non-dimensional model inputs based on local flow quantities is enough to
discern among building-block flows, where N is the minimum number of parameters
characterising the building-block flow collection.

(iv) The non-dimensional form of the model inputs/outputs that provides the best
predictive capabilities (i.e. interpolation/extrapolation between training cases) is
obtained by scaling the variables with the kinematic viscosity and the distance to
the wall.

(v) The flow information from two contiguous wall-normal locations is enough to
predict the wall shear stress in the vicinity of those locations.

(vi) History effects for the SGS flow are captured using instantaneous accelerations
without the need for additional information from past times.

Assumptions (i) and (ii) imply that the BFWM would provide accurate predictions
as long as the (non-universal) large-scale flow motions are resolved by the WMLES
grid, and the (smaller-scale) near-wall dynamics resemble the building-block flows or
a combination of them. Assumption (iii) stems from the fact that the number of input
variables to distinguish among different cases in the building-block flow collection must
be, at least, equal to the number of non-dimensional groups required to characterise
completely the wall shear stress across all the building-block flows. For the building-block
flows chosen in this work, six parameters are needed to unambiguously identify the wall
shear stress from one particular case (as will be discussed in § 2.3). These parameters
are global quantities not available to the model. Instead, six non-dimensional inputs
using local flow information are fed into the BFWM to predict the wall shear stress.
However, there is no guarantee that these inputs can be used to discern among all possible
building-block flows in a univocal manner at all times, and from there comes the need for
assumption (iii).
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(a) (b) (c)

(d) (e) ( f )

Figure 2. Examples of building-block units taken as representative of different flow regimes: (a) freestream,
(b) laminar channel flow, (c) turbulent channel flow, (d) turbulent Poiseuille–Couette flow for zero wall stress,
(e) turbulent Poiseuille–Couette flow with a strong adverse mean pressure gradient, and ( f ) turbulent channel
flow with sudden imposition of spanwise mean pressure gradient.

In assumption (iv), it is assumed that the scaling proposed will be the best in all the
flow scenarios that the model may encounter, which is not true in general. For example,
the current scaling choice will not provide the best performance in the presence of strong
compressibility effects, chemically reacting flows or multiphase flows.

Assumptions (v) and (vi) are adopted for the sake of model simplicity. The choice is
informed by our previous work in Lozano-Durán & Bae (2020), where a seven-point
stencil was used for the input variables compared to the simpler, two-point stencil
selected in the present work. It was noted that the seven-point stencil greatly complicated
the model implementation without providing important benefits in terms of model
performance. There are additional modelling assumptions that are not stated explicitly
above. Nonetheless, points (i) to (vi) are the most critical assumptions affecting the model
performance.

2.3. Building-block flows
Seven types of building-block flows are considered, and examples are shown in figure 2.
All the cases entail an incompressible flow confined between two parallel walls, with
the exception of the freestream flow. Cases with additional complexity, such as aerofoils,
wings and bumps, are avoided intentionally. The rationale behind this choice is that the
building blocks should encode the key flow physics to predict more complex scenarios.
Hence we intend to avoid case overfitting, i.e. predicting the flow over a wing correctly
merely because the model was also trained on similar wings instead of capturing the flow
physics faithfully.

For the building blocks, the streamwise, wall-normal and spanwise spatial coordinates
are denoted by x, y and z, respectively. The walls are separated by a distance 2h. The density
is ρ, and the dynamic and kinematic viscosities of the fluid are μ and ν, respectively.
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In the following, we discuss the configuration and physical motivation behind each
building block. We also include in parentheses the label for each building-block
flow.

(1) Freestream (freestream). A uniform and constant velocity field is used as
representative of freestream flows. The main role of this building-block flow is to
identify near-wall regions with zero points per boundary layer thickness. In these
situations, the BFWM applies a ZPG model (defined below) to estimate the wall
stress. The prediction is accompanied by a low confidence score as there is not
enough information to provide reliable predictions.

(2) Wall-bounded laminar flow (laminar). The near-wall region of a laminar flow is
modelled using Poiseuille flow (i.e. parabolic mean velocity profile). The goal of this
building block is to allow the prediction of the wall stress in wall-attached laminar
scenarios. The case is characterised by the friction Reynolds number Reτ = uτ h/ν,
where uτ is the friction velocity at the wall, and h is the channel half-height.
The range of Reynolds numbers considered is from Reτ = 5 to Reτ = 104. A
parabolic mean velocity profile is used to predict analytically the stress at the
wall.

(3) Wall-bounded turbulence under zero mean pressure gradient (ZPG). Canonical
wall turbulence without mean pressure gradient effects is modelled using turbulent
channel flows as a building block. The wall stress predictions are provided by an
ANN trained for Reτ = 100 to Reτ = 10 000 using numerical data (Lozano-Durán
& Jiménez 2014a; Hoyas et al. 2022).

(4) Wall-bounded turbulence under favourable/adverse mean pressure gradient and
separation (FPG, APG and separation, respectively). We utilise the turbulent
Poiseuille–Couette flow as a simplified representation of wall-bounded turbulence
subject to favourable and adverse mean pressure gradient effects. The bottom wall is
set at rest, and the top wall is set at a constant velocity equal to Ut > 0. A streamwise
mean pressure gradient, denoted by dP/dx, is applied to the flow. Favourable
pressure gradient effects are obtained for values of dP/dx accelerating the flow in
the same direction as the top wall. Adverse pressure gradient conditions are achieved
for values of dP/dx that accelerate the flow in the direction opposite to that of the top
wall. Flow separation is represented by values of dP/dx at which the wall stress at the
bottom wall is zero. The different flow regimes are characterised by the two Reynolds
numbers ReP = ±√|dP/dx|/ρ h/ν and ReU = Uth/ν. The wall stress predictions
are provided by an ANN trained for ReP from −1.2 × 103 to 1.2 × 103, and ReU

from 5 × 103 to 2 × 104. New DNS runs were conducted for these cases using the
same numerical solver as in previous investigations by our group (Lozano-Durán,
Hack & Moin 2018; Lozano-Durán & Bae 2019a).

(5) Statistically unsteady wall turbulence with three-dimensional mean flow (unsteady).
The last building-block flow considered is a turbulent channel flow subject to
a sudden spanwise mean pressure gradient dP/dz. The role of this case is to
capture out-of-equilibrium effects due to strong unsteadiness and mean flow
three-dimensionality, such as the decrease in the magnitude of the wall stress and the
misalignment between the wall stress vector and mean shear vector. Only the initial
transient of the flow, where non-equilibrium effects manifest, is considered. The
different flow regimes are characterised by the streamwise friction Reynolds number
Reτ = uτ h/ν before the imposition of dP/dz and the ratio of streamwise to spanwise
mean pressure gradients Π = (dP/dz)/(dP/dx). The wall stress predictions are
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provided by an ANN trained for Reτ = 100 to 1000 and Π = 5 to 100 using data
from Lozano-Durán et al. (2020b).

The wall shear stress from each case in the building-block flow collection considered
is determined completely by the specification of six parameters: Reτ (or ReP), ReU ,
Π , tuτ /h (non-dimensional time for unsteady cases), turbulent/non-turbulent flow, and
laminar/freestream. Not all parameters are relevant for each case, yet they are required to
avoid ambiguities.

The DNS database for ZPG, FPG, APG, separation and unsteady contains roughly 500
simulations. Figure 3 contains examples of the DNS mean velocity profiles for a selection
of building-block flows. An advantage of the present building-block set-up is that it allows
the generation of contiguous data from one flow regime to another without modifying the
geometry, only varying the non-dimensional numbers defining the case (e.g. from FPG to
ZPG to APG to separation by just changing the mean pressure gradient). This facilitates
the generation of training data filling the non-dimensional space of inputs, which translates
into a more reliable model. The latter is an important requirement, as the role of a model
should be not fitting one particular dataset but learning the scaling of the non-dimensional
inputs and outputs controlling the problem at hand.

2.4. Input and output variables
The input variables are acquired using a two-point stencil as shown in figure 1. The stencil
contains the centre of the control volume attached to the wall (where the wall shear stress
is to be predicted) and the second control volume off the wall along the wall-normal
direction. Given that the model is intended to be used in complex geometries, the centres
do not need to align perfectly along the wall-normal direction. This misalignment is
considered during the model training. The information collected from the flow is

{u1, u2, γ12, a1, γ̇1, k1, km1}, (2.1)

where u1 = |u1| and u2 = |u2| are the magnitude of the wall-parallel velocities relative
to the wall at the first and second control volumes, respectively, γ12 is the angle between
u1 and u2, a1 is the magnitude of the acceleration at the first control volume, γ̇1 is the
time derivative of the angle of u1 in the wall-parallel direction, and k1 and km1 are the
turbulent kinetic energy and mean kinetic energy, respectively, at the first control volume
and relative to the wall. The mean velocity to compute k1 and km1 is obtained via an
exponential average in time (denoted by (·̄)) with time scale 10Δ/

√
km1, where Δ is

the characteristic grid size based on the cube root of the control volume. The quantities
predicted by the model are

{τw, γ1w, pi
class, pconf }, (2.2)

where τw = |τw| is the magnitude of the wall stress vector, γ1w is the angle between u1

and τw, pi
class ∈ [0, 1] for i = 1, . . . , 7 is the probability of the flow corresponding to each

building-block category, and pconf ∈ [0, 1] is the model confidence score.
The input to the wall model comprises the non-dimensional groups formed by the set{

u1y1

ν
,

u2y2

ν
, γ12,

a1y3
1

ν2 ,
γ̇ 1y2

1
ν

,
k1

km1

}
. (2.3)
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Figure 3. Mean velocity profiles for a selection of building-block flows. (a) Turbulent channel flows for (from
left to right) Reτ = 180, 550, 950, 2000, 4200 and 10 000 (ZPG). (b) Turbulent Poiseuille–Couette flows with
favourable mean pressure gradient (FPG) at ReU = 6500 (dashed) for ReP = 0, 100, 150, 200, 250, 300 (from
left to right), and ReU = 22 360 (solid) for ReP = 0, 380, 550, 750, 800, 1000 (from left to right). (c) Turbulent
Poiseuille–Couette flows with adverse mean pressure gradient (APG) and separation at ReU = 6500 (dashed)
for ReP = 0, −100, −150, −200, −250, −300 (from right to left) and ReU = 22 360 (solid) for ReP = 0,
−380, −550, −750, −800, −1000 (from right to left). (d) Turbulent channel flows with the sudden imposition
of spanwise mean pressure gradient for increasing time (from light to dark colour) for the streamwise (in blue)
and spanwise (in red) mean velocity profiles at Reτ = 550 (solid) and Reτ = 950 (dashed) for Π = 60. In
all cases, uτ,ZPG is the friction velocity of the same case without adverse/favourable/spanwise mean pressure
gradient.

The model applies the exponential averaged (·̄) to the input variables, and this is accounted
for in the training. The non-dimensional output of the wall model is{

τwy1

μū1
, γ1w, pi

class, pconf

}
. (2.4)

We have avoided explicitly the use of flow parameters such as freestream velocity and bulk
velocity flow, as they are not identifiable unambiguously for arbitrary geometries.

The non-dimensional groups in (2.3) are devised to enable the classification and
wall stress prediction according to the building-block flows considered. All the inputs
contribute to the prediction of the outputs to some degree. However, it is possible to
highlight the main role played by each input variable. The first two inputs, u1y1/ν and
u2y2/ν, represent the local Reynolds numbers at the first and second control volumes,
respectively. They are key drivers for the prediction of the wall shear stress in all cases by
detecting the shape of the mean velocity profile. They aid the distinction between turbulent
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channel flow, turbulence with favourable/adverse mean pressure gradient, and separation.
The relative angle γ12 is used to detect three-dimensionality in the mean velocity profile.
The non-dimensional acceleration a1y3

1/ν
2 and the angular rate of change γ̇1y2

1/ν facilitate
the prediction of the magnitude and direction of statistically unsteady effects in the wall
shear stress. Finally, k1/km1 is leveraged to discern between turbulent flows (ZPG, APG,
FPG, etc.) and non-turbulent flows (freestream and laminar). The wall stress at the output
is non-dimensionalised using the pseudo-wall-stress μū1/y1, as it was found to minimise
the spread of the data between cases. This scaling improved the generalisability of the
model and facilitated learning the trends in the data by the ANNs.

2.5. WMLES with optimised SGS/wall model
The training data (discussed in § 2.6) are generated using WMLES with SGS/wall models
optimised to obtain the exact values for the mean velocity profiles and wall stress
distribution in order to attain consistency with the numerical discretisation and gridding
strategy of the solver. This approach was preferred over filtered DNS data, as it is
known that the SGS tensor in implicitly filtered LES (τ SGS

ij ) does not coincide with the
Reynolds stress terms resulting from filtering the Navier–Stokes equations. The ambiguity
in the filter operator renders DNS data inadequate for the development of SGS models
because of inconsistent governing equations (Lund & Kaltenbach 1995; Lund 2003; Bae
& Lozano-Durán 2017, 2018, 2022). This limitation is particularly relevant in the present
work, as the typical grid sizes utilised in WMLES of external aerodynamics are orders
of magnitude larger than the characteristic Kolmogorov length scale of the near-wall
turbulence. Consequently, numerical errors are comparable to modelling errors, and the
former must be accounted for in order to yield accurate predictions.

We introduce an exact-for-the-mean SGS (ESGS) model given by

τESGS
ij = τ base

ij + �τ SGS
ij , (2.5)

where τ base
ij is the SGS stress tensor provided by the baseline (imperfect) SGS model

(in this case, the dynamic Smagorinsky model, albeit another model could have been
selected), and �τ SGS

ij is the SGS model correction such that the WMLES mean velocity
profiles match the DNS counterparts. In this approach, instantaneous DNS flow fields are
not needed, and neither is a specific LES filter shape. The correction �τ SGS

ij is calculated
on the fly as the instantaneous force ∂�τ SGS

ij /∂xj required for 〈ui〉xz = 〈uDNS
i 〉xzt, where

〈·〉xz denotes average over the homogeneous directions x and z, and 〈uDNS
i 〉xzt is the DNS

mean velocity profile for the ith velocity component averaged over x, z and t. If the DNS
flow is not statistically stationary (e.g. the unsteady building-block flow), then the average
is taken over x, z, and statistically equivalent realisations. At each wall-normal location,
the force ∂�τ SGS

ij /∂xj is calculated numerically as the value required in the right-hand side
of the LES equations to match the DNS mean velocity profile in the next time step.

The boundary condition at the wall is also modified to reproduce the probability density
function (p.d.f.) of the wall shear stress from DNS, and it is referred to as the exact
boundary condition (EBC). This was achieved by using an inverse probability integral
transform, which generates random numbers from an arbitrary probability distribution
given its cumulative distribution function (Devroye 2006). During the runtime of WMLES
with ESGS, random numbers are sampled from the uniform distribution and mapped onto
the p.d.f. of the wall shear stress obtained previously from DNS. The process is performed
for all wall locations at each time step.
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WMLES of all the building-block flows was conducted using ESGS with EBC
(hereafter, E-WMLES). The simulations were carried out in the same flow solver used
later to implement the BFWM. This guarantees consistency of the training data with the
actual numerical errors of the solver and gridding structure under the assumption of an
SGS model able to predict accurately the mean velocity profiles.

2.6. E-WMLES training data, ANN architecture, and training method
Figure 4 offers an overview of the training workflow, which is divided into three steps.

Step 1: generation of E-WMLES training database. The mean velocity profiles and the
p.d.f.s of the wall shear stress from DNS are used to generate the training database using
E-WMLES as described in § 2.5. The E-WMLES database comprises the building-block
flows cases discussed in § 2.3 at isotropic grid resolutions Δ = h/N with N = 5, 10, 20,
40, 80, 160 and 380, which cover (by a wide margin) the grid resolutions encountered in
external aerodynamic applications. For grid resolutions finer than Δ = h/380, the BFWM
was trained with DNS data to ensure convergence to the no-slip boundary condition. For
each grid resolution, the E-WMLES data generated are time-resolved with a varying time
step such that the Courant–Friedrichs–Lewy number is equal to 0.5. Time-resolved data
were required to compute accelerations and time averages of the input variables that are
representative of WMLES. The E-WMLES cases were run for 10 eddy-turnover times
(defined by h/uτ ). This time was sufficient to capture the statistical trends of the smallest
flow scales in the E-WMLES, which have lifetimes of the order of Δ/uτ (Lozano-Durán
& Jiménez 2014b). It was found that reducing the time length of the training data below
3 eddy-turnover times significantly reduced the performance of the ANNs. The unsteady
cases were simulated only for the period along which non-equilibrium effects are relevant
(i.e. between 0.5 and 2 eddy-turnover times). Each E-WMLES contains of the order of
1000 to 10 000 snapshots, depending on the case. The training set was augmented by
performing E-WMLES in which the x direction (i.e. mean flow direction) was rotated
parallel to the wall by −45◦, −40◦, −35◦, . . . , 35◦, 40◦, 45◦.

Step 2: training the ANN for the classifier. The classifier is trained using the full
E-WMLES database and independently of the predictors. The classifier is an ANN with 5
hidden layers and 20 neurons per layer. The layers are connected with rectified linear units
(ReLUs) as the activation function. The input to the classifier is the set of non-dimensional
groups from (2.3). The last layer of the classifier is followed by the softmax activation
function, which provides the probabilities of belonging to each building-block flow
category (pi

class, i = 1, . . . , 7) such that
∑

pi
class = 1. The ANN weights and biases of

the classifier are given by wc = argminwc

∑7
i=1

∑N
j=1 −pi,true

class,j log
(

pi,predicted
class,j

)
, where N

is the number of samples per category. The performance of the classifier after training
is evaluated in figure 5, which shows the normalised confusion matrix. The diagonal
of the matrix contains the percentages of inputs that are classified correctly, whereas
off-diagonal values show the amount of misclassification among cases. The matrix shows
that most samples are classified correctly. There are a few misclassifications (off-diagonal
values) that are intentional to ensure a smooth transition between building blocks. This
is caused by the overlap between contiguous building blocks, such as separation and
strong APG, mild APG and ZPG, ZPG and mild FPG, and ZPG and unsteady. The only
unintentional misclassification is the larger number of ZPG samples classified as FPG.
However, this did not impact the performance of the BFWM, as the wall stress predictions
for FPG and ZPG are comparable. Note that there is no ambiguity in the distinction
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Step 1: Generation of training data

Step 3: Training ANNs for the predictor of each building-block flow

Step 2: Training the ANN for the classifier

DNS data for each building-block flow:

- Mean velocity profiles

- Wall shear stress p.d.f.s
E-WMLES

database for training

E-WMLES of all

building-block flows

for different Δ
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database for training
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Figure 4. Overview of the training workflow for the BFWM. The details are discussed in § 2.6.

between freestream/laminar and turbulent cases, which is important as their predictions
vary considerably. A confidence score pconf ∈ [0, 1] is inferred from the distance of the
input to its nearest neighbour in the training set. In particular, the confidence is based
on the ratio ds/di (clipped to be less than 1), where di is the distance of the input to the
closest sample in the training set, and ds is the average distance of the latter to its ten
closest samples in the training set.
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Figure 5. Confusion matrix of the classifier. The categories are freestream (freestream), laminar channel
flow (laminar), favourable mean pressure gradient wall turbulence (FPG), zero mean pressure gradient wall
turbulence (ZPG), adverse mean pressure gradient wall turbulence (APG), separated turbulence (separation),
and statistically unsteady wall turbulence (unsteady).

Step 3: five ANNs are trained, each dedicated to predicting one building-block flow,
i.e. ZPG, APG, FPG, separation and unsteady. The ANN predictors are obtained via a
deep feed-forward ANN with 5 hidden layers and 30 neurons per layer. The activation
functions selected for the hidden layers are hyperbolic tangent sigmoid transfer functions
and ReLU activation transfer functions. The ANN weights and biases of each predictor
are given by wp = argminwp

‖qpredicted − qtrue‖, where q = (τwy1/μū1, γ1w). Predictions
of the ANN are calculated for each building-block category and added together, weighted
by the probability of belonging to the ith category:

τwy1

μū1
=

∑
i

pi
class

τ i
wy1

μū1
, γ1w =

∑
i

pi
class γ i

1w, (2.6a,b)

where τ i
w and γ i

1w are the predictions for the ith category. The process is illustrated in
figure 6. The ANNs are trained using Bayesian regularisation back propagation by dividing
the training data into two groups: the training set (80 % of the data) and the test set (20 %
of the data). The test set includes full cases for Reynolds numbers (and Π values) that
are not part of the training set. This was found to improve the predictive capability of the
network when interpolating and extrapolating among unseen cases. The errors from each
training sample in the lost function were weighted to compensate for the different number
of snapshots available for each case. Figure 7 shows the performance plot of the ANN
trained for the unsteady building-block flow.
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Figure 6. Schematic of the predictor. The predictor consists of a collection of ANNs/analytical models
specialised in predicting the wall shear stress of each building-block flow. The final output is the sum of the
predictions from each building-block flow weighted by the probability of each category.
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Figure 7. Joint p.d.f. of the predicted output and actual output for (a) the magnitude of the wall stress τ̃w, and
(b) the relative angle γ̃1w. The tilde denotes values standardised by the mean and standard deviation of the
training set. The results are for the statistically unsteady turbulent flow (unsteady).

For both the classifier and predictor, the inputs and outputs are standardised using the
mean and the standard deviation of the training set. These values are stored as part of
the model and used to standardise the inputs and outputs when the model is deployed. A
parametric study was performed in terms of the number of layers and neurons per layer,
and the present layouts were found to give a fair compromise between neural network
complexity and predictive capabilities. Finally, it took roughly 12 h to train each ANN
using 4 NVIDIA A100 with 40 GB of memory. The computational cost of the WMLES
solver using the BFWM is between 1.1 and 1.3 times more expensive than the same
WMLES solver using the algebraic equilibrium wall model from § 3.2. The particular cost
depends on the number of boundary nodes the BFWM is applied to. However, no effort
was devoted to optimise the current implementation of the BFWM.
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3. Numerical methods

3.1. Flow solver and grid generation
The simulations are conducted with the high-fidelity solver charLES developed by
Cascade Technologies, Inc. (Bres et al. 2018; Fu et al. 2021). The code integrates the
compressible LES equations using a kinetic-energy-conserving, second-order-accurate,
finite-volume method. The numerical discretisation relies on a flux formulation that is
approximately entropy-preserving in the inviscid limit, thereby limiting the amount of
numerical dissipation added into the calculation. The time integration is performed with a
third-order Runge–Kutta explicit method.

The mesh generation follows a Voronoi hexagonal close-packed (HCP) point-seeding
method, which automatically builds locally isotropic meshes for arbitrarily complex
geometries. First, the watertight surface geometry is provided to describe the
computational domain. Second, the coarsest grid resolution in the domain is set to
uniformly seeded HCP points. Additional refinement levels are specified in the vicinity
of the walls if needed. Ten iterations of Lloyd’s algorithm smooth the transition between
layers with different grid resolutions.

3.2. Traditional SGS/wall models
Two SGS models are considered: the dynamic Smagorinsky model (DSM; Germano et al.
1991) with the modification by Lilly (1992), and the Vreman model (VREM; Vreman
2004). For the wall, we use a traditional equilibrium wall model (EQWM). The no-slip
boundary condition at the wall is replaced by a wall stress boundary condition. The
walls are assumed adiabatic, and the wall stress is obtained by an algebraic equilibrium
wall model derived from the integration of the one-dimensional stress model along the
wall-normal direction (Deardorff 1970; Piomelli et al. 1989):

u+
2 ( y+

⊥) =
⎧⎨⎩

y+
⊥+a1( y+

⊥)2 for y+
⊥<23,

1
κ

ln y+
⊥ + B otherwise,

(3.1)

where u2 is the model wall-parallel velocity at the second grid point off the wall, y⊥ is
the wall-normal direction to the surface, κ = 0.41 is the Kármán constant, B = 5.2 is the
intercept constant, and a1 is computed to ensure C1 continuity. The superscript + denotes
inner units defined in terms of wall friction velocity and ν.

4. Model validation

The BFWM is first validated in canonical flows: laminar and turbulent boundary layers
with zero mean pressure gradient, turbulent pipe flow, turbulent Poiseuille–Couette flows,
and statistically unsteady turbulent channel flow. These cases are intended to test the
predictive capabilities of the BFWM in cases that are comparable (but not identical) to
the training and test sets. The performance of the BFWM to predict the wall shear stress in
complex scenarios is evaluated in two realistic aircraft configurations: the NASA Common
Research Model High-lift and the NASA Juncture Flow experiment.

The validation cases are conducted by combining BFWM with two SGS models: DSM
and VREM. The simulations performed with DSM and VREM together with BFWM are
denoted by DSM-BFWM and VREM-BFWM, respectively. The results are compared with
WMLES using DSM and VREM in conjunction with the EQWM. The last two cases are

963 A35-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.331


A. Lozano-Durán and H.J. Bae

referred to as DSM-EQWM and VREM-EQWM, respectively. When possible, we also
include the results for ESGS combined with BFWM (referred to as ESGS-BFWM). The
latter aims at assessing the performance of the BFWM in the absence of external SGS
modelling errors, as discussed in the following section.

4.1. External versus internal wall-modelling errors
Two sources of errors can be identified in a wall model (Lozano-Durán et al. 2022): errors
from the outer LES input data, referred to as external wall-modelling errors, and errors
from the wall model physical assumptions, referred to as internal wall-modelling errors.
In the former, errors by the SGS model at the matching locations propagate to the value
of τw predicted by the wall model. These errors can be labelled as external to the wall
model inasmuch as they are present even if the wall model provides an exact physical
representation of the near-wall region. The second source of errors represents the intrinsic
wall model limitations: even in the presence of exact values for the input data, the wall
model might incur errors when the physical assumptions of the model do not hold. In
the BFWM, internal errors may come from the inadequacy of the building-block flows
to represent the physics of the near-wall region (e.g. compressibility effects, heat transfer
effects, separation differing from the physics modelled by Poiseuille–Couette flows). A
consequence of internal errors is that WMLES might not converge to the DNS solution
with grid refinements until the grid is in the DNS-like regime when the contribution of the
wall model is negligible. The combined external plus internal error is referred to as total
error. We use ESGS-BFWM to isolate the internal wall-modelling errors when possible.

4.2. Laminar boundary layer
The set-up for the laminar boundary layer is the flow over a flat plate with zero mean
pressure gradient and imposed inflow velocity from the Blasius solution. At the top
boundary, the freestream velocity is U∞ and the vertical velocity is also calculated from
the Blasius solution. A convective boundary condition is used at the outflow. The range of
Reynolds numbers is from Rex = U∞L0/ν = 104 to Rex = 106, where L0 is the distance
of the inlet to the leading edge of the plate. The streamwise, wall-normal and spanwise
sizes of the domain are 150L0, 2L0 and 1L0, respectively. The grid resolution is uniform in
the three directions, with Δ/δi ≈ 1/2 at the inlet, which corresponds to Δ/δo ≈ 1/20 at
the outlet, where δi and δo are the boundary layer thicknesses based on 99 % of U∞ at the
inlet and outlet, respectively. The reference solution was computed by DNS of the same
set-up.

The streamwise mean velocity profiles are captured within 5 % error for DSM-EQWM,
VREM-EQWM, DSM-BFWM and VREM-BFWM, as shown in figure 8(a). Figure 8(b)
reveals that the flow is classified correctly as laminar with confidence near 100 %. The
only exception is a small region close to the inlet, where the flow is labelled as freestream
with lower confidence owing to the lack of grid resolution in that region (there are only
two points per boundary layer thickness at the inlet). The internal wall model errors are
included in figure 8(c), which shows a clear improvement in performance by the BFWM
compared to the EQWM. After the initial transient from the inflow, errors for the BFWM
are below 1 % and decay faster than errors for the EQWM, which are always above 20 %.
The total wall stress error is evaluated in figure 8(d). The performance of the BFWM is still
superior to that of the EQWM. However, the accuracy of the BFWM is severely diminished
due to the external wall-modelling errors from the DSM and VREM. Figure 8(d) also
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Figure 8. Validation case: laminar boundary layer. (a) The streamwise mean velocity profiles at x/L0 = 1,
11, 21, 31 and 41 for the DSM-EQWM (blue squares), VREM-EQWM (blue crosses), DSM-BFWM (red
squares), VREM-BFWM (red crosses), and DNS (solid line). The mean velocity profiles are shifted by
�u/U∞ = (x/L0 − 1)/5. (b) Dominant flow classification (solid blue) and confidence score (solid red) by the
DSM-BFWM as a function of the streamwise distance. (c) Internal wall-modelling error of the wall stress
prediction for the ESGS-BFWM (diamonds) and ESGS-EQWM (circles) as a function of the streamwise
distance. (d) Total wall-modelling error for the DSM-EQWM (dashed line and squares), DSM-BFWM (solid
line and squares), VREM-EQWM (dashed line and crosses), and VREM-BFWM (solid line and crosses) as a
function of the streamwise distance.

reveals that the DSM-EQWM and VREM-EQWM are subjected to internal/external error
cancellation (i.e. predictions may improve despite the fact that input values differ from
ESGS). The degraded accuracy of the BFWM due to SGS model errors and the presence of
error cancellation using the EQWM are recurrent observations in the following validation
cases.

4.3. Zero mean pressure gradient turbulent boundary layer
For the zero pressure gradient turbulent boundary layer case, the range of Reθ for the
turbulent boundary layer is from 800 to 2000, where Reθ is the Reynolds number based on
U∞ and the momentum thickness (θ ). The length, height and width of the simulated box
are Lx = 1060 θavg, Ly = 18 θavg and Lz = 35 θavg, where θavg denotes θ averaged along
the streamwise coordinate. The boundary conditions at the top plane are u = U∞, w = 0,
and v is estimated from the known experimental growth of the displacement thickness for
the corresponding range of Reynolds numbers as in Jiménez et al. (2010). This controls the
average streamwise pressure gradient, whose nominal value is set to zero. The turbulent
inflow is generated by the recycling scheme of Lund, Wu & Squires (1998), in which the
velocities from a reference downstream plane, xref , are used to synthesise the incoming
turbulence. The reference plane is located well beyond the end of the inflow region to
avoid spurious feedback (Nikitin 2007; Simens et al. 2009). In our case, xref /θi = 890,
where θi is the momentum thickness at the inlet. A convective boundary condition is
applied at the outlet with convective velocity U∞ (Pauley, Moin & Reynolds 1990) and
small corrections to enforce global mass conservation (Simens et al. 2009). The spanwise
direction is periodic. The grid resolution is uniform in the three directions. Compared to
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the boundary layer thickness, the grid size is Δ/δi ≈ 1/5 at the inlet and Δ/δo ≈ 1/20
at the outlet. The reference DNS solution is from Towne et al. (2022), which follows an
identical numerical set-up.

To facilitate the comparison between DNS and WMLES, we use as independent
variables Rex and x/L0, as these are free from modelling errors. The streamwise mean
velocity profiles (figure 9a) deviate about 10–30 % from the DNS profile. The flow is
classified correctly by the BFWM as ZPG with almost 100 % confidence across the vast
majority of the domain (figure 9b). Close to the inlet, the flow is labelled as unsteady and
APG, probably because it is still recovering from the artificial inlet boundary condition.
From the inlet, the confidence first drops from 40 % to 20 %, and then recovers up to
100 %. In particular, the flow decelerates close to the inlet under an adverse mean pressure
gradient, as seen in the classification of unsteady and APG. This condition is not contained
explicitly in the training set. Therefore, the drop in confidence occurs because the input
data to the model move far away from the input data in the training set. After the transient,
the flow approaches equilibrium under zero mean pressure gradient, resembling a ZPG
turbulent boundary layer. At this point, the flow is identified as ZPG and the confidence
increases close to 100 %. The internal wall-modelling errors are quantified in figure 9(c),
which shows moderate improvements in the performance of the BFWM compared to the
EQWM. In particular, the averaged wall stress error is below 0.5 % for the BFWM and
about 2 % for the EQWM once the effect of the inlet condition is forgotten. This case
demonstrates that the BFWM is able to interpolate successfully among grid resolutions
and Reynolds numbers. In terms of total wall stress error (figure 9d), the BFWM and
EQWM exhibit comparable performance, with errors between 5 % and 15 %. Similar to
the previous case, the accuracy of the BFWM worsens due to the external wall-modelling
errors when the wall model is coupled with the DSM and VREM.

4.4. Turbulent pipe flow at Reτ = 40 000
The next validation case is a turbulent pipe flow at Reτ ≈ 40 000 with reference data
obtained from experiments by Baidya et al. (2019). The flow is driven by a mean
streamwise pressure gradient that fixes the Reynolds number based on the centreline
velocity to the correct experimental value. The radial coordinate is r. The length of the
pipe is 100R, where R is the radius of the pipe, and the streamwise direction is periodic.
Four grid resolutions are considered: Δ/R ≈ 1/5, 1/10, 1/20 and 1/40.

Figure 10(a) shows that the streamwise mean velocity profiles for the DSM-BFWM
and the VREM-BFWM approach the reference data with grid refinement. The flow is
classified accurately as ZPG for all the grid resolutions (figure 10b). The BFWM correctly
identifies the flow as ZPG with high confidence (>95 %) for R/Δ > 5. For the coarsest
grid (R/Δ ≈ 5), the flow is also labelled as ZPG but with lower confidence (<60 %).
The latter is the consequence of the poorer performance of the DSM in the coarsest
grid resolution, which results in a near-wall mean shear lower than expected from the
training set. The internal wall-modelling errors are shown in figure 10(c). Overall, both
the BFWM and the EQWM perform satisfactorily, with errors below 5 % even at the
coarsest grid resolution. This validation case demonstrates that the BFWM extrapolates
successfully to high Reynolds numbers for different grid resolutions. The total wall stress
error (figure 10d) ranges from 4 % to 12 % for the BFWM and the EQWM, regardless of
the SGS model, with a mildly improved accuracy for the BFWM. The results also exhibit
the non-monotonic convergence to the true solution typically observed for WMLES in the
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Figure 9. Validation case: zero mean pressure gradient turbulent boundary layer. (a) The streamwise mean
velocity profiles at Rex = 6 × 105, 8 × 105, 10 × 105 and 12 × 105, for the DSM-EQWM (blue squares),
VREM-EQWM (blue crosses), DSM-BFWM (red squares), VREM-BFWM (red crosses) and DNS (solid line).
The mean velocity profiles are shifted by �u/U∞ = (x/L0 − 1)/5. (b) Dominant flow classification (solid
blue) and confidence score (solid red) by the DSM-BFWM as a function of the streamwise distance. (c) Internal
wall-modelling error of the wall stress prediction for the ESGS-BFWM (diamonds) and ESGS-EQWM (circles)
as a function of the streamwise distance. (d) Total wall-modelling error for the DSM-EQWM (dashed line and
squares), DSM-BFWM (solid line and squares), VREM-EQWM (dashed line and crosses) and VREM-BFWM
(solid line and crosses) as a function of the streamwise distance.

range of grid resolution considered. This effect, which remains a key issue of WMLES,
can be ascribed to the interplay between numerical errors and SGS modelling errors as
discussed in Lozano-Durán & Bae (2019b) and Lozano-Durán et al. (2022).

4.5. Adverse/favourable mean pressure gradient Poiseuille–Couette turbulence
Turbulent Poiseuille–Couette flows at ReU = 14 000 are tested for adverse mean pressure
gradients until separation and beyond for ReP × 10−3 = −1.40, −1.32, −1.23, −1.13,
−1.02, −0.90, −0.76 and ReU = 14 000, and for favourable mean pressure gradients for
ReP × 10−3 = 1.02, 1.13, 1.23, 1.32, 1.41, 1.49. In all cases, the mean streamwise pressure
gradient ensures that the Reynolds number based on the centreline velocity matches the
correct value. The grid resolution is h/Δ = 10. The reference solutions were obtained by
DNS. It is worth remarking that these validation cases are not included in the training or
testing set discussed in § 2.5. Hence the current cases assess the predictive capabilities of
the BFWM when both ReP and ReU are varied simultaneously.

The results for APG/separation cases and FPG cases are shown in figures 11 and
12, respectively. There are noticeable deviations in the prediction of the mean velocity
profiles for both the DSM-EQWM and the VREM-EQWM. Similar results are obtained
for their BFWM counterparts. Nonetheless, the flow classification (figures 11b and 12b)
is accurate, with a high confidence score (>90 %). The internal wall-modelling errors
for APG/separation and FPG cases are shown in figures 11(c) and 12(c), respectively.
For the APG/separation cases, we report the value of the wall shear stress (rather than
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Figure 10. Validation case: turbulent pipe flow at Reτ = 40 000. (a) The streamwise mean velocity profiles
non-dimensionalised by the mean centreline velocity (Ucl) for the DSM-BFWM (squares) and VREM-BFWM
(crosses) for R/Δ ≈ 5 (blue), 10 (red) and 20 (yellow). The dashed line is the experimental mean velocity
profile from Baidya et al. (2019). (b) Dominant flow classification (solid blue) and confidence score (solid red)
by the DSM-BFWM as a function of the grid resolution. (c) Internal wall-modelling error of the wall stress
prediction for the ESGS-BFWM (diamonds) and ESGS-EQWM (circles) as a function of the grid resolution.
(d) Total wall-modelling error for the DSM-EQWM (dashed line and squares), DSM-BFWM (solid line and
squares), VREM-EQWM (dashed line and crosses) and VREM-BFWM (solid line and crosses) as a function
of the grid resolution.

the relative error) to avoid dividing by zero close to separation. The BFWM outperforms
the EQWM for APG/separation cases, whereas ZPG cases are all predicted accurately by
both wall models, with errors below 3 %. The total wall stress error for APG/separation
and FPG cases is shown in figures 11(d) and 12(d), respectively. For APG/separation,
the EQWM provides more accurate predictions than the BFWM, but these are subjected
to error cancellation: the EQWM underpredicts the wall shear stress; however, the mean
velocities close to the wall are overpredicted. The combination of both effects results in
better predictions for the EQWM, but for the wrong reasons. For FPG, the total error rises
from 5 % to 20 % for increasing favourable pressure gradient. This trend applies to both
the BFWM and the EQWM, although the BFWM still outperforms the EQWM.

4.6. Turbulent channel flow with the sudden imposition of spanwise pressure gradient
The last canonical validation case is a turbulent channel flow with the sudden imposition
of a mean spanwise pressure gradient. The ratio of spanwise to streamwise mean pressure
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Figure 11. Validation case: turbulent Poiseuille–Couette flow with adverse mean pressure gradient. (a) The
streamwise mean velocity profiles non-dimensionalised by the mean centreline velocity (UZPG

cl ) of the case with
zero mean pressure gradient for the DSM-EQWM (blue squares), VREM-EQWM (blue crosses), DSM-BFWM
(red squares) and VREM-BFWM (red crosses), for different ReP. The dashed lines are mean velocity profiles
from DNS. (b) Dominant flow classification (solid blue) and confidence score (solid red) by the DSM-BFWM
as a function of the adverse pressure gradient ReP. (c) Wall stress prediction in the absence of external errors for
the ESGS-BFWM (diamonds) and ESGS-EQWM (circles) as a function of ReP. (d) Total wall-stress prediction
for the DSM-EQWM (dashed line and squares), DSM-BFWM (solid line and squares), VREM-EQWM (dashed
line and crosses), and VREM-BFWM (solid line and crosses) as a function of ReP. In (c) and (d), the wall-stress
prediction is non-dimensionalised by the DNS wall stress for the case with zero mean pressure gradient.

gradient is Π = 80. The grid resolution is h/Δ = 10. The simulation is started from a
turbulent channel flow at a statistically steady state with Reτ = 700 for t < 0, and the
lateral pressure gradient is imposed at time t = 0.

Figures 13(a,b) show the history of the streamwise and spanwise mean velocity profiles
for all cases. Predictions of the mean flow remain accurate within 5 % error for the second
grid point off the wall. More acute errors are observed for the first grid point off the
wall. The classifier detects accurately the change of regime from ZPG to unsteady at t = 0
with high confidence (figure 13c). The internal wall-modelling errors for the streamwise
(τw,x) and spanwise (τw,z) wall stresses are shown in figures 13(d,e), respectively. As
expected, the BFWM performs better than the EQWM, with errors below 1 % for all times.
Additionally, the BFWM is able to predict the mild drop in τw,x as a function of time,
which is completely missed by the EQWM. A similar conclusion applies to the relative
angle between u1 and τw (namely, γ1w). The BFWM predicts correctly the increase and
decrease of γ1w, whereas γ1w remains zero for the EQWM essentially by construction of
the model. Finally, the BFWM still improves the predictions compared to the EQWM in
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Figure 12. Validation case: turbulent Poiseuille-Couette flow with favourable mean pressure gradient. (a) The
streamwise mean velocity profiles non-dimensionalised by the mean centreline velocity (UZPG

cl ) of the case with
zero mean pressure gradient for the DSM-EQWM (blue squares), VREM-EQWM (blue crosses), DSM-BFWM
(red squares) and VREM-BFWM (red crosses), for different ReP. The dashed lines are mean velocity profiles
from DNS. (b) Dominant flow classification (solid blue) and confidence score (solid red) by the DSM-BFWM
as a function of ReP. (c) Internal wall-modelling error of the wall stress prediction for the ESGS-BFWM
(diamonds) and ESGS-EQWM (circles) as a function ReP. (d) Total wall-modelling error for the DSM-EQWM
(dashed line and squares), DSM-BFWM (solid line and squares), VREM-EQWM (dashed line and crosses) and
VREM-BFWM (solid line and crosses) as a function of ReP.

terms of the total wall stress and γ1w errors (figures 13g–i), but with lower accuracy than
before due to the presence of external wall-modelling errors.

4.7. NASA Common Research Model High-lift
The NASA Common Research Model High-lift (CRM-HL) is a geometrically complex
aircraft that includes the bracketry associated with deployed flaps and slats as well as a
flow-through nacelle mounted on the underside of the wing. The simulations are performed
in free air at Reynolds number 5.49 million based on the mean aerodynamic chord and
freestream velocity. The freestream Mach number is 0.20. The results are compared with
wind tunnel experimental data from Evans et al. (2020) corrected for free air conditions.
Further details of the experimental set-up can be found in Lacy & Sclafani (2016).

We follow the computational set-up from Goc et al. (2021). A semi-span aircraft
geometry is simulated, and the symmetry plane is treated with free-slip and no-penetration
boundary conditions. A uniform plug flow is used as the inlet. A non-reflecting boundary
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Figure 13. Validation case: turbulent channel flow sudden imposition of spanwise mean pressure gradient.
(a) Streamwise and (b) spanwise mean velocity profiles non-dimensionalised by the centreline mean velocity at
t = 0 (UZPG

cl ) for the DSM-EQWM (blue squares), VREM-EQWM (blue crosses), DSM-BFWM (red squares)
and VREM-BFWM (red crosses), at tuZPG

τ /h = 0.01, 0.2, . . . , 0.9, where uZPG
τ is uτ at t = 0. The dashed lines

are DNS mean velocity profiles (same for all following panels). (c) Dominant flow classification (solid blue)
and confidence score (solid red) by the DSM-BFWM as a function of time. Internal wall-modelling error of
the (d) streamwise and (e) spanwise wall stress predictions and ( f ) relative angle between u1 and τw, for the
ESGS-BFWM (diamonds) and ESGS-EQWM (circles) as a function of time. Total wall-modelling error for
(g) streamwise wall stress, (h) spanwise wall stress, and (i) relative angle between u1 and τw, for the
DSM-EQWM (dashed line and squares), DSM-BFWM (solid line and squares), VREM-EQWM (dashed line
and crosses) and VREM-BFWM (solid line and crosses) as a function of time.

condition with specified freestream pressure is imposed at the outlet (Poinsot & Lelef
1992). The total number of grid points is 30 million, and the number of grid points per
boundary layer thickness ranges from 0 to 20. The reader is referred to Goc et al. (2021) for
more details about the gridding strategy. Figure 14 offers one example of the grid topology.
The SGS model is the DSM, and we perform simulations for the DSM-EQWM and the
DSM-BFWM. No ESGS model is available for comparison in this case. A summary of
previous WMLES of the CRM-HL can be found in Kiris et al. (2022), using traditional
SGS and wall models. Here, we re-run the simulations using the DSM-EQWM, and
perform new simulations for the DSM-BFWM at angles of attack 7◦ and 19◦.
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Figure 14. Validation case: NASA Common Research Model High-lift. Geometry of the aircraft and an inset
of the grid across the wing section.

The lift (CL), drag (CD) and pitching moment (CM) coefficients are shown in figure 15.
It is worth remarking that the BFWM has never ‘seen’ an aircraft-like flow or been
trained in a case that resembles an aerofoil or a wing. The DSM-BFWM provides
moderate improvements with respect to the DSM-EQWM, especially close to the stall.
The improvements are manifested more clearly in the pitching moment, which is a marker
of the accuracy in the force distribution along the wing. The exception is CL at low
angles of attack, where the DSM-EQWM outperforms the DSM-BFWM. However, it has
been reported that the good predictions by the DSM-EQWM at low angles of attack are
coincidental and due to error cancellation, so this should not be taken as a failure of the
DSM-BFWM. Despite the improvements by the DSM-BFWM, the results suggest that a
superior wall model alone does not suffice to further boost the performance of WMLES
unless the SGS model is also improved accordingly.

Figure 16 shows the confidence map of BFWM over the surface of the aircraft. Two types
of low-confidence (<20 %) regions are identified. The first region is located at the leading
edges of the nacelle, slats and flaps, and is probably related to the lack of grid resolution in
those locations (i.e. zero points per boundary layer thickness). The second low-confidence
region is related to separation at the wing tip and close to the wing root. This may hint at a
lack of grid resolution, the inadequacy of the building-block flows to model separation, or
a combination of both. It is worth mentioning that confidence values of 20 % still indicate
that the flow features detected resemble the building blocks up to some reasonable extent.
For example, the presence of a completely unknown flow (i.e. random values of the model
inputs) will result in confidence scores of 0 %. The confidence map is a key feature of the
BFWM that enables further evaluation of the model performance. As such, the information
from figure 16 might aid grid refinement in poor-confidence regions and/or inform future
developments of the model, for example, by suggesting alternative building-block flows or
the necessity for new ones.

4.8. NASA Juncture Flow experiment
The NASA Juncture Flow experiment consists of a full-span wing–fuselage body
configured with truncated DLR-F6 wings and has been tested in the Langley 14 feet
by 22 feet Subsonic Tunnel. The case has been proposed as a validation experiment
for generic wing–fuselage junctions at subsonic conditions (Rumsey et al. 2019).
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Figure 15. Validation case: NASA Common Research Model High-lift: (a) lift, (b) drag, and (c) pitching
moment coefficients, as functions of the angle of attack (AoA) for the DSM-BFWM (red circles) and
DSM-EQWM (blue circles). The dashed lines are experimental results.
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Figure 16. Validation case: NASA Common Research Model High-lift. Visualisation of the instantaneous
wall shear stress (left) and confidence map (right) by the DSM-BFWM.
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Figure 17. Validation case: NASA Juncture Flow experiment. Visualisation of Voronoi control volumes for
boundary-layer-conforming grid with five points per boundary layer thickness.

The Reynolds number is Re = LU∞/ν = 2.4 million, where L is the chord at the Yehudi
break. We consider an angle of attack of 5◦. The experimental dataset comprises a
collection of local-in-space time-averaged measurements (Kegerise et al. 2019), such as
velocity profiles and Reynolds stresses, which aid the validation of the BFWM in more
detail. The frame of reference is such that the fuselage nose is located at x = 0, the x-axis
is aligned with the fuselage centreline, the y-axis denotes the spanwise direction, and the
z-axis is the vertical direction. The associated instantaneous velocities are denoted by u, v

and w.
The SGS model is the DSM, and we perform simulations for the DSM-EQWM

and the DSM-BFWM. We use a boundary-layer-conforming grid (Lozano-Durán et al.
2022), such that the control volumes are distributed to achieve five points per boundary
layer thickness. Figure 17 contains a visualisation of Voronoi control volumes for the
boundary-layer-conforming grid. The reader is referred to Lozano-Durán et al. (2022)
for an in-depth description of the computational set-up, numerical methods and grid
generation.

The prediction of the mean velocity profiles is shown in figure 18 and compared with
experimental measurements. Three locations are considered: the upstream region of the
fuselage, the wing–body juncture, and the wing–body juncture close to the trailing edge.
Table 1 contains information about the flow classification and confidence in the solution at
each location. In the first region, the flow resembles a ZPG turbulent boundary layer. Hence
the DSM-EQWM and the DSM-BFWM perform accordingly (i.e. errors below 2 %). The
flow is identified by the BFWM as 88 % ZPG and 12 % FPG with 98 % confidence.
The outcome is expected as the BFWM was trained in turbulent channel flows, and the
boundary layer at the fuselage resembles a ZPG.

There is a decline in accuracy by the DSM-EQWM in the wing–body juncture and
trailing-edge region, which are dominated by adverse pressure gradient effects in the
corner and flow separation at the trailing edge. Lozano-Durán et al. (2022) have shown
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Figure 18. Validation case: NASA Juncture Flow experiment. The mean velocity profiles at (a) the upstream
region of the fuselage at x = 1168.4 mm and z = 0 mm, (b) the wing–body juncture at x = 2747.6 mm and
y = 239.1 mm, and (c) the wing–body juncture close to the trailing edge at x = 2922.6 mm and y = 239.1 mm.
Solid lines with open symbols are for the DSM-EQWM, and closed symbols are for the DSM-BFWM. Dashed
lines are experiments. Colours denote different velocity components. The distances y and z are normalised by
the local boundary layer thickness δ at each location.

Location (a) Location (b) Location (c)

Classification Freestream 0 % 0 % 0 %
Laminar 0 % 0 % 0 %
FPG 12 % 0 % 0 %
ZPG 88 % 41 % 13 %
APG 0 % 52 % 31 %
Separation 0 % 7 % 56 %
Unsteady 0 % 0 % 0 %

Confidence 98 % 82 % 22 %

Table 1. Validation case: NASA Juncture Flow experiment. The flow classification and confidence in the
solution by the BFWM. The locations are (a) upstream region of the fuselage, (b) wing–body juncture, and
(c) wing–body juncture close to the trailing edge.

that not only does the DSM-EQWM exhibit larger errors in the wing–body juncture
and trailing-edge region, but the rate of convergence of the DSM-EQWM by merely
refining the grid is too slow to compensate for the modelling deficiencies at a reasonable
computational cost.
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The DSM-BFWM provides better predictions in the juncture location compared to the
DSM-EQWM. The main reason for the improved results comes from the augmentation
of the wall stress compared to the EQWM. This effect accumulates along the streamwise
direction, decelerating the flow and alleviating the overprediction of u and w observed
with the EQWM. The flow in the juncture is classified as 52 % APG and 41 % ZPG, which
shows that the increase in accuracy is due mostly to the use of the APG building-block
flow. The confidence in the prediction is above 80 %.

The performance of the DSM-BFWM in the separated region is also improved compared
to the DSM-EQWM, but it is still far from satisfactory. The DSM-BFWM classifies the
flow as a mix of ZPG, APG and separation, the latter being the most dominant class
(56 %). The improvements with respect to the EQWM are caused not only by the use of
the APG and separation building-block flows, but also by the improved streamwise history
of the flow discussed above. Interestingly, the model prompts a warning about its potential
poor performance, which is evidenced by the low confidence (∼20 %) in the wall-stress
prediction. The deficient performance of the DSM-BFWM and the DSM-EQWM is not
surprising if we note that the separation zone has wall-normal thickness 0.3δ (with δ the
boundary layer thickness), whereas the WMLES grid size is Δ ≈ 0.2δ. Thus there is only
one grid point across the separation bubble. Despite the fact that the model was trained
in separated flows, the external SGS model errors dominate the LES solution in this case.
These errors hinder the capability of the BFWM to classify and predict the flow correctly.
Nonetheless, the improvements from the BFWM and its ability to assess the confidence in
the prediction is a competitive advantage with respect to traditional wall models.

Simulations of the NASA Juncture Flow experiment were also performed by
Lozano-Durán & Bae (2020) using a preliminary version of the BFWM trained with
filtered DNS data and a smaller collection of building-block flows. The current version
of the BFWM provides higher accuracy in the predictions compared to Lozano-Durán &
Bae (2020) because of the enhanced collection of building-block flows and the consistency
with the numerical scheme of the flow solver.

5. Model limitations

We close this work by discussing some of the limitations of the BFWM and potential
improvements.

(1) First, the identification of meaningful building-block flows and the minimum
number of blocks required to make accurate predictions remains an open question.
The present version of the model uses seven building blocks, which is far from being
representative of the rich flow physics that might occur in all complex scenarios (e.g.
compressibility effects, shock waves, chemical reactions, multiphase flows, different
mean flow three-dimensionalities and separation patterns). Additionally, there is
no specific mechanism in the BFWM to capture faithfully the laminar-to-turbulent
transition, which is of paramount importance in many applications.

(2) The confidence score offered by the BFWM is based on the similarities between
the input flow features and the building-block flows used in the training set. This
implies that low confidence scores may still result in accurate wall stress predictions,
and vice versa. Moreover, the confidence score does not provide an error bound
on the value of the prediction, which would be more representative of the model
performance. In that vein, future developments of the model could incorporate
uncertainty quantification frameworks to estimate error bounds for the quantities
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of interest (e.g. Maulik et al. 2020; Sun & Wang 2020; Lozano-Durán & Adrián
2022; Morimoto et al. 2022; Rezaeiravesh, Vinuesa & Schlatter 2022).

(3) Consistency between the model and the numerical/gridding schemes is
solver-dependent. As such, the BFWM must be re-trained to yield accurate
predictions in different flow solvers. However, this inconvenience seems inevitable
considering the intimate relationship between numerics, gridding and modelling in
implicitly filtered LES.

(4) A key conclusion of this work is that the main limiting factor in the accuracy of
the BFWM predictions originates from external modelling errors due to the poor
performance of SGS models. This hints at the necessity for a unified SGS/wall model
approach where the building-block flow model is also used to devise a numerically
consistent SGS model (referred to as a building-block flow model, BFM). Steps in
that direction are already been undertaken by our group, and Ling et al. (2022) have
shown that the prediction of the lift, drag and pitching moment coefficients for the
CRM-HL in § 4.7 are greatly improved in the first version of the BFM.

(5) The prediction and classification tasks in the BFWM rely on ANNs. In this work, it
was found that feedforward ANNs with 5 hidden layers and roughly 20–30 neurons
per layer enabled accurate results. However, the neural network architectures utilised
here may be far from optimal. Moreover, there was no attempt to optimise the
computational efficiency of the ANNs, for example via GPU implementation, and
further work should be devoted in this direction.

(6) Variables from past time steps were not included in the model input. Adding such
information has the potential of improving the accuracy of the model predictions,
as shown in previous studies in the context of turbulence forecasting via ANNs
(Srinivasan et al. 2019; Lozano-Durán, Bae & Encinar 2020a; Nakamura et al.
2021).

6. Conclusions

The prediction of aerodynamic quantities of interest remains among the most pressing
challenges for computational fluid dynamics, and it has been highlighted as a critical
flow phenomenon in the NASA CFD Vision 2030 (Slotnick et al. 2014). The aircraft
aerodynamics are inherently turbulent with mean flow three-dimensionality, often
accompanied by laminar-to-turbulent transition, flow separation, secondary flow motions
at corners, and shock wave formation, to name a few. However, the most widespread wall
models are built upon the assumption of canonical flat-plate statistically-in-equilibrium
wall turbulence, and do not account faithfully for the wide variety of flow conditions
described above. This raises the question of how to devise models capable of accounting
for such a vast and rich collection of flow physics in a feasible manner.

In this work, we have developed a wall model for large-eddy simulation by devising the
flow as a collection of building blocks whose information enables the prediction of the wall
stress. The concept was first introduced by Lozano-Durán & Bae (2020), and it is referred
to as the building-block-flow wall model (BFWM). The model relies on the assumption
that simple flows contain the essential flow physics to formulate generalisable wall
models. Seven types of building-block units were used to train, the model accounting for
zero/favourable/adverse mean pressure gradient wall turbulence, separation, statistically
unsteady turbulence with three-dimensional mean flow, and laminar flow. The approach is
implemented using two types of artificial neural networks: a classifier, which identifies
the contribution of each building block in the flow; and a predictor, which estimates
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the wall stress via a combinations of building-block units. The output of the model is
accompanied by a confidence score. The latter value aids the detection of areas where
the model underperforms, such as flow regions that are not representative of the building
blocks used to train the model. This a critical component of the BFWM and is considered
a key step for developing reliable models. For example, the present model will provide a
low confidence score in the presence of a flow that it has never seen before (e.g. a shock
wave), or when the wall model input is located in the freestream. Finally, the model is
designed to guarantee consistency with the numerical scheme and the gridding strategy.
This was attained by training the model using WMLES data obtained with an optimised
SGS model that accounts for the numerical errors of the solver.

The BFWM has been validated in laminar and turbulent boundary layers, turbulent
pipe flow, turbulent Poiseuille–Couette flows mimicking favourable/adverse mean pressure
gradient effects, and statistically unsteady turbulent channel flow with three-dimensional
mean flow. The performance of the BFWM in complex scenarios was evaluated in two
realistic aircraft configurations: the NASA Common Research Model High-lift and the
NASA Juncture Flow experiment. The validation cases were conducted by combining
the BFWM with two SGS models: the dynamic Smagorinsky model and the Vreman
model. The BFWM outperforms the traditional equilibrium wall model in canonical cases
and the two realistic aircraft scenarios. The only exceptions are the coincidental accurate
predictions by the equilibrium wall model due to error cancellation. Despite the improved
performance of the BFWM, its accuracy deteriorates considerably owing to external
errors from the SGS model. This suggests that additional wall model improvements will
not suffice to further boost the performance of WMLES unless the SGS model is also
improved.

The modelling capabilities demonstrated by the BFWM, and the ability to extend the
model to a richer collection of flow conditions, makes the building-block flow approach
a realistic contender to overcome the key deficiencies of current CFD methodologies.
We have argued that truly revolutionary improvements in WMLES will encompass
advancements in numerics, grid generation and wall/SGS modelling. Here, we have
focused on wall modelling and its consistency with the numerics and the grid. However,
work remains to be done on the SGS modelling front. In a recent work by our group, Ling
et al. (2022) extended the building-block flow methodology to the SGS model and showed
that the prediction of the lift, drag and pitching moment coefficients in the CRM-HL
are greatly improved compared to the BFWM combined with traditional SGS models.
There is also a data science component to the problem, such as the need for efficient and
reliable machine learning techniques for data classification and regression. However, in
our experience, the model performance is controlled mainly by the physical assumptions
rather than by the details of the neural network architecture at hand.
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