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We present a high-fidelity fluid—structure interaction framework based on a continuous-
forcing immersed boundary method, integrated into a parallelized three-dimensional turbulent
channel flow solver. The method is designed to handle a wide range of (sub)surface geometries,
including complex metamaterial interfaces. We extend an existing strongly coupled IB-FSI
formulation with new spatially discrete operators that enable information transfer between
subsurface metamaterials and compliant IB patches. Several key modifications support this
versatile functionality: a hybrid uniform—stretched grid to reduce the computational load, IB
forcing to compute one-sided velocity gradients for accurate friction velocity, and parallelized
IB operations aligned with the underlying flow solver’s domain decomposition. We demonstrate
the method using five test cases: laminar cylindrical Couette flow; a parallel scaling test; and
three turbulent channel flow configurations at a friction Reynolds number of 186, including
a minimal flow unit with rigid walls, a channel with prescribed traveling wave—like wall
deformations, and a channel with a compliant wall exhibiting rigid-body-like dynamics. The
last test problem demonstrates the growing capability to handle arbitrary structures engaging
in coupled dynamics with the flow, towards future investigations into fluid—-metamaterial
interaction.

I. Nomenclature

= Runge-Kutta 3 coefficient matrix

= Velocity amplitude of the traveling wave wall-like deformation

= Damping matrix

= Runge-Kutta 3 coefficient vector

= Phase speed of the traveling wave-like wall deformation

= Damping factor of the i-th block

= Discrete divergence operator

Force exerted by the immersed boundary on the fluid

= Discrete immersed boundary surface stresses

= Discrete gradient operator

= Channel half-height

= Immersed boundary points transfer operator

= Mapping of a subsurface block displacement to immersed boundary points
= Wavenumber of the traveling wave-like wall deformation

= Stiffness of the i-th block

= Stiffness matrix

Discrete Laplacian operator

Domain size in streamwise, wall-normal, and spanwise directions, respectively
= Mass of the i-th block

Mass matrix
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N = Discrete convection operator
n = Unit normal vector at the immersed boundary surface

np = Number of sampled body points in the immersed boundary patch

Nblock = Number of mass blocks in the subsurface spring-mass chain

p = Pressure

p = Spatially discretized pressure

Db = Pressure at the immersed boundary

Q = Operator to sum the immersed boundary forces

R = Discrete immersed boundary smearing operator

r = Right-hand side vector in the discretized momentum equation

RT = Discrete immersed boundary interpolation operator

Re, = Friction Reynolds number

s = Parametric variable on the compliant immersed boundary patch

S» = Rate-of-strain tensor evaluated at the immersed boundary

t = Time

t),t = Tangential unit vectors at the immersed boundary surface

u = Spatially discretized fluid velocity

u = Spatially discretized fluid acceleration

u = Fluid velocity

Up = Bulk velocity

up = Fluid velocity at the immersed boundary surface

Uz = Friction velocity

W = Weighting matrix to filter immersed boundary surface stress

X, ¥, 2 = Cartesian coordinates in streamwise, wall-normal, and spanwise directions
x = Eulerian position vector

Xer Ves Ze = Coordinates of the IB patch points in the x, y and z directions

Xblocks Yblocks Zblock = Coordinates of the topmost mass block in the x, y and z directions

Yir G X = Transverse displacement, velocity and acceleration of the i mass-block
X0 X = Spatially discrete deformation, velocity and acceleration of the immersed boundary patch
X-¢ X = Continuous deformation, velocity and acceleration of the immersed boundary patch
XUs XL = Upper and lower wall displacements

As = Spacing between immersed boundary points

AS = Area of a single patch element

Ax = Grid spacing in the fluid domain

Axt, Ay, AZ* = QGrid spacing in streamwise, wall-normal, and spanwise directions in wall units
. = Compliant immersed boundary patch

v = Kinematic viscosity

Q = Flow domain

Ty = Wall shear stress

II. Introduction

Advances in flow control have increasingly focused on the use of deformable surfaces to passively or actively
manipulate boundary layer dynamics in aerodynamic and hydrodynamic systems. Among these approaches, compliant
and metamaterial-based surfaces have shown particular promise due to their passive and adaptive characteristic to alter
flow behavior through tailored structural responses. Applications range from delaying laminar-to-turbulent transition to
reducing turbulent skin friction and mitigating separation. For instance, recent studies have demonstrated the use of
phononic metamaterials to passively delay boundary layer transition by attenuating Tollmien—Schlichting wave growth
through out-of-phase surface displacements [1,2]. In the context of turbulent drag reduction, compliant surfaces have
been optimized to suppress near-wall turbulence via anisotropic material responses or in-plane wall motions [3} 14].
Beyond transition and drag, Arif et al. [5] introduced the concept of distributed surface compliance for airfoil tonal noise
reduction, demonstrating that resonating panels embedded within the surface can passively mitigate flow instabilities
across varying angles of attack. These examples collectively highlight the versatility of compliant and metamaterial
surfaces as a platform for passive flow control.



As these control actuation increasingly rely on complex geometric and structural designs, there arises a critical
need for high-fidelity simulation tools capable of resolving both fluid dynamics and the detailed geometry of the
control surfaces. In this work, we employ the immersed boundary method due to its robustness and versatility in
handling arbitrarily complex geometries and fluid—structure interfaces. This approach enables accurate representation
of the interaction between the turbulent flow and the spatially heterogeneous, deformable surfaces characteristic of
metamaterials, without the need for conformal meshing or remeshing during deformation.

To effectively model such flow-metamaterial interaction (FMI) problems, the chosen numerical framework must
not only accommodate geometric complexity, but also accurately capture the bidirectional coupling between unsteady
structural motion and turbulent flow dynamics. In other words, FMI problems require a robust, accurate numerical
simulation framework to couple the time-varying structural motion to the complex high-dimensional flow field.
Numerical formulations for general fluid-structure interaction (FSI) problems are identified by the way the numerical
coupling between the flow and the structure is handled, forming a broad class of methods that are either strongly-coupled
or weakly-coupled depending on how the nonlinear no-slip constraint is handled. A connected consideration is the
operations count/ time-complexity associated with performing these operations. Physical considerations usually require
the method to handle large structural motions, and be stable for small structure-to-fluid mass ratios. Weakly-coupled
FSI methods [6H8] do not strictly enforce the nonlinear no-slip constraint and are unstable for low mass ratios and large
structural displacements.

In this study, we focus on strongly-coupled methods for their stability and accuracy benefits. Some strongly-coupled
methods [9}[10]] evaluate the nonlinear constraint at a previous time step. They are therefore able to frame the equations to
be linear, circumventing costly iterations. However, the above sub-class of methods introduce a time-lag that reduces the
temporal accuracy of the method. Other strongly-coupled methods that maintain the nonlinear nature of the constraint
are forced to have iterations to solve for the variables. Methods that use the block Gauss-Seidel technique for the
iterations typically use heuristic relaxation parameters that incur several iterations to converge [[11]. A Newton-Raphson
technique could be used for the convergence of the iterations, but involves expensive Jacobian matrix-vector products
per timestep [[12H14].

To address the limitations of both heuristic iterative strategies and computationally expensive Newton-based solvers,
we adopt an alternative strongly-coupled approach that is built upon the fluid-structure interaction (FSI) formulation of
Goza and Colonius [15]]. This approach extends the immersed boundary (IB) projection method [[L6] to coupled FSI
problems, using a Newton method for the nonlinear algebraic equations that arise. A block-LU factorization is used to
restrict all FSI iterations to sub-systems that scale with the number of points on the immersed surface. The method
avoids the use of heuristic relaxation parameters and avoids the need to solve large-dimensional, global linear systems
typically required by Newton-Raphson iterations. The algorithm is capable of handling large structural displacements
and small structure-to-fluid mass ratios [[15]].

The current work improves and adapts this IB-FSI formulation to operate within a three-dimensional turbulent
channel flow solver [17, [18]. The resulting simulation framework enables robust, accurate computations of flows
over arbitrarily shaped and dynamically deforming boundaries. This capability is particularly important for studying
metamaterials, whose architectures may be complex or time-varying. To integrate the IB-FSI method into our existing
parallelized 3D flow solver, we introduce several key modifications. First, we adapt the discrete delta functions for use
in periodic domains. Second, we implement a hybrid uniform-stretched grid to optimize computational load distribution
while keeping the IB surface within a uniform grid region—necessary for accurate delta function application. Third, we
incorporate “immersed layers” concepts from Eldredge [19] to estimate one-sided velocity gradients using the IB forcing.
Fourth, we parallelize the IB operators in a manner consistent with the channel flow solver’s domain decomposition
strategy, ensuring efficient and scalable FSI simulations in turbulent regimes. Finally, we construct new spatially discrete
operators to enable information transfer from (sub)surface dynamics to surface patches treated within the immersed
boundary formalism. This algorithmic design allows the solver to remain agnostic to the specific structural model or
geometry, facilitating easy exchange of a wide range of (sub)surface structures. We give an overview of some of the
features of each of these five developments, along with results from three test cases to demonstrate the functionality of
the method.
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II1. Methodology

A. Incorporating the immersed boundary projection method into a turbulent channel flow solver
Our FSI framework is built on the immersed boundary projection method [15} [16], which introduces a body force f
into the continuous Navier-Stokes equations to enforce the no-slip condition on immersed surfaces,
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where u = (u,v,w)T and p are the continuous velocity and pressure variables, and x(s,?) and £(s,?) are the
continuous time-varying displacement and velocity on the domain I'. comprising the surface(s) interacting with the flow,
parameterized by s. When discretized, the immersed surface(s) are represented by a set of Lagrangian markers with a
spacing As embedded within a fixed Eulerian fluid grid. Each marker represents a discrete surface element with area AS.
The singular Dirac delta functions are approximated by smoothed, discrete versions to enable numerical interpolation
and spreading. The no-slip condition on the surface (3)—involving the flow velocity interpolated to the Lagrangian
points—is used to compute the IB source term f, which physically corresponds to a stress along the (collection of)
surface(s) I, that is spread to the surrounding fluid grid via the smoothed delta function in the momentum equation (TJ)
to impose the no-slip boundary condition. Its role is analogous to that of pressure in enforcing continuity (2).

For completeness, the solution algorithm for the IB method, together with the FSI formulation that builds upon it, is
described in detail in the following section. The derivation leverages the formulation in Goza and Colonius [[13] but
is reproduced in full detail here to highlight changes introduced to the algorithm to accommodate its use in the wall
bounded turbulent flow setting of focus here. The IB-FSI framework is integrated into an in-house three-dimensional
turbulent channel flow solver that employs second-order finite differences on a staggered grid and a fractional-step
projection method [20], with time integration performed using a third-order Runge—Kutta scheme [21]]. The channel
flow solver has been extensively validated in previous studies of turbulent channel flows [17} 18, 22].

We incorporate the IB formalism to model moving/deforming channel boundaries, represented as immersed surfaces
within a larger three-dimensional computational domain with periodic boundary conditions in the streamwise (x) and



spanwise (z) directions and no-slip conditions at each wall, as illustrated in Fig.[T} A globally applied pressure gradient
drives the flow. In Fig.[T] the immersion of the channel boundaries in a larger domain results in two regions—one above
and one below the nominal channel of interest—that are also affected by the globally applied pressure gradient. However,
their only purpose is to facilitate the use discrete delta functions (DDFs), which extends over several grid cells on both
sides of the surface. The flow in these auxiliary regions is not of interest and the problem configuration is set up so it has
a negligible influence on the central flow. To accommodate this aim, we mask the pressure gradient using an indicator
function that equals one inside the central channel and zero elsewhere. This indicator function is computed as the
solution to a Poisson equation, with the source term given by the divergence of the normals at the IB points, distributed
over the grid using the DDFs [19] 23]]. For simulations that enforce a constant mass flow rate, the global pressure
gradient is adjusted so that the flow rate within the central channel—isolated again using the indicator function—remains
constant. Fig. [2illustrates an alternative channel configuration that we use to study fluid-metamaterial interaction. In
this setup, the immersed surface is centered in the wall-normal direction and divides the domain into two channels.

To achieve a high grid resolution near the walls in turbulent flow simulations, wall-normal grid stretching is applied
using a hyperbolic tangent distribution. However, most DDFs used in IB methods assume uniform grids. Furthermore,
for moving walls, it is desirable to maintain consistently fine resolution wherever the wall might traverse, without
needing to remesh. For these reasons, we estimate the extent of the wall motion a priori and place a zone with uniform
grid spacing (hereafter referred to as a uniform grid zone) around the immersed boundary surfaces on each end of the
stretched grid. Both uniform grid zones have a wall-normal size that is at least as big as the estimated extent of the wall
motion, as illustrated in Fig. [T} This treatment ensures that the support of the DDFs at IB points that represent the
deforming wall remains inside a uniform grid region at all times.

To estimate the friction velocity u- = 4/7,, at the IB points, we recognize that the IB forcing contains the jump of
the pressure and viscous stresses over the interface [[19]:
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where the superscripts “ext” (“int”) denote the side of the interface that the positive (negative) normal is pointing to, the
subscript “b” indicates the values at the IB points, and where S;, = % (Vuyp, + VTuy) with Vuy, the velocity gradient
at the interface. Furthermore, using the immersed boundary techniques from Eldredge [19], we can show that the
interpolation operation applied to the gradient of the velocity field gives the average of the velocity gradients at each
side of the interface, or,

/ Vu(x)5(x — £)dx = = (Vu;"t + Vug“) . (5)
o 2

Because we impose tangential velocity gradients on both sides of the interface, we can combine Eqgs. (@) and (§) to
retrieve the wall-normal derivative of the tangential velocity on one side of the interface,

Vi, = [(/Q Vus(x - f)dx) ‘n+ %f] 1 ©

ext

which we can then use to compute the wall shear stress on one side of the interface 75X = RLeV,,u bt

- and subsequently
the friction velocity for that side.

B. Discretization and a strongly-coupled fluid-structure interaction formulation

We now describe the IB-endowed spatially discrete governing equations and the algorithm used to solve them. As
previously mentioned, second-order finite differences are used for the discretization of the governing equations for
the turbulent wall-bounded flow, Eqs. (E])—(EI) The discrete divergence, gradient, viscous-Laplacian, and convection
operators are indicated as D, G, L and N, respectively. The discrete versions of the IB smearing and interpolation
operators are indicated by R and R” respectively, where the transpose relation between the operators hold true when
appropriate scaling factors are absorbed into the surface stress and velocity variables (see [[16] for more details on the
construction of these operators). The spatially discrete form of the coupled governing equations is given by

U=N(u,u)-Gp+ RieLu+R(,\g)f, @)
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Equations (7] [8] [LT)) are the spatially discrete variants of Eqs. (I)-(3), and Eqgs. (9)—(I0) are the governing equations for
the structure, written generically in terms of typical mass, stiffness and damping matrices which arise from typical finite
element discretizations. For consistency with the flow equations, the structural equations (9)—(I0) are written in first
order form (though this is non-essential). The flow and structure equations are coupled by the discrete force term f,
which simultaneously imposes no-slip on the fluid via Eq. (7)), drives structural motion via Eq. (9, and is a constraint
variable that arises to solve Eq. (TT).

The discrete variables y, { correspond to the three-dimensional displacement and velocity of the immersed surface,
I'.. These quantities are generally distinct from the displacements and velocities of the structure ¥, Z. The operator W
is a weighting matrix that acts as a filter to obtain smooth surface stresses (see [[15] for its definition). The operators

QTT and 1J arise to relate these distinct structure versus surface variables. For illustration purposes, and to facilitate a
description of the FSI test case explored below, we detail their construction below for the specific problem configuration
of interest, detailed in Fig.[2] We emphasize that the computational methodology is agnostic to the specific structural
configuration and surface/subsurface architecture, and can be adapted to a variety of flow-structure configurations by
appropriately altering these operators.

The problem configuration in Fig. [J]involves a tiling of the bottom wall into constituent rectangular elements along
the x and z directions. At coordinates Xpjock» Yblocks Zblocks @ Subsurface spring mass chain is attached to the IB surface.
The subsurface chain consists of individual blocks of mass m; connected to each other through springs of stiffness k;
and dampers with damping factor ¢;. The motion of the blocks is constrained to be along the transverse direction, with
Yi» Xi» Xi representing the transverse displacement, velocity, and acceleration of each block. While the structure for the
current study uses a uniform value for the mass and stiffness across the chain (m;, k;), we emphasize that the model
allows for easy integration of defects, di-atomicity into the setup by tuning the local mass and stiffness values of the
individual blocks. The entire sub-surface structure is not visible to the flow, and its modeling is designed to transfer its
dynamic motion to the compliant IB surface. The transverse displacement of the topmost mass (1) is transferred to the
IB surface I'. through a Gaussian function whose continuous expression is given below (the discrete form is given by

the operator J in Eq. (11)):
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In the above expression, y; represents the displacement of the first mass in the sub-surface chain and o = 1. Tand 17
are transfer operators that are sparse and consist of unit values to help extract components in the y direction from the
full vector f consisting of components in x, y, z directions. The exact form depends on the implementation, but is given
by the expression below if f is implemented as a pointwise-stacked array of vectors, where T e Rwx3nm,

. 1’ j=3(l_1)+2’ .
7, = =L.om, N
( )1,1 {0, otherwise, l " o

The sparse operator Q is suitably constructed such that the topmost subsurface block receives the cumulative surface
force acting on the IB surface. The mathematical definition for Q € R™blockX"b jg

AS, i=1,j=1,...,np,
Q). .= i=1,..., Nplock- 14
( )"/ 0, otherwise, block (14
Equations (7)—(II) are time-discretized using the three-step Runge-Kutta scheme. Within each RK stage, a
second-order accurate, implicit, average-acceleration Newmark time stepping scheme [24] (same variant as the one used
within [[15]) is used to time-march Eqs. @ . If u” represents the solution variable at t”, we seek u"*! that represents
the variable at the next time step. We define

1
F(u*,t") = N(u",u") + —Lu", (15)
Re



and let u™*!'()) represent the solution at the end of the j RK stage. The fully-discrete equations for the j* RK stage is
written as:
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where j = 1,2, 3 represents the index associated with the RK3 stage. r,/ can be computed using the coefficients
derived from the butcher tableau and is given by:
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Equations (I6)—(20) represent a system of nonlinear algebraic equations. To solve for the variables, we use an
iterative approach to linearize the solution at iteration k + 1 about the variables evaluated at iteration k.
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In the above linearization, the variables Ay, Z are assumed to be small in magnitude. Substituting the above
linearization into Eq. (T6)—(20), performing a Taylor series expansion, and dropping the third-rank tensor terms (see
[15] for more details), we arrive at the equations that are linearized about the k-th FSI iteration (indicated by subscripts
in relevant operators).
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The block system in Eq. (25)) can be LU factorized to give:
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In the procedure containing Eqs. (30)—(35), the FSI iterations are formally restricted to Eqs. (31)—([33). This outcome
arises directly from the LU-factorization, and results in iterations that are restricted to linear(ized) systems that scale
as the number of surface points on the IB surface. That is, the iterations avoid solving systems that scale with the
number of points in the flow and structure domains. Within each FSI iteration, we highlight that Eq. [31]is the most
computationally intensive step due to a linear solve for the scaled surface stress f. We use a stabilized bi-conjugate
gradient (BiCGStab(l)) algorithm to iteratively obtain the surface stress. The solution at the next time instance u™*! is
obtained by advancing the entire system through stages j = 2, 3 through a similar procedure as outlined above.

C. Parallel framework

The solver is parallelized using the Message Passing Interface (MPI) standard. The computational domain is
partitioned in the z-direction into slices that span the full x- and y-extents, as illustrated in Fig.[3] During the simulation,
each subdomain exchanges boundary data with its neighbors on the z-normal faces to maintain continuity across slice
interfaces, in addition to applying global boundary conditions.

Operations involving immersed boundary (IB) points are parallelized by assigning each point to the MPI rank
corresponding to the partition in which it resides. A key challenge arises when interpolating flow values or regularizing
IB forces for points located near partition boundaries. For example, in Fig.[3] the IB point (red diamond) lies close to the
interface between ranks 1 and 2, and the stencil of fluid grid points influenced by this IB point spans both partitions. To
perform these IB operations entirely on a local processor, the relevant flow data must be transferred between neighboring
ranks before and after the interpolation and regularization steps.k This issue is addressed by extending inter-partition
communication to include additional flow grid values used exclusively for IB operations. These exchange regions,
termed “support cells” in Fig. [3] provide each rank with the necessary flow data to evaluate the IB operators locally. The
spanwise width of the support-cell region, 2N s + 1, is determined by the discrete delta function used for regularization;
in the present implementation, Ns = 2.

IV. Results
To assess the accuracy and applicability of our simulation tool, we perform a sequence of benchmark tests
and validation studies. We first consider two tests aimed at verifying the numerical accuracy of the underlying IB
implementation: a spatial convergence analysis of laminar cylindrical Couette flow, and a comparison of turbulent flow
statistics for a channel flow in a minimal flow unit at Re, =~ 186 against reference data from the literature. We then
demonstrate parallel efficiency of the IB operators. Next, we show a turbulent channel flow simulation with prescribed,
traveling wave-like wall deformations, replicating a numerical experiment from the literature to evaluate physical fidelity.
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Fig. 3 Schematics of parallelization. Domain decomposition for parallel computation. The fluid grid is
partitioned into ranks (Rank 0-2). The fluid grids affected by the immersed boundary points (red) are marked in
light blue.

In all the preceding test cases, we do not model FSI, and the steps (30)—(33) reduce to the immersed boundary
projection method (IBPM) of Taira and Colonius [16] adapted here for RK3 time integration. In the first two examples,
the IB points remain stationary, and we can precompute and store the inverse of the operator acting on the surface stress
in (31) to efficiently simulate large number of time steps while enforcing the no-slip constraint on the IB to machine
precision. In the third and fourth cases, we solve for the forcing iteratively using BiCGStab, similar to the FSI algorithm
described in Sec.

In the last example, we demonstrate the method’s capability in a coupled FSI scenario using a simplified test case
with high mass and stiffness structural parameters, so that the dynamics are effectively rigid even though the simulation
is performed on the fully coupled FST algorithm (30)—(33)). These tests provide a foundation for future investigations
involving more complex FMI behavior.

A. Laminar flow validation problem

To demonstrate the expected spatial accuracy of the proposed immersed boundary (IB) method, we simulate the
steady-state cylindrical Couette flow between two concentric cylinders with radii r; = 0.5 and r, = 1. The inner cylinder
rotates with a constant angular velocity €, while the outer cylinder remains stationary. The Reynolds number based
on the velocity and diameter of the inner cylinder is Re = Zr%Q /v = 0.225. The cylinder axes are aligned with the
z-direction. Although the simulation is conducted in a three-dimensional domain, the flow remains laminar and varies
only in the radial and azimuthal directions within the x-y plane.

This configuration admits an analytical solution for the steady-state azimuthal velocity profile, which we use to
evaluate the accuracy of our numerical results. We perform simulations on successively refined grids and compute
the L, and L, norms of the velocity error relative to the exact solution. Body points are spaced with As such that
As/Ax = 2, ensuring adequate resolution of the immersed interface. As shown in Fig.[d] the error norms exhibit
first-order convergence, consistent with expectations for this class of IB methods.

B. Turbulent channel flow in a minimal flow unit at Re, ~ 186

In this example, we perform a series of physically resolved turbulent channel-flow simulations at a Reynolds number
Re; = u h/v = 186, where u is the friction velocity and 4 is the channel half-height. We use the immersed boundary
configuration of Fig. [2{ with domain size (L, Ly, L;) = (1.718,4,0.859) and a static, undeformed planar IB wall
located at y = 2, where x, y, and z denote the streamwise, wall-normal, and spanwise coordinates, respectively. This IB
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Fig.5 Effect of IB point spacing on turbulent channel-flow statistics at Re; = 186. The left panel shows the mean
streamwise velocity, and the right panel shows the streamwise velocity fluctuations. Results from simulations
with varying body-to-grid spacing ratios, As/Ax € {1.33, 1.23, 1.14, 1.00}, are shown using solid blue lines with
circle markers, ranging from light to dark blue as As/Ax decreases. For reference, the profile of Bae et al. (2019)
is overlaid with red dashed lines.

wall partitions the domain into a bottom (0 < y < 2) and top (2 < y < 4) channel, each corresponding to a minimal flow
unit. The entire domain is discretized using 32 X 257 x 16 computational cells. Two uniformly sized grid cells are
placed on either side of the IB, while we apply wall-normal grid stretching everywhere else (in both the top and bottom
channels) using a hyperbolic tangent function with a stretching factor of 2.6. This results in Ax* ~ 10, Az* ~ 10 and a
wall-normal minimum grid spacing of Ay? . '~ 0.18, where the superscript + indicates inner-scale normalization using
u, and v. This setup enables a realistic assessment of near-wall turbulence and allow us to examine the effect of the
body-to-grid spacing ratio (As/Ax) on the accuracy of the IB representation. Four values of this ratio are considered:
As/Ax € {1.33, 1.23, 1.14, 1.00}. Fig. [5|shows the resulting mean streamwise velocity profile (U) and streamwise
velocity fluctuations u,yg in the top channel versus the wall-normal coordinate measured relative to the IB wall. The
mean velocity is largely insensitive to the IB-point spacing and agrees well with the results of Bae et al. [[18]. In contrast,
the streamwise fluctuations exhibit noticeable sensitivity in the near-wall region. In particular, physically consistent
decay to zero at the boundary is observed only when As/Ax = 1, indicating that sufficiently fine IB-point spacing is
required to accurately capture near-wall turbulent fluctuations.
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Fig. 6 Performance metrics of the parallel Immersed Boundary Projection Method (IBPM). (a) Relative
computational time (7°) as a function of the number of processors (n). The dashed red line represents the ideal
speedup, 27", (b) Parallelization efficiency (17(%)) as a function of the number of processors (). This compares
the time spent on non-IB calculations relative to the total computational time. The solid orange line represents
the parallel IBPM, the blue solid line represents the serial IBPM, and the yellow solid line represents the non-I1B.

C. Parallel scaling

To evaluate the computational scaling of the parallelized IB operators, we perform non-FSI simulations of the
configuration shown in Fig.|[I| The computational grid consists of 32 points in the streamwise direction, 200 points in
the wall-normal direction, and 128 points in the spanwise direction. The two IB walls are planar and stationary, each
discretized with 20 points in the streamwise direction and 40 points in the spanwise direction. This grid resolution is
selected to allow simulations on up to 32 processors for the scaling study. Parallel performance is evaluated using five
processor counts, n € {2, 4, 8, 16, 32}.

To assess parallel performance, three cases are evaluated in Fig.[6] All three configurations include the parallelized
channel-flow solver for non-IB operations. The first case, denoted non-IB, contains no immersed boundary implementation
and serves as the benchmark. The second case, referred to as serial IBPM, uses the parallel channel-flow solver but
retains a serial IB force operator; in this configuration, each MPI rank gathers its local data to the global domain before
executing the IB operations. The third case, denoted parallel IBPM, corresponds to the fully parallel IBPM—channel-flow
solver in which both interpolation and regularization operators are parallelized using support cells to exchange IB-related
data across partitions. Comparing these three cases highlights the efficacy of the proposed parallelization strategy.

To compare the simulations, we evaluate the relative computational time 7, defined as

AT;

T = AT (37)
where AT; is the computational time per time step using i processors and AT, is the corresponding time using two
processors. Ideally, 7~ should scale proportionally to 2%, represented by the red dashed line in Fig. %ka). In practice,
data-transfer overhead leads to deviations from this ideal line. Fig.[6{a) shows that, compared with the non-IB channel
flow case, the parallel IBPM configuration exhibits reasonable scaling for processor counts up to n = 16. The saturation
at n = 32 arises from nonuniform distributions of immersed boundary points in the spanwise direction: at this resolution,
some ranks still process a comparable number of IB points to those at n = 16. Because the IBPM operations require
synchronization among all ranks, the overall computational time does not improve further. It is expected that simulations
with larger domains and more extensive immersed boundaries would exhibit better scaling characteristics.

To further quantify the effectiveness of the parallelization, we evaluate the parallelization efficiency

1(%) = AlortB 00 (38)
Ttotal IB
where Atyon-18 1S the time spent on operations associated with the original channel-flow solver that are reused in the IB
surface stress computation and At 1 1S the total time required to compute the IB surface stresses. An efficiency of
1(%) = 100 corresponds to an ideal scheme where no additional time is consumed by IB-related operations. Conversely,
values approaching zero indicate that the IB computations (interpolation, spreading, communication) dominate the total
cost.
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As shown in Fig. [6[b), without parallelization of the IB operators, the serial IBPM configuration spends up to
80% of the total time on IB-related operations. In contrast, the parallel IBPM configuration reduces this fraction
to approximately 30% under the same processor count. This demonstrates that the support-cell implementation
substantially reduces the communication and data-gathering overhead, resulting in significantly improved performance
for multi-processor IBPM simulations.

D. Prescribed traveling-wave wall deformation at Re, ~ 186

To test the IB method’s ability to capture wall-bounded turbulence with moving walls, we simulate a channel flow
with prescribed traveling wave-like deformations applied to both the upper and lower walls of the setup shown in Fig.[T}
This case is inspired by the study of Nakanishi et al. [25] that used boundary-fitted grids to investigate the effects of
streamwise traveling waves on turbulent drag.

In our implementation, the wall motions are imposed via the IB method as described in the methodology section (see
Fig.[I). The body-to-grid spacing ratio is reduced to As/Ax = 1 to prevent turbulent flow fluctuations at the IB walls.
For this low ratio, the solution of the IB force in the IBPM becomes ill-conditioned [26], requiring many iterations to
converge to a forcing solution that contains high frequency noise due to amplified discretization errors. Nevertheless,
due to the smoothing effect of the IB operators, the flow solution itself will be unaffected by this noise. However, we
will limit the iteration count per timestep stage to one iteration, which consistently gives us a no-slip error of around
1073 times the bulk velocity.

The Reynolds number based on friction velocity and channel half-height in the undeformed channel is Re, ~ 186.
Our computational domain has dimensions Ly =~ 4x, L, =2, and L, ~ 2r, and uses 384 x 380 x 192 computational
cells with 132 cells in the y-direction inside each uniform grid zone and a hyperbolic tangent stretching function with a
stretching factor of 2.6 for the central stretched grid patch. This results in grid spacings Ax* ~ 6.09, 0.18 £ Ay*™ 5 7.82,
and Az* ~ 6.09 in wall units. Each IB surface is discretized using 384 x 192 points. The reference domain is similar
with dimensions Ly = 4m, Ly, = 2, and L, = 3.5, using 256 x 96 x 128 computational cells. Our higher number of
cells in the y-direction is largely due to the extent of the uniform grid regions around each IB wall, which is one of the
disadvantages of IB methods for turbulent flows.

As in the reference study, we use the channel half-height, 4, and twice the bulk velocity, 2U}, as the length and
velocity scales. The vertical deformations are prescribed as

Yot = Lsin[k(x—cn)],  xr(x1) = ——— sin [k(x — c1)], (39)
kc kc

where a, c, and k denote the amplitude, phase speed, and wave number of the traveling wave, respectively. We consider
two cases from the reference study while keeping the flow rate identical to the undeformed case: their case 6, which
uses the parameter values a = 0.1, ¢ = 1, and k = 4, and their case 20, which uses @ = 0.1, ¢ = —1, and k = 2,. These
cases result in a drag decrease and drag increase, respectively, in the reference study.

Fig. [7| shows the time series of the mean pressure gradient required to maintain a constant flow rate for both
deforming-wall cases, along with the corresponding pressure gradient for the undeformed channel that yields the same
bulk flow rate. The figure also includes results from the reference study for the same configurations. Our method does
not yet reproduce those results quantitatively, for several reasons. First, our simulation runtimes are much shorter than
those in the reference study, so transient effects still affect our results. Second, the initial conditions differ: the reference
study maps the undeformed flow onto a body-fitted grid with deformed walls, whereas our simulations begin from the
undeformed case and increase the wall-deformation amplitude linearly from zero to its full value over one convective
time unit. Consequently, we plot only the time-averaged pressure gradient from the reference study after its initial
transient phase. Finally, our simulations do not satisfy the no-slip condition to machine precision, unlike the reference
study, because we relax the tolerance of the iterative solver for computational efficiency. Given these differences in
setup and simulation duration, a direct quantitative comparison with the reference study is not straightforward. Future
work will focus on improving the conditioning of the method to enforce the no-slip condition more accurately on the 1B
surface and on running longer simulations to minimize transient effects.

E. Turbulent channel flow with compliant IB surface

In this section, we validate the FSI implementation by using it to replicate a standard turbulent channel, similar to
the test case in Sec .[[V.B] but now using a compliant wall setup. The Reynolds number based on the friction velocity
and the channel half height is set to Re, ~ 186. Fig.[2]shows the configuration of the test case. The domain is chosen to
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Fig. 7 Time series of the non-dimensional mean streamwise pressure gradient required to maintain a constant
flow rate. Our present simulation results are shown with solid lines for three cases: an undeformed channel
(black); a case using parameters a = 0.1, ¢ = 1, and k = 4 (blue); and case using parameters a = 0.1, ¢ = —1, and
k = 2 (red). For comparison, the dashed lines represent the average value of the results published by Nakanishi
et al. [25], calculated after the initial transient phase (specifically, after 50 time units for the first case and 250
time units for the second case).

represent a minimal flow unit configuration (Ly = 1.718, L, = 4, L, = 0.859). The number of computational cells in
each Cartesian direction is now 32 x 131 x 16. The grid in the y-direction is again stretched by a factor of 2.6, and a
uniform grid region of three grid cells in the wall-normal direction is used on each side of the IB interface. Turbulent
flow is initiated in both the bottom and the top channels. The planar IB patch is comprised of 32 X 16 points. This
geometry maintains a body-to-grid spacing ratio As/Ax =~ 1.0 for the IB method. The tolerance for the convergence of
the FST iterations is set to 1 X 107>, For these parameters, the code takes approximately 1 FST iteration per RK stage. The
iterative solve for the surface stress is performed using the stabilized bi-conjugate gradient algorithm and approximately
consumes 25 iterations to reach convergence. The spring-mass system drives the compliant patch deformations. The
topmost mass corresponding to the spring-mass block system is centered at xpjock = 0.9, Ybiock = 2.0, Zblock = 0.45. A
total of 8 subsurface blocks (rpjocks = 8) is used for the simulation. For our test simulation, we set a high value of mass
and stiffness to the blocks that constitute the subsurface structure (m; = k; = 10000, ¢; = 0). This ensures that the
compliant patch behaves as a rigid, stationary wall and undergoes minimal deformations. This enables a comparison of
the mean and rms statistics in the top channel with statistics from a non-IB rigid wall.

In Fig. 8] we show results from the test simulations, comparing the statistics obtained from the IB-FSI code with the
non-IB rigid wall. The mean velocity statistics for the top channel, obtained with the IB-FSI code, are indicated as
orange diamond markers in Fig.[8[a). We can see that the markers agree well with the solid thick profile that represents
the mean velocity from the baseline channel [18]. The root mean squared components of the velocity fluctuations are
shown in Fig.[§(b). We can notice that the markers representing the results from the IB-FSI code are shown to agree well
with the thick lines representing the baseline non-IB channel. Overall, the profiles obtained from the IB-FSI code agrees
well with the study of Bae et al. [18]], indicating a good first pass implementation of the fully-coupled FSI simulation
framework. As a part of future work, we continue to test and validate the setup for parameters that lead to significant
deformations of the IB surface. After the validation stage, we will incorporate metamaterial characteristics such as
material defects and di-atomicity into the subsurface structural model.

V. Conclusions
We presented a high-fidelity FSI framework based on an immersed boundary projection method, incorporated into
a parallelized three-dimensional turbulent channel flow solver. The framework is compatible with a wide variety of
(sub)surface structures, making it particularly suited for studying complex metamaterial interfaces. The current work
extends an existing strongly coupled IB-FSI formulation for operation in high-Reynolds-number turbulent channel flows.
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Fig. 8 (a): Statistics corresponding to the mean velocity profile in the top-channel (orange diamond markers) is
compared to the baseline channel flow solver of Bae et al. [18]. (b): The root-mean squared velocity components
of the turbulent flow field obtained from the IB-FSI code (square, diamond and triangle markers) compared to
the baseline non-IB case (black solid lines).

To create this simulation framework, we introduced several novel modifications to existing FSI immersed boundary
projection methods. First, we adapted the interpolation and regularization operations, inherent to the immersed
boundary formalism, to periodic spatial domains. Second, we implemented a hybrid uniform—stretched grid to optimize
computational load distribution while preserving delta function accuracy near IB surfaces. Third, we incorporated
the surface stresses provided as a byproduct of the immersed boundary formulation, to compute one-sided velocity
gradients for the computation of the friction velocity. Fourth, we developed a parallel computing architecture of IB
operations consistent with the underlying flow solver’s domain decomposition. Finally, we constructed new spatially
discrete operators to facilitate information transfer across a wide range of surface and sub-surface configurations, with
specific focus for this manuscript placed on a spring-mass chain model for a metamaterial subsurface.

We demonstrated a preliminary validation of the framework using a set of benchmark cases. First, we performed
a laminar and turbulent validation test and conducted a parallel scaling analysis. We then applied the method to a
turbulent channel flow with prescribed traveling wave-like wall deformations, inspired by previous literature, but the
comparison with the literature is limited due to differences in our setup. Lastly. we performed a preliminary test setup
for validating the FSI implementation.

In our future work, we plan to further validate our IB method for deforming walls and develop fully coupled
fluid—structure interaction (FSI) simulations in which the wall dynamics are governed by the behavior of resonant
phononic materials. The modeling framework will incorporate the detailed dynamics of phononic crystals with
embedded defects, as demonstrated in Ramakrishnan and Matlack’s recent work [27]]. These materials exhibit rich
frequency-domain properties, including pass bands and localized defect modes, which can be tailored to interact with
specific turbulent flow features. By exploiting these spectral characteristics, we aim to design surfaces that passively
engage with and modulate near-wall coherent structures. Ultimately, we hope this novel approach will enable effective
drag reduction by harnessing the inherent dynamics of engineered metamaterials.
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