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This work presents a passive turbulence-control strategy based on a resonant phononic
material (RPM) embedded beneath the surface of a turbulent channel flow. The RPM is
modeled as a mass–spring–damper chain tuned to a defect-induced resonance that interacts
with near-wall turbulence. Using a weakly coupled fluid–metamaterial framework, we show
that both the wall-pressure forcing and the RPM response collapse onto a narrow frequency
band dictated by the designed resonance, and that within a moderate actuation-amplitude range
the system produces measurable transient drag-reduction effects. Direct numerical simulations
(DNS) further reveal a well-defined stable interval of RPM damping coefficients, with a sharp
transition between underdamped (growing) and overdamped (bounded) response regimes. To
enable rapid exploration of RPM configurations, we also develop a reduced-order weakly
coupled model in which a linear wall-pressure approximation replaces the full pressure-Poisson
solution; this simplified model accurately reproduces the key bifurcation behavior observed in
DNS. Overall, the study clarifies the mechanisms governing RPM–flow coupling and informs
the design of passive, energy-efficient compliant surfaces for aerodynamic applications.

I. Introduction
Turbulent drag constitutes a significant portion of energy consumption across many industrial sectors. For example,

commercial aircraft expend nearly half of their total energy to overcome turbulent skin friction [1], and turbulent drag
similarly dominates the energy required for long-distance fluid transport in pipelines. Consequently, even modest
reductions in drag can yield substantial savings in energy and operational costs. Numerous passive surface-modification
strategies have been proposed over the past several decades, but these approaches typically rely on static geometries or
simple dynamic responses, limiting their applicability across varying operating conditions.

The emergence of phononic materials, engineered media with spatially periodic and architected internal structure,
offers an opportunity to expand the scope of passive turbulent flow control. These materials can be tailored to achieve
elasto-dynamic functionalities such as wave filtering[2] and guiding[3], directional energy propagation[4, 5], shape
morphing[6]. Recent advances even allow post-fabrication tuning of phononic architectures [7], a capability well aligned
with flow-control applications where dominant frequencies and operating conditions (e.g., speed and altitude in aerial
vehicle operations, internal fluid and external ambient temperature in industrial fluid pipelines).

In this study, we explore the interaction between a turbulent channel flow and a phononic material embedded
beneath the wall surface. The phononic material is designed to possess an eigenmode that aligns with the dominant flow
frequencies, and the wall is embedded with multiple panels of phononic materials spaced according to the primary
turbulent wavelengths identified in our previous active-control studies[8]. Embedding phononic materials beneath the
wall surface enables a dynamic passive control mechanism, where the system requires no external actuation, yet the
compliant subsurface can deform in response to flow forcing in a manner reminiscent of active control strategies.

Two primary pathways for passive drag reduction have historically been considered. The first targets laminar–turbulent
transition. Early work by Kramer [9–11] introduced the concept of compliant surfaces, which were subsequently
validated by stability analyses [12–15] and direct numerical simulations [16, 17]. More recently, Hussein et al. [18]
introduced the phononic subsurface (PSub), demonstrating that an elastic, architected interface can interact with
Tollmien–Schlichting (TS) waves to modify perturbation kinetic-energy production. Subsequently, Barnes et al. [19]
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conducted an initial computational investigation showing that a beam-based PSub embedded within a flat plate boundary
layer can exhibit out-of-phase surface motion with respect to Tollmien–Schlichting (T–S) wave forcing, leading to local
attenuation of perturbation kinetic energy. Building on this concept, Willey et al. [20] demonstrated that multi-input,
multi-output (MIMO) PSubs allow passive realization of favorable phase relationships between surface displacement
and external disturbances, enabling a degree of transition delay without active input.

The second pathway aims to modify fully developed turbulent boundary layers. Foundational work by Bushnell et al.
[21] and subsequent theoretical analyses [22, 23] established the potential for compliant surfaces to interact resonantly
with turbulent motions. Early demonstrations showed drag reductions on the order of 7% in low-Reynolds-number
channel flows [24], with later studies exploring anisotropic designs [25], shear-driven wall models [26], and space–time
compliant-surface dynamics [27]. Luhar et al. [28] provided a resolvent-based framework for analyzing these effects.
Despite these advances, achieving consistent, robust, and passive drag reduction in turbulent regimes remains elusive.

The demonstrated success of phononic materials in transition delay suggests an untapped potential for their use in
turbulent drag reduction. Motivated by this opportunity, we investigate the coupled dynamics of resonant phononic
materials interacting with turbulent wall-bounded flows. Our objective is to design phononic materials with resonant
properties that match those of dominant turbulent flow coherences (here we avoid the term “structures” to prevent
confusion with the material structure). By doing so, we aim to characterize how phononic resonances can passively
influence the near-wall turbulence with minimal energy input.

To this end, we conduct high-fidelity simulations of channel flow weakly coupled to an resonant phononic material
subsurface via a blowing–suction boundary condition at a fixed wall location. This velocity-based weak coupling is
appropriate in the small-displacement limit and serves as a starting point for future strongly coupled studies involving
moving boundaries. Consistent with the small amplitude assumption, we focus on cases where the oscillating velocity
amplitude, 𝐴+ ≤ 0.7, where the superscript + indicates viscous units defined by the fluid kinematic viscosity 𝜈 and
friction velocity 𝑢𝜏 .

This paper is organized as follows. In section II, we propose a novel fluid–metamaterial interaction (FMI) control
framework for wall-bounded turbulence using a resonant phononic material (RPM) embedded beneath the wall. As
described in Section II, we design the structural parameters based on open-loop flow characteristics[8] to minimize
the turbulent drag. In Section III, we demonstrate through weakly coupled simulations that the RPM surface response
exhibits bifurcation phenomenon among various damping coefficients in the resonant phononic material and achieves
transient drag reduction with favourable oscillating amplitude. These results reveal key physical mechanisms by which
compliant subsurfaces can passively shape turbulent dynamics. A broader discussion of the implications and future
directions for sustainable control design is provided in Section IV.

II. Methodology
We investigate a novel passive flow control strategy based on resonant phononic materials (RPMs) integrated beneath

the wall of a turbulent channel flow. The turbulent channel flow is driven at constant mass flow rate to achieve a friction
Reynolds number 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈 ≈ 180, where ℎ denotes the channel half-height. This corresponds to a bulk Reynolds
number of 𝑅𝑒𝑏 = 𝑈𝑏ℎ/𝜈 ≈ 2953. Here, 𝑥1, 𝑥2, and 𝑥3 denote the streamwise, wall-normal, and spanwise directions,
respectively, and 𝑢1, 𝑢2, and 𝑢3 denote the streamwise, wall-normal, and spanwise velocity components, respectively.

To interface with the turbulent flow, a subsurface composed of engineered phononic structures is embedded beneath
the bottom wall. These structures are designed to selectively resonate at targeted frequencies and wavelengths. These
frequency-wavelength pairs are selected to match those that yielded maximal drag reduction with prescribed blowing
and suction, performed in a prior study[8].

A. FMI configuration

1. Turbulent Channel Flow-RPM Interaction Configuration
In this study, we adopt the small-displacement approximation, under which the wall deformation velocity can be

approximated by an equivalent blowing and suction at the wall. The numerical coupling scheme is weakly-coupled, i.e.,
the wall-normal velocity associated with RPM motion at current time step is computed based on the wall-normal force
along the wall surface at previous time step.

The spatial placement of RPMs is based on prior works on actively oscillating surfaces. Specifically, Quadrio
et al. [29] study the effect of steady blowing and suction on a turbulent channel flow under 𝑅𝑒𝜏 ≈ 180. They pointed
out that the streamwise-periodic blowing and suction can lead to drag reduction at moderate streamwise wavelength
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Fig. 1 Schematic graph of weakly-coupled simulation

(𝜆+1 ≈ 206). Lin et al. [8] further explored the time-varying blowing and suction. In their parametric study, they showed
that the oscillating frequency 𝜔+ around 0.1 results in roughly 3% drag reduction. From the results of the prescribed
motion study above, the optimal streamwise wavelength, 𝜆∗1, and frequency, 𝜔∗, for an unsteady streamwise-periodic
blowing and suction profile is given by 𝜆∗+1 ≈ 206 and 𝜔∗+ ≈ 0.11. Based on these findings, we adopt the bottom wall
dynamics to be defined by pressure-driven RPM subsurfaces periodically placed in the streamwise direction, with each
RPM oscillating in the wall-normal direction, as illustrated in Fig. 1. Each spanwise-aligned RPM segment is referred
to as control panel from hereon. Each control panel consists of a designed RPM subsurface model, which deforms
independently in the wall-normal direction, in response to the normal component of the force integrated along that
entire panel. The streamwise length of each panel segment, 𝐿1, 𝑝 , is set close to the optimal wavelength identified in the
harmonic forcing experiments, i.e., 𝐿+

1, 𝑝 = 𝜆∗+1 = 195.
The RPM subsurface and turbulent channel flow are coupled through a weakly-coupled scheme. That is, at each

time step, the fluid-induced load is applied as an averaged pressure force, 𝐹𝑤 , calculated from the flow field (see section
II.B) on the given RPM panel surface. Subsequently, the RPM surface velocity response, 𝑉𝑚, to the fluid loading is
calculated and a weak fluid-RPM coupling is enforced by applying a RPM-informed blowing and suction boundary
condition (Eq. (2)) at the bottom wall (𝑥2 = 0) for the next time step. This procedure is performed for each time step,
simulating the weakly-coupled FSI dynamics for the total computational time.

2. RPM design
We choose a defect-embedded grounded monoatomic phononic crystal (PnC)[30] as the subsurface RPM model.

PnCs are architected materials that can customize wave propagation by leveraging their structural periodicity. For a
plane wave, 𝑦(𝑥, 𝑡) = 𝑦̃ exp(i(𝜅𝑥 − 𝜔𝑡)), where i =

√
−1, traveling in a (defect-free) grounded monoatomic PnC with

mass, 𝑚, and stiffness, 𝑘 , the wavenumber-frequency (𝜅 −𝜔) dispersion relations[30] describing the wave characteristics
feature two distinct regions[31]. The first region is the pass band (PB), where each temporal frequency 𝜔 is mapped
onto a real spatial wavenumber, 𝜅R. This behavioral regime is marked by wave propagation into the material bulk. A
second behavioral regime is the band gap (BG), where each 𝜔 is mapped onto a complex wavenumber, i𝜅I or 𝜋 + i𝜅I,
leading to spatial attenuation of plane waves and no propagation into the material bulk.

The PB (solid) and BG (dashed) curves in Fig. 2 indicate the dispersion relations for an infinite (defect-free)
grounded monoatomic PnC. The eigenfrequencies, 𝜔 𝑗 ∀ 𝑗 = 1, 2, . . . , 𝑁 , of a finite PnC lie on the 𝜅R curve where
𝜅R, 𝑗 = ( 𝑗 − 1)𝜋/(𝑁 − 1). However, when we introduce a structural defect by breaking the periodicity of material
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Fig. 2 RPM mass-spring-damper model, grounded monoatomic PnC dispersion curves with eigenvalues of the
finite defect-embedded PnC overlayed, the fourier response function (FRF) calculated at the defect mass location,
and the corresponding localized defect eigenmode (inset).

properties at one edge of the grounded monoatomic PnC, we can create an isolated resonance with a highly localized
eigenmode shape within the PnC BG, as shown in Fig. 2. The PnC BG surrounding this defect resonance provides
beneficial RPM responses to the broadband turbulent flow, e.g., spatial attenuation of other BG excitation frequencies
leading to a narrow-band response centered at the defect frequency, 𝜔def , high energy localization at the fluid-RPM
interface, stable pressure-deformation phase[18], motivating the choice of the defect-embedded grounded monoatomic
PnC to interface with the stochastic and broadband turbulent channel flow. The matrix equations of motion of the RPM
are given as

M̃ ¥̃𝑦 + C̃ ¤̃𝑦 + K̃𝑦̃ = 𝐹̃, (1)

where 𝑦̃ = [ 𝑦̃1, 𝑦̃2, · · · , 𝑦̃𝑁 ]T represents the wall-normal displacement vector of an RPM with 𝑁 masses, 𝐹̃, represents
the fluid surface force, and

M̃ =



𝑚̃def 0 · · · · · · 0
0 𝑚̃ · · · · · · 0
...

...
. . .

...

...
...

. . .
...

0 0 · · · · · · 𝑚̃

N×N

, C̃ = 𝑐IN×N, K̃ =



𝑘̃ + 𝑘̃g,def −𝑘̃ 0 · · · 0
−𝑘̃ 2𝑘̃ + 𝑘̃g −𝑘̃ · · · 0

0 −𝑘̃ . . .
...

...
...

. . . −𝑘̃
0 0 · · · −𝑘̃ 𝑘̃ + 𝑘̃g

N×N

,

represent the mass, M̃, damping, C̃, and the stiffness, K̃ matrices normalized in outer units, such that

𝑚̃ =
𝑚

𝜌ℎ3 , 𝑐 =
𝑐

𝜌𝑈𝑏ℎ
2 , 𝑘̃ =

𝑘

𝜌𝑈2
𝑏
ℎ
, 𝐹̃ =

𝐹

𝜌𝑈2
𝑏
ℎ2

.

Here, 𝑈𝑏 is the bulk velocity, and parameters {𝑚̃, 𝑐, 𝑘̃ , 𝑘̃g} represent the periodic mass, damping, interaction and
grounding stiffness properties of a grounded monoatomic PnC. Note that the undamped (i.e., 𝑐 = 0) velocity response
of the defect mass to a harmonic sinusoidal force of unit magnitude at resonant frequency, 𝐹1 = sin

(
𝜔 𝑗 𝑡

)
, becomes

linearly unbounded: ¤̃𝑦1 = AE𝑡 sin
(
𝜔 𝑗 𝑡

)
, where the amplitude envelope, AE, quantifies the linear rate of increase in

velocity amplitude over time. The amplitude envelope is an important RPM behvaioral parameter that will determine
the dynamic response ampltiude of the RPM in the FSI simulations. In addition, both the defect resonance frequency,
𝜔1 = 𝜔def , and the amplitude envelope, AE, are functions of the mass and stiffness properties of the RPM. Therefore, we
alter these properties (i.e., {𝑚̃def , 𝑘̃g,def}) to precisely engineer a defect resonance, associated with the desired amplitude
envelope, in the acoustic band gap, conducive for effective FSI.
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Ensuring sufficient BG width around the target flow frequency, 𝜔∗+ ≈ 0.11, a desired exponentially decaying defect
mode shape, we fix 𝑚̃ = 1, 𝑘̃ = 0.826, 𝑘̃g = 20.65 for all our numerical studies, and leverage insights from previous
studies[8] on turbulent flow control via unsteady wall-normal blowing and suction, to extract the conducive frequency,
𝜔def , and surface velocity, 𝑉𝑚 (𝑡) (= ¤𝑦1), and choose appropriate defect material parameters, {𝑚̃def , 𝑘̃g,def} (see Tab. 1).
Each RPM configuration in Tab. 1 is identified using the notation C#A#, where the numerical indices following “C” and
“A” respectively denote the damping coefficient and amplitude envelope test cases of the RPM model. Configurations
sharing the same C index correspond to cases with the same damping coefficient, while those sharing the same A index
correspond to cases with the same amplitude envelope. The C index increases from low to high damping, and the A
index increases from low to high amplitude envelope.

To simulate the deformation of RPM-based subsurface, the deformation is approximated via zeros-flux blowing and
suction boundary condition. To ensure no-flux boundary condition at all times and replicating the harmonic surface
velocity profile in prior prescribed studies[8], the spatial blowing and suction profile on 𝑗 th RPM panel is defined as a
sinusoidal function in terms of the velocity of the defect chain’s interface mass

𝑢2 |𝑥2=0 (𝑥1, 𝑡) = 𝑉𝑚 (𝑡) sin
(

2𝜋𝑥1
𝐿1, 𝑝

)
, 𝑥1 ∈

[
( 𝑗 − 1)𝐿1, 𝑝 , 𝑗 𝐿1, 𝑝

]
(2)

Table 1 Non-dimensional parameters for different RPM configurations. Reference values: 𝑚̃ = 1, 𝑘̃ = 0.826, 𝑘̃g =

20.65.

ID 𝑚̃def 𝑘̃g,def 𝑐

C1A4 1.84 1.19 0.37
C2A4 1.84 1.19 0.48
C3A4 1.84 1.19 0.51
C4A4 1.84 1.19 0.55
C3A1 7.37 7.16 0.51
C3A2 3.68 3.18 0.51
C3A3 2.45 1.85 0.51

B. Flow simulation setup
A series of direct numerical simulations (DNS) is conducted to evaluate the control performance of RPM panels

integrated into a wall-bounded turbulent flow. The simulations solve the incompressible Navier–Stokes equations and
the RPM equations of motion (Eq. (1)), simultaneously. Periodic boundary conditions are applied at the streamwise
and spanwise boundaries, and a no-slip boundary condition is enforced on the top and bottom walls respectively for
streamwise and spanwise velocity. Wall-normal velocity 𝑢2 at the wall is determined via weakly-coupled scheme shown
in prior section.

The computational domain (illustrated in the Fig. 1) has streamwise and spanwise lengths of 𝐿1/ℎ = 4𝜋 and
𝐿3/ℎ = 2𝜋, respectively. This domain size is determined through a series of numerical experiments in a prior study [8],
which confirms that the minimal domain size required to study the effect of blowing and suction on the wall-shear stress
is given by (𝐿1/ℎ, 𝐿3/ℎ) = (4𝜋, 2𝜋), corresponding to a computational domain that accommodates 12 control panels.
Grid resolutions in the homogeneous streamwise and spanwise direction are uniform with Δ+

1 ≈ 9.97 and Δ+
3 ≈ 4.98,

respectively. For the wall-normal direction, the grid is stretched using a hyperbolic tangent function such that Δ+
2 varies

from a minimum of 0.16 near the wall to a maximum of 7.34 at the channel center. The simulations utilize a staggered,
second-order finite difference scheme [32] in space.

The time-marching scheme is given by the fractional-step method [33] with a third-order Runge–Kutta integration
[34]. A fixed time step of Δ𝑡+ ≈ 0.01 is applied, and the total integration time is 𝑇+ ≈ 4000 to mitigate transient effects
from additional periodic forcing. Code validation is achieved in prior studies of turbulent channel flow [35–37].

The averaged pressure force is obtained from the spatial-integrated wall pressure along the control panel. The
pressure field 𝑝 can be decomposed into imposed mean pressure gradient 𝑝 and pressure fluctuation 𝑝′. The imposed
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(a) (b)

Fig. 3 Relative wall shear stress 𝜏𝑤/𝜏𝑤,𝑜 for the controlled case (blue) and uncontrolled flow (black) for passive
control with C2A4 (a) and prescribed control with (𝐴+, 𝜆+1 , 𝜔

+) = (0.45, 180, 0.12) (b). Dashed blue line denote
time-averaged values after transient state, ⟨𝜏𝑤/𝜏𝑤,𝑜⟩ = 98.6 (a) and ⟨𝜏𝑤/𝜏𝑤,𝑜⟩ = 97.9 (b). Dashed black line is
𝜏𝑤/𝜏𝑤,𝑜 = 1.

mean pressure gradient 𝑝 is computed to maintain the constant mass flow rate, while the pressure fluctuation is computed
via the pressure Poisson equation. In this study, we adopt the simplified form of the pressure Poisson equation used in
the previous unsteady wall-transpiration case by Toedtli et al. [38], where pressure fluctuation is given by

1
𝜌

𝜕2𝑝′

𝜕𝑥𝑖𝜕𝑥𝑖
= − 𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
, (3)

with pressure boundary condition given by

1
𝜌

𝜕𝑝′

𝜕𝑥2

����
𝑥2=0,2ℎ

= 𝜈
𝜕2𝑢2
𝜕𝑥𝑖𝜕𝑥𝑖

− 𝜕𝑢2
𝜕𝑡

. (4)

III. Results and Discussion

A. Turbulent drag response under RPM-based subsurface metamaterial surface
We first investigate the turbulent drag response under the RPM-based metamaterial surface, as shown in Fig. 3. The

figure compares the temporal evolution of the relative wall shear stress, 𝜏𝑤/𝜏𝑤,0, between the RPM-controlled flow and
a prescribed blowing and suction case, where (·̄) indicates a temporal average. The prescribed case is designed to have a
comparable wall-normal velocity amplitude to that produced by the RPM subsurface when averaged over a selected
time horizon. The wall transpiration profile for the prescribed control is given by

𝑢2 |𝑥2=0 = 𝐴 cos(𝜅1𝑥1) cos(𝜔𝑡), (5)

where 𝜅1 is the streamwise wave number. However, in the subsequent analysis, it is observed that the oscillation
amplitude of the RPM-based surface for the chosen case C2A4 is not stationary and continues to decay gradually over
time. Consequently, the corresponding variation in turbulent drag cannot be strictly regarded as a statistically steady
response.

Over the control horizon 𝑡+ ∈ (0, 4000), the mean drag of the RPM subsurface case (Fig. 3a) remains lower than that
of the prescribed control (Fig. 3b) with a similar effective amplitude. The passive RPM configuration achieves a drag
reduction of approximately %Δ𝜏𝑤 = −1.34, whereas the prescribed forcing yields a larger reduction of %Δ𝜏𝑤 = −2.31.
However, the stronger drag reduction achieved by the prescribed control is accompanied by a pronounced increase
in instantaneous shear-stress fluctuations. In contrast, the RPM subsurface, owing to its dynamic and passive nature,
maintains smoother temporal variations in wall shear stress. The maximum drag is suppressed under the uncontrolled
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(a) (b)

Fig. 4 Time evolution of peak-to-peak actuation velocity amplitude ⟨𝐴+
𝑚⟩ for cases with varying damping

coefficients 𝑐 (C1A4, red; C2A4, blue; C3A4, green; C4A4, yellow) (a) and mass and stiffness constants (𝑚̃def , 𝑘̃g,def)
(C3A1, red; C3A2, blue; C3A3, green; C3A4, yellow) (b). Inset shows early-time transient response. Solid line
denotes the mean across different control panels, and the shaded area denotes the standard deviation.

flow, while the prescribed case has significantly higher drag at its maximum. This highlights a fundamental trade-off:
while active or prescribed controls can achieve higher mean drag reduction, the passive RPM subsurface offers improved
stability and robustness by avoiding large-amplitude oscillations in friction velocity.

B. Fluid-metamaterial interaction
To further understand the coupled dynamics between the turbulent flow and the RPM-based subsurface, we investigate

the temporal evolution of the wall-normal actuation velocity amplitude ⟨𝐴+
𝑚⟩ under different RPM configurations, where

⟨·⟩ denotes an average over each panel. Figure 4(a) illustrates the time evolution of the peak-to-peak wall-normal
actuation velocity ⟨𝐴+

𝑚⟩ for varying damping coefficients 𝑐, while the mass and stiffness constants are fixed. The
peak-to peak velocity 𝐴𝑚 is defined as the local maxima of oscillating velocity amplitude for the control panels. A clear
bifurcation behavior is observed with respect to the damping coefficient. For 𝑐 < 0.48 (cases C1A4 and C2A4), the
oscillation amplitude grows continuously with time, indicating an unstable regime where the compliant surface motion
amplifies under the influence of the turbulent forcing. In contrast, for 𝑐 > 0.51 (cases C3A4 and C4A4), the oscillation
amplitude remains bounded and gradually converges to a steady state with ⟨𝐴+

𝑚⟩ ≈ 0.1. These results suggest that the
critical damping coefficient 𝑐crit separating the stable and unstable regimes lies between 𝑐 = 0.48 and 0.51.

Figure 4(b) presents the evolution of peak-to-peak actuation velocity amplitude ⟨𝐴+
𝑚⟩ for cases with varying mass and

stiffness parameters (𝑚̃def , 𝑘̃𝑔,def) at a fixed damping coefficient 𝑐 = 0.51. All cases converge to a similar steady-state
amplitude around ⟨𝐴+

𝑚⟩ ≈ 0.1, demonstrating that the equilibrium response amplitude is largely independent of the
mass and stiffness configuration for the system in the overdamped regime (𝑐 > 𝑐crit).

This bifurcation behavior has direct implications for the achievable drag reduction performance. As shown by
Lin et al. [8], there exists an optimal range of wall-transpiration amplitude, approximately ⟨𝐴+

𝑚⟩ ≈ 0.7, that yields
maximum drag reduction in sinusoidal wall-forcing studies. When the oscillation amplitude falls below this range, the
drag reduction effect diminishes significantly. Therefore, while the overdamped RPM configurations offer stability
and robustness, they also limit the attainable wall-normal velocity amplitude, thereby constraining the potential for
substantial drag reduction. Therefore, achieving a higher steady-state response through appropriate combinations of
RPM parameters represents a potential pathway toward enhanced drag reduction using phononic metamaterials.

To further reveal the coupled dynamics between the turbulent flow and the RPM-based subsurface, we evaluate the
spectrograms of the input forcing and the corresponding output response for each control panel. The spectrogram of a
generic time-dependent quantity X(𝑡) is defined as

𝑆X (𝑡, 𝜔) =
∫ 𝑡+Δ𝑡

𝑡

X(𝜏) 𝑒−𝑖𝜔𝜏 𝑑𝜏, (6)

where Δ𝑡 denotes the minimal temporal window required to resolve the dominant frequency content of X. The
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(a) (b)

Fig. 5 Spectrogram of panel-averaged magnitude of the wall-normal force ⟨|𝑆𝐹+
𝑤
|⟩ (a) and peak velocity ⟨|𝑆𝑉+

𝑚
|⟩

(b) for case C2A4 computed using a time window of Δ𝑡+ ≈ 300.

spectrograms enable us to capture the time-varying frequency content by averaging over a relatively short time horizon
of Δ𝑡+ ≈ 300. Figure 5 presents the time-resolved spectrograms of the wall-normal load, ⟨|𝑆𝐹+

𝑤
|⟩, and the corresponding

surface response velocity, ⟨|𝑆𝑉+
𝑚
|⟩ averaged over control panels, for the representative critical case C2A4.

In Fig. 5(b), the spectrogram of the wall-normal velocity response shows that the RPM surface oscillates predominantly
around a single frequency, 𝜔+ ≈ 0.11. This dominant frequency coincides with the pre-designed value obtained from
the linear response analysis of the RPM model. This agreement confirms that the designed RPM configuration is
capable of producing a stable, single-frequency oscillation even under broadband turbulent wall-pressure excitation, as
evidenced by the forcing spectrogram shown in Fig. 5 (a). Moreover, the wall-normal load spectrogram, ⟨|𝑆𝐹+

𝑤
|⟩, is also

centered around the same frequency band, indicating a strong flow-structure coupling near the design frequency. The
alignment of the forcing and response spectra suggests that the compliant metamaterial subsurface behaves as a resonant
oscillator with the turbulent flow under a critical damping coefficient. This mechanism explains the onset of instability
observed in configurations with low damping (𝑐 < 𝑐crit), where the resonant interaction between the turbulent flow and
the compliant subsurface leads to growing unstable oscillation amplitude.

On the other hand, Fig. 6 illustrates the spectrogram for a high damping FSI configuration, C3A4, which exhibits a
distinctly different mechanism. The velocity spectrum still shows that the dominant frequency remains aligned with the
designed forcing frequency, with a similar level of dispersion as observed in the low damping configuration (e.g., C2A4).
However, the wall-normal load spectrogram responds with a relatively weak oscillation at the forcing frequency. We
attribute this behavior to the sufficiently large damping coefficient, which acts as an energy sink that extracts near-wall
turbulent energy, thereby suppressing the growth of wall-normal load through the resonant amplification mechanism
present in the underdamped system.

C. Linear model of wall pressure
In the previous section, we identified that the critical damping coefficient lies between 𝑐 = 0.48 and 𝑐 = 0.51.

However, this bifurcation threshold is only valid for the current set of RPM parameters and the specific control panel
configuration. Since each simulation requires substantial computational resources to perform DNS of turbulent flow, it
becomes essential to develop a surrogate model to capture the coupled dynamic between turbulent flow and RPM model.
To be more specific, we would like to propose a reduced-order model (ROM) for wall pressure that can effectively
replace the full Navier–Stokes equations within the weakly coupled framework. In this section, we introduce a linearized
model based solely on wall quantities, providing a fast yet accurate predictive tool for future design and optimization of
RPM-based compliant surfaces.

Before constructing the reduced-order model, it is necessary to examine the relative contributions of the mean
pressure gradient, 𝑝, and the pressure fluctuation, 𝑝′. By integrating over each control panel, the input wall-normal

8



(a) (b)

Fig. 6 Spectrogram of panel-averaged magnitude of the wall-normal force ⟨|𝑆𝐹+
𝑤
|⟩ (a) and peak velocity ⟨|𝑆𝑉+

𝑚
|⟩

(b) for case C3A4 computed using a time window of Δ𝑡+ ≈ 300.

(a) (b)

Fig. 7 Spectrogram of panel-averaged magnitude of the fluctuating force ⟨|𝑆𝐹′+
𝑤
|⟩ (a) and mean wall-normal

force ⟨|𝑆𝐹̄+
𝑤
|⟩ (b) for case C2A4 computed using a time window of Δ𝑡+ ≈ 300.
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load can be decomposed into the mean component, 𝐹̄𝑤 , and the fluctuating component, 𝐹′
𝑤 . Comparing Fig. 7 with

Fig. 5, this decomposition reveals that the dominant contribution to the wall-normal forcing originates from the pressure
fluctuation field. The mean pressure gradient primarily contributes to the low-frequency content, while the fluctuation
component governs the resonant dynamics at the forcing frequency. Therefore, the main focus of the following analysis
is to model the pressure fluctuation using only information available from the wall boundary conditions.

The pressure Poisson equation can be written as

1
𝜌

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

(
𝜈

𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗

− 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

)
= − 𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
= 𝑓 𝑓 ,𝑠 , (7)

where 𝑓 𝑓 ,𝑠 denotes the source term, comprising the conventionally defined fast and slow contributions to the pressure
field. The corresponding boundary conditions at the walls are expressed as

𝑃𝑏 ≡ 1
𝜌

𝜕𝑝

𝜕𝑥2

����
𝑥2=0

=

(
𝜈

𝜕2𝑢2
𝜕𝑥 𝑗𝜕𝑥 𝑗

− 𝜕𝑢2
𝜕𝑡

)����
𝑥2=0

, (8)

𝑃𝑡 ≡
1
𝜌

𝜕𝑝

𝜕𝑥2

����
𝑥2=2ℎ

=

(
𝜈

𝜕2𝑢2
𝜕𝑥 𝑗𝜕𝑥 𝑗

− 𝜕𝑢2
𝜕𝑡

)����
𝑥2=2ℎ

. (9)

From previous studies [38, 39], it has been shown that the equation 7 with the boundary conditions can be solved
analytically via the Fourier transform in the streamwise and spanwise direction. The solution can then be expressed as
the sum of inhomogeneous and homogeneous components,

𝑝′ = 𝑝 𝑓 ,𝑠︸︷︷︸
inhomogenoeus

+ 𝑝𝑠𝑡︸︷︷︸
homogeneous

, (10)

where (·̂) is the Fourier transform in the streamwise and spanwise directions. The inhomogeneous solution 𝑝 𝑓 ,𝑠 is
obtained via the Green’s function,

𝐺 (𝑥2, 𝑥
′
2, 𝜅 ≠ 0) =


cosh[𝜅(𝑥′2/ℎ − 2)] cosh[𝜅(𝑥2/ℎ)]

𝜅 sinh(2𝜅) , for 𝑥2 < 𝑥′2,

cosh[𝜅(𝑥′2/ℎ)] cosh[𝜅(𝑥2/ℎ − 2)]
𝜅 sinh(2𝜅) , for 𝑥2 > 𝑥′2,

𝐺 (𝑥2, 𝑥
′
2, 𝜅 = 0) =

{
0.5(𝑥′2 − 𝑥2)/ℎ, 𝑥2 < 𝑥′2,

0.5(𝑥2 − 𝑥′2)/ℎ, 𝑥2 > 𝑥′2,

(11)

as

𝑝 𝑓 ,𝑠 (𝑥2, 𝜅) =
∫ 2ℎ

0
𝐺 (𝑥2, 𝑥

′
2, 𝜅) 𝑓 𝑓 ,𝑠 (𝑥

′
2, 𝜅) d𝑥′2, (12)

where 𝜅 =

√︃
𝜅2

1 + 𝜅2
3, and 𝜅1 and 𝜅3 are streamwise and spanwise wavenumbers, respectively. The homogeneous solution

𝑝𝑠𝑡 is given by

𝑝𝑠𝑡 (𝑥2, 𝜅) =
1

𝜅 sinh(2𝜅)
(
𝑃𝑡 cosh[𝜅𝑥2] − 𝑃𝑏 cosh[𝜅(𝑥2 − 2ℎ)]

)
. (13)

To establish a computationally efficient framework for simulating pressure fluctuations, we employ a linearized
formulation derived from the pressure Poisson equation. Here, we adopt the hypothesis that only the near-wall events will
affect the wall pressure. Although turbulence is inherently nonlocal and nonlinear, numerous studies have demonstrated
that certain linear mechanisms persist within fully turbulent flows [39, 40].

Focusing on the near-wall region, the right-hand side of the pressure Poisson equation can be approximated by the
dominant term (𝜕𝑢1/𝜕𝑥2) (𝜕𝑢2/𝜕𝑥1). At the boundary, the streamwise derivative of wall-normal velocity is known
due to the imposed blowing and suction distribution, while the wall-normal gradient of the streamwise velocity can be
approximated as constant based on the law of the wall,

𝑢+1 ≈ 𝑥+2 ⇒ 𝜕𝑢1
𝜕𝑥2

≈
𝑢2
𝜏,𝑜

𝜈
, (14)
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Fig. 8 Time evolution of the peak-to-peak wall-normal actuation velocity amplitude, ⟨𝐴+
𝑚⟩, for different control

configurations from DNS (solid lines) and the current ROM with 𝜈𝑐/𝜈 = 0.295 (dashed lines) for C1A4, red;
C2A4, blue; C3A4, green; C4A4, yellow.

where 𝑢𝜏,𝑜 is the friction velocity of uncontrolled flow. Restricting the integration to the viscous sublayer, the
inhomogeneous pressure contribution at the wall (𝑥2 = 0) can be approximated as

𝑝 𝑓 ,𝑠 (𝑥2 = 0, 𝜅) ≈
∫ 𝛿2

0
𝐺 (𝑥2 = 0, 𝑥′2, 𝜅) 𝑓 𝑓 ,𝑠 (𝑥

′
2, 𝜅) d𝑥′2 ≈ −2

∫ 𝛿2

0
𝐺 (𝑥2 = 0, 𝑥′2, 𝜅)

𝜕𝑢1
𝜕𝑥2

ˆ𝜕𝑢2
𝜕𝑥1

����
𝑥2=0

d𝑥′2, (15)

where 𝛿2 denotes the sublayer region, set to 𝛿+2 = 0.1 in this study.
The homogeneous component can be further simplified using the boundary condition. Although the blowing and

suction profile of the RPM-based control panel varies in the streamwise direction, the viscous term 𝜈𝜕2𝑢2/(𝜕𝑥1)2 is
much smaller than the wall-normal gradient term and can therefore be neglected. Furthermore, the viscous term is
modeled as proportional to the unsteady term,

𝜈
𝜕2𝑢2

𝜕𝑥2
2

≈
(
1 − 𝜈𝑐

𝜈

) 𝜕𝑢2
𝜕𝑡

, (16)

where 𝜈𝑐 denotes a proportional coefficient capturing the damping effect of the wall. The boundary condition is thus
modeled as

𝑃𝑏 ≈ 𝜈
𝜕2𝑢2

𝜕𝑥2
2

− 𝜕𝑢2
𝜕𝑡

����
𝑥2=0

≈ − 𝜈𝑐

𝜈

𝜕𝑢2
𝜕𝑡

����
𝑥2=0

, 𝑃𝑡 = 0. (17)

Here, we set 𝜈𝑐/𝜈 = 0.295. The value of this hyperparameter is determined from the relative scaling between the
unsteady term and the viscous term appearing in the boundary-condition approximation. Combining the expressions
yields the simplified homogeneous solutions estimate close to the bottom wall, we get

𝑝𝑠𝑡 (𝑥2 = 0, 𝜅) = 1
𝜅 sinh(2𝜅)

(
− 𝜈𝑐

𝜈

ˆ𝜕𝑢2
𝜕𝑡

����
𝑥2=0

cosh (−2𝜅ℎ)
)
. (18)

With both the simplified inhomogeneous and homogeneous solutions, the wall pressure at each time step can be
obtained directly from the prescribed wall-normal blowing and suction,

𝑝′ |𝑥2=0 = −2
∫ 𝛿2

0
𝐺 (𝑥2 = 0, 𝑥′2, 𝜅)

𝑢2
𝜏,𝑜

𝜈

ˆ𝜕𝑢2
𝜕𝑥1

����
𝑥2=0

d𝑥′2 +
1

𝜅 sinh(2𝜅)

(
− 𝜈𝑐

𝜈

ˆ𝜕𝑢2
𝜕𝑡

����
𝑥2=0

cosh (−2𝜅ℎ)
)
. (19)
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Given this wall pressure, the weakly-coupled scheme can then be closed. To validate the ROM, Fig. 8 presents
the model predictions for various damping coefficients. In the figure, the dashed lines denote the predictions obtained
from the reduced-order model, while the solid lines represent the DNS results with identical RPM parameter settings.
By selecting a constant value of 𝜈𝑐/𝜈 = 0.295, the model successfully captures the major bifurcation behavior within
the critical damping range. However, it is worth noting that for the underdamped case C1A4, the model reproduces
the unstable dynamics but over a different time scale, exhibiting a tendency to overpredict the instability amplitude.
These results suggest that the proportional parameter 𝜈𝑐/𝜈 may depend on the RPM parameters or the near-wall flow
characteristics. Further investigation is therefore required to establish this relationship and to complete the development
of a robust surrogate model for the weakly coupled pressure–compliant wall system.

IV. Conclusion
In this study, we investigated the interaction between resonant phononic materials (RPMs) and a turbulent channel

flow using a weakly coupled fluid-metamaterial interaction (FMI) framework. By designing the metamaterial subsurface
to exhibit a defect-induced resonance matched to the dominant frequency–wavelength pairs identified in prior active-
control studies, we demonstrated that the compliant RPM interface can passively convert broadband near-wall turbulence
into a single-frequency oscillatory wall motion.

Our DNS results reveal that the response of the RPM-flow system depends sensitively on the damping coefficient. A
clear bifurcation separates an underdamped regime, in which resonant coupling induces growing oscillatory amplitude,
from an overdamped regime characterized by bounded surface motion. Configurations near this critical damping
threshold yield non-negligible transient drag reduction (%Δ𝜏𝑤 ≈ 1.34), enabled by the collapse of the wall-normal
forcing and RPM response onto a narrow frequency band centered at the designed defect resonance. Notably, this
drag reduction is achieved without the large shear-stress excursions observed in equivalent prescribed-forcing cases,
indicating that the compliant subsurface offers enhanced robustness and stability despite lower peak drag-reduction
levels.

To enable rapid exploration of RPM parameter space, we developed a reduced-order wall-pressure model based on
a linearized form of the pressure Poisson equation and a near-wall approximation of its source terms. The resulting
surrogate model captures the primary bifurcation behavior and reproduces the qualitative growth or saturation trends
across the damping-parameter sweep. While discrepancies persist in the unstable regime, suggesting that the proportional
parameter 𝜈𝑐 depends on local flow or structural properties, the model provides a promising foundation for fast predictive
design of compliant-wall systems.

Overall, this study demonstrates that resonant phononic subsurfaces offer a viable pathway toward passive,
dynamically adaptive drag reduction in turbulent flows. Future work will focus on extending the present weakly coupled
framework to strongly coupled FSI, exploring practically realizable RPM architectures, and refining the reduced-order
model through a parameterized, physics-informed prediction of the proportional coefficient 𝜈𝑐/𝜈.
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