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Virtual Damping and Einstein Relation in Oscillators

Donhee HamMember, IEEEand Ali Hajimiri, Member, IEEE

Abstract—This paper presents a new physical theory of oscil-  The new contributions are presented beginning in Section Ill,
lator phase noise. Built around the concept of phase diffusion, this where we introduce the concept wftual dampingthrough a
work bridges the fundamental physics of noise and existing oscil- thought experiment. We show that virtual damping is another
lator phase-noise theories. The virtual damping of an ensemble ; h e -
of oscillators is introduced as a measure of phase noise. The ex-mamﬁEStatlon of phase diffusion and demonstrate _the virtual
planation of linewidth compression through virtual damping pro- damping rate as a fundamental measure of phase noise, both the-
vides a unified view of resonators and oscillators. The direct corre- oretically and experimentally. The virtual damping concept will
spondence between phase noise and the Einstein relation is demonenable us to view oscillators and resonators in a unified frame-
strated, which reveals the underlying physics of phase noise. The work, leading to a deep and intuitive understandintiysfwidth
validity of the new approach is confirmed by consistent experi- ' .
mental agreement. COmpl’e.SSIOn . . . . o

Section IV derives the virtual damping rate in terms of circuit
parameters in a general time-varying case. The derivation using
the diffusion equation explains intuitively how the time-varying
effects physically modify the virtual damping rate, but why we
never directly observe the time variations themselves in phase-
. INTRODUCTION noise measurement.

SCILLATOR phase noise has been studied from severalln Section V, we give a physical interpretation of the vir-

different angles, ranging from a mathematical physié§a| damping rate, revealing the direct correspondence between
treatment [1]-[4] to CAD-oriented methods [5], [6] andhe Einstein relation and phase noise. This interpretation elu-
design-oriented approaches [7]-[12], to name a few. TRidates the underlying physics of phase noise by identifying
design-oriented approaches have evolved from a familiar lindt tWo key elementssensitivityand energy lossThe funda-
time-invariant approach [7] to a more accurate time-varyid@en'ﬁal argument also es.tabllshes a link between existing .dIS-
theory [12], adding additional insight into the oscillator desigr$!Pation-based phase-noise models (e.g., [7]) and fluctuation-
These studies have helped circuit designers understand kRged phase-noise models (e.g., [12]). _
evolution of noise in oscillators, leading to more accurate Finally, Section VI combines the results from the previous
phase-noise predictions and lower noise designs (e.g., [1§,ctions to calculate the ratio of the resonator’s linewidth to the
[14]). However, the currently available works on the pha@cillator’s linewidth. The anatomy of this linewidth compres-
noise assume rather phenomenological or pure mathematRigN in conjunction with the phase-noise physics of Section V
standpoints and a more fundamental yet intuitive understandi§§l form a simple yet essential perspective of the oscillator

Index Terms—Analog integrated circuits, LC oscillators, oscilla-
tors, phase noise, radio-frequency (RF) circuits, resonators, ring
oscillators.

of the phase-noise phenomenon is still needed. phase noise.
The primary goal of this paper is to provide essential physical
understanding of phase noise. This work develops a framework II. REVIEW OF PHASE-NOISE FUNDAMENTALS

with a supporting measurement that fills in the gap between theIn this section, wereview phase noise fundamentals from

fgndamental physics of noisg and the existing phase-noise thggs viewpoint ofphase diffusionThis review is based on the
fes. Based on tho“_ght exp_erlments ar_ld fun_damental argumeBFﬁginal works presented in [1]-[4], in which central concepts
this theory emphasizes a simple p_hysmal p|cture Of phase NOI%fd equations of this section are found (perhaps apart from cer-
The results are commensurate with the time-varying theory diy, otational differences). Essentially the same equations have
[12], but the different emphasis leads to several new insighfg,,heared in numerous subsequent developments to analyze
The specific contributions and outline of the paper are I'Steiﬁ'\ase noise (e.g., [6], [15], and [16], to name a few). We will

below. . , . . refer only to original source(s) in this section.
. Se(_:tlon IIrewewsphase_ noise f“’”? th_e per_spectlve of phase The phase diffusion concept reviewed in this section will be
diffusion based on the original contributions in [1}-4]. crucial in understanding the material presented in later sections.
Since the treatments in currently available phase-diffusion lit-
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the LC resonator in a positive feedback loop with gain larger o

than one. Fig. 1 depicts a generic model for tig@ oscillator. n
The resistance? represents the parasitic tank loss. The active ® o 5

t
devices form the positive feedback loop, which compensates ‘ U U b
lP(¢ f)
0

the tank loss by converting dc energy to ac energy and injecting

it into the LC tank. The oscillation frequenay, is given by P(4,0) P, 1))
wo = 1/VLC. The tank loss and the active devices generate

noise, which are modeled as the current sources in Fig. 1. © 5(¢)
The dynamics of ab.C oscillator can be visualized by map- 2Dt

ping the voltagd’ across the capacitor and the currémf the o —>¢ 0 ¢

inductor onto a trajectory in th&—I state space, as shown in

Fig. 2. For a stable oscillator, the limit cycle representing ttyg. 4. (a) Phase diffusion in the state space. (b) Phase diffusion in the time

steady-state oscillation is a closed curve due to the periodicigmain. (¢) Time evolution oP(¢, 7). In all casest, < t.

[17]. Regardless of its starting point, the state will be ultimately

attracted to the limit cycle after the initial transient fades awaloints from the ensemble are all on top of one another initially,

as shown in Fig. 2. rotating on the limit cycle together. However, the rotating oscil-
This peculiar property of the self-sustained oscillator directhgtion points diffuse along the limit cycle with time, eventually

affects its fluctuation behavior in the presence of noise. The flugPreading over the entire limit cycle. This implies that the os-

tuations would remain small in the radial (amplitude) directiofillator will completely lose its initial phase information after a

due to the tendency of the state to return to the limit cycle. Howufficiently long time.

ever, fluctuations in the direction along the limit cycle do not In the time domain, the fundamental component of the

experience any restoring force to return the phase to its origiy@ltage across theC tank in Fig. 1 is expressed as

value. Consequently, in the presence of noise, the state point Vi) =V " ¢ 1
walks randomlyalong the limit cycle, or, the phase undergoes a ®) o cosfwot + ¢(1)] @)
“diffusion” process [1]-[4]. whereV} is the amplitude of the fundamental component. We

To see thisphase diffusiormore clearly, let us perform aignored the amplitude noise since it remains relatively small, as
thought experiment using an ensembleNdfidentical oscilla- discussed before. The fluctuation along the direction of the limit
tors, as in Fig. 3, wheré&/ is a very large number. All the os- cycle in the state space corresponds to the phase fluctugtipn
cillators are assumed to be at the same initial phase of zerara{l), which assumes a diffusion process, as mentioned ear-
t = 0. In the state-space picture shown in Fig. 4(a), the stdier. The time-domain picture of this phase diffusion is shown
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in Fig. 4(b). Initially, the oscillator output signals from the en-  4Sv(«)
semble are all on top of one another since the oscillators are at
the same initial phase. After a sufficiently long time, however,
the output signals become incoherent due to the phase diffusion
and eventually go totally “out of sync.”

Based on the ensemble, we can define the time-dependent
probability distribution of the phasé(¢,t). By definition,
P(¢,t)d¢ represents the probability for the phase to be in
(¢, ¢ + d¢) for a given timet. Fig. 4(c) shows the evolution
of P(¢,t) with time. Since all the oscillators in the ensemble
are at the same initial phase of zero, the initial distribution is
givenbyP(¢,t = 0) = §(¢), whered(¢) is the Dirac delta. As L
time elapses, the phase undergoes diffusion and the probability
d'smbu“.on qub _spreads OUt'.AS de.monStrate(_j In [1]_[4]] if theFig. 5. Power spectral densities of the oscillator output for different diffusion
phase diffusion is due to white noise, the variance ofvhich  constants for the same oscillation energy.
signifies the width of the probability distribution, is given by

($%(t)) = 2Dt @ the _Lor_entzian shape is shorter and fatter, distributing the same
oscillation energy (the area under the power spectrum curves)

a key signature of any diffusion process subject to whiteore widely around the center frequency, hence, increasing the
noise (a.k.a., Wiener process) [18], [19]. The validity of (2¢rrors in the reference frequency. This is the frequency-domain
in the general time-varying case will be positively confirmetheaning of the phase diffusion constdnt
in Section IV. Extensive discussion of (2) can also be found The degree of this energy spreading about the center fre-
in [20]-[22] in the special context of timing jitters in ring quency for a given total energy is characterized by phase noise.
oscillators. Thephase diffusion constard® indicates how fast The phase noise at a given offset frequencyis defined as the
the phase diffusion occutd\s will be seen shortly, this phaseratio of the power spectral density at the frequencyof- Aw
diffusion constant will be thesole parameter that determines(or, alternatively, atvy — Aw) to the total oscillation energy

the phase noise of an oscillator subject to white noise. Vi /2 [23], which is given by

In Fig. 4(a) and (b),D is a measure of how fast the oscil-
lator loses its initial phase information or how fast the ensemble L{Aw} = S"y(z‘”) — 2D ) (4)
evolves to the ultimately random state (the maximum entropy ‘TO (Aw)? + D?

state) at = oo. Therefore,D can be also thought of as tkea- ) o o )
tropy growth rate This definition of phase noise is widely used due to its ease

While the phase diffusion is the fundamental phenomen&fl measurement using common instruments such as spectrum
solely responsible for the oscillator phase noise, the phase ndigg!yzers. If the offset frequency is large enough as compared
is usually characterized in terms of the oscillator power spe@-D: i-€., forAw > D, (4) assumes a familig—= behavior [7]

trum broadening due to its ease of measurement. Indeed, the 2D

spectrum broadening is a natural outcome of the phase diffusion. L{Aw} ~ Tk (5)

In the following subsection, we will discuss the relation between

phase diffusion and phase noise (spectrum broadening).  We have to emphasize once again tthegt phase noise due to
white noise solely depends upon the phase diffusion conStant

B. Phase Noise In other words, the phase diffusion constant is a direct measure

As shown in [1]-[4], when the oscillator phagét) is a dif- of the phase noise. A slovyer phase diffusion corresponds to a
fusion process satisfying (2), subject to white noise, the pow&paller spectrum broadening in the frequency domain.
spectral density of (¢) in (1) is given by the familiar Lorentzian

D
Sy(w) = Vozm ®3) Section Il reviewed phase-noise fundamentals based on

_ _ [1]-[4]. The rest of this paper presents our work on phase noise,
whereAw = w — wy is the offset frequency from the carrier.peginning withvirtual dampingin this section.

Note that regardless of the value Bf the total oscillation en-
ergy remains the samé&?/2, as can be seen by integratinga. Virtual Damping Concept
Sv(w) over the entire frequency range.

Fig. 5 showsSy (w) versusw for different phase diffusion
constants for the fixed oscillator energylgf /2. For a large,

I1l. VIRTUAL DAMPING

To derive the virtual damping concept, we resort again to the
thought experiment of Fig. 3 which involves the ensemble of
identical oscillators. The time-domain picture of the phase dif-

IAlthough D is a notation traditionally used for the diffusion constant, diffusion was depicted in Fig. 4(b) using the ensemble of oscilla-
ferent notations are often found in the literature. For example, inYi]is  tors and is redrawn at the top of Fig. 6. Initially the oscillators
used as an indicator of the diffusion rate whéde= W/2. The constant, . '

in the ensemble have the same phase and, hence, the ensemble

used in the context of timing jitters in [21] and [22], is related@othrough ) - ) .
D = x2w2/2. average(V (t)) is equal to thé/(¢) of any single oscillator in
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40) More numerical examples are tabulated in Table I, which lists
phase-noise values of a 1-GHz RF oscillator at 600-kHz offset
for different virtual damping rates. All the phase-noise values

TABLE |
PHASE NOISE OF A1-GHz OSCILLATOR AT 600KHZz OFFSET FORDIFFERENT
VALUES OF D OBTAINED USING (5). THE WHITE NOISE FLOOR OF THE
REAL MEASUREMENT SYSTEM IS IGNORED

ensemble average

1/D # of cycles | phase noise
<V(t)> (time constant) | within 1/D | (dBe/Hz)

L‘\ virtual damping 1 millisecond | 1.0 x 10° -99
% mu > | 1 second 1.0 x 10° -129
‘ U 1 minute 6.0 x 10 -146
Fig. 6. Ensemble average ®f(¢) and virtual damping. L hour 3.6 x 107 164
1 day 8.6 x 10'3 -178
the ensemble. After a sufficiently long time, however, the oscil- 1 month 2.6 x 10% -193
lator signals become incoherent due to the phase diffusion and, 1 year 31 x 10 203

hence,(V(t)) tends to zero with time, as shown at the bottom
of Fig. 6. We refer to this damping of the ensemble average as
virtual damping Even though the single oscillator outpdft)  are calculated using (5) and some of the smaller values cannot be
per sesustains itself, its ensemble average, which matters gfeasured in the practical measurement due to the white-noise
the measurement of phase noreeiually damps One can in- figor of the measurement system. As can be seen, currently
tuitively guess that the phase diffusion constrit associated ayailable silicon-based on-chip oscillators whose phase-noise
with the virtual damping rate: A slower phase diffusion is expajues range typically betweenl00 dBc/Hz and-140 dBc/Hz
pected to result in a slower virtual damping. at the offset frequency (e.g., [13], [14], [25]-[31]) have vir-

A quantitative verification of the virtual damping is givenya| damping time constants roughly between milliseconds and
here. For a Gaussian distribution f (cos ¢) = e=¢¢)/2 and  geconds.
(sin ¢) = 0 [18]. In the presence of white noise, the oscillator
phase)(t) satisfies (2) and, hence, the ensemble averay¢f B. Experimental Verification

in (1) is given by We can observe the virtual damping phenomenon experi-
V(1) = Voe—<¢2(t))/2 cos(wot) = Ve Dt cos(wot)  (6) menta_llly as well. Typical C oscillators _hav_e very slow virtual _
damping rates as compared to the oscillation frequency, making
which clearly shows the virtual damping. The virtual dampinthem less suitable for experimental verification. Instead, we use
assumes an exponential behavior trelvirtual damping rate is a ring oscillator whose phase noise is intentionally degraded by
identical to the phase diffusion constait as we guessed ear-injection of a white-noise current whose power spectrum can
lier. From the mathematical perspective, (@r seis not sur- be controlled externally. However, we must emphasize that the
prisingly new as it results from the standard probability cakxponential virtual damping is a general phenomenon in any
culation similar to the one shown in [24], which alone doetype of oscillators influenced by white noise, as the generic
not necessarily provide a physical meaning in conjunction withathematical model in Section IlI-A suggests.
phase diffusion or its far-reaching implications. However, the The experimental setup is shown in Fig. 7. The ring oscillator
virtual damping concept indeed has important impact, leadirgobtained by placing a cascade of five inverter stages in a feed-
to an intuitive understanding of phase noise in a unified framback loop. The oscillation frequency is controlled by adjusting
work where resonators and oscillators are viewed from the sathe supply voltagéd/;;. The externally injected noise is gener-
angle, as will be seen shortly. ated by an HP33120A arbitrary waveform generator and has a
The virtual damping ratd), and the phase noise of the oscilwhite spectrum across the bandwidth of interest. This bandwidth
lator are related through (5). To get a feel for the size of the virefers to the frequency band within which the spectrum of the
tual damping rate, let us consider an example: A 1-GHz radioscillator is above the noise floor and phase noise is measurable.
frequency (RF) oscillator whose phase noise121 dBc/Hzat A Tektronix TDS3054 digital oscilloscope is used to sample
600-kHz offset had) ~ 5.6 Hz or D/ fy ~ 10~9, according to the output waveform multiple times and calculate the average
(5). As this numerical example showvigpical oscillators have over N samples, i.e.{V(¢))n. The N output waveforms are
very slow virtual damping rates when compared to oscillatiotiiggered at the same phasetat= 0. To make this average
frequenciesThe time constarit/ D associated with this partic- as close to the mathematical ensemble average as possible, a
ular virtual damping is approximately 0.2 s and phase errors wiirge N of 512 was chosen and the environmental parameters
be apparent after this amount of time. Within this time constarstich as temperature were maintained as constant as possible
there are approximately f@scillation cycles. throughout the measurement. Under these carefully controlled
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digital TABLE I
oscilloscope MEASURED D), PHASE NOISE CALCULATED FROM THE MEASURED DD, AND
D ¢ 5888 PHASE NOISE MEASURED USING A SPECTRUMANALYZER AT DIFFERENT
measuremen °g‘==‘=‘ INJECTED NOISE POWER LEVELS FOR THERING OSCILLATOR WITH
Yf_d CENTER FREQUENCY SET AT 5 MHz. PHASE NOISE WAS MEASURED
5-stage ring oscillator | AT 1-MHz OFFSETFREQUENCY
power Measured PN from measured
divider .
2/Af D measured D PN
blocking
—" capacitor (A?/Hz) (sec™!) (dBc/Hz) | (dBc/Hz)
noise injection 2.6 x 10715 | 1.02 x 10* -92.9 -93.0
. [)
hase noise
heasurement SEE8 4.8 x 10715 | 1.56 x 104 -91.0 -90.0
spectrum 9.7 x 10715 | 3.53 x 10* -87.4 -86.5
analyzer
2.1 %107 | 9.30 x 10* -83.3 -81.7
Fig. 7. Measurement setup for the virtual damping. 6.0 x 101 | 1.90 x 10° 80.2 79.5
.0 x .90 x -80. -79.
Y40
P \S
Plateau of
Lorentzian
exponential fit -50 i
h“; \H“\H“‘ 1t -60:‘*w\\."'.
T e ey > £ OV S ]
R M
\M}MH W‘ \H} it A
| H’ ”H" [ NN
I I 2 N
o ™
Z 7
%E -70 \
measurement result =3 N¢-20(B/Hegaflq
N
Sy
Fig. 8. Measurement example. Measu(&dt))s1- versust. -80 \.\
environmental conditions, the average of the output waveforms
from the same oscillator sampled at different time intervals con- -90
100kHz 1MHz 10MHz

verge to ensemble average/sisncreases.

Fig. 8 shows this average for 512 samples as a function of
time. _AS cgn be. seen Clearly’ the av_erage IS an eXponentl_%l’a 9. Measured phase noise versus offset frequency for a veryllargiae
damping sinusoidal even though the single output waveform is@entzian shape is apparent.
steady-state sinusoidal. This measurement result is in complete

agreement with the virtual damping concept and (6). behavior given by (4). For practically usable oscillators, the

Using this experiment, the virtual damping rddewas mea- irtual d . teD) | I d with th
sured for different injected noise power levels. As (6) indicated udl damping ralely 1S very small as compared with the
/pical offset frequencies (e.g., see Table I), which justifies

D is the inverse of the time constant of the best-fit expone widely used1/f? approximation in (5) for phase-noise

tial to the resultant time-domain averaged waveform such as 7 ;
g characterization. In other words, the plateau of the Lorentzian

one in Fig. 8. The measured virtual damping rate was used i : ) .
(5) to predict the phase noise at the 1-MHz offset frequen .ectrum predicted by (4) is hard to observe for the typical
00d oscillators due to their relatively smdll. However, in

The oscillator phase noise was also directly measured at fhe oscillator of Fia. 8 wherdD can be made comparable to
same offset frequency using an HP8563E spectrum analy. ! 9- . SR P )
e typical offset frequencies via injection of external white

with phase-noise measurement utility. Table Il summarizes the; g .
P y oise, the full Lorentzian spectrum becomes observable. Fig. 9

experimental results. As can be seen, there is close and c < 2 phase-noise measurement examole using the spectrum
sistent agreement between the two phase-noise measurer ¥V P ! u 1t example using pectru
nalyzer for a very larg®. In the figure, the plateau as well

methods, thus, confirming the validity of the virtual dampin@s the familiar—20 dB/decade reduction part is apparent and

concept. ence, the full Lorentzian spectrum
Apart from the virtual damping, the measurement settﬂ) ' P '

in Fig. 8 also facilitates observation of the full Lorentzian _ .
C. Linewidth Compression

2ANe assume ergodicity that the time average is equal to the ensemble averagj . ld . id ified f K
which is a fundamental assumption used in many measurement systems such a4€ Virtual damping concept provides a unified framework to
spectrum analyzers. view the resonator and the oscillator from the same angle. This

Offset Frequency
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resonator \ oscillator sion The ratio of the oscillator’s virtual damping rafe to

i J_ tl the resonator’'s damping ratg (2RC) is the measure of the
-< ! - \Y . . . .
L8 c= RE L C-I-R:; dovioe] (1) ==+ linewidth compression ratio
H 2 2
! T n, 1 M
| A D 2
| pmBoue D _20 ), @
H Ares (2RC) wo
damping rate : 1/2RC) | virtual damping rate : D

where theunloaded quality factor) of the LC tank is defined

5&—%%3%‘?5_—» t as usual as

| Q = RCuwy. (8)
. energy i
!\spectrum | phase noise To obtain a sense for the size of this linewidth compression
‘ Ares N ratio, let us consider an examplg of a 1-@tzoscillator whose
) | Aosc phase noise at 600-kHz offset4sl21 dBc/Hz. Let us assume
; w | w that theLC tank has@ of 10. According to (5),D ~ 5.6 Hz
) Wy and, thereforey ~ 1.8 x 1078, As can be seen, the linewidth
U compression ratio for this typical example is extremely small,
linewidth showing that the linewidth of a resonator is narrowed by almost
COm%ésli)on by eight orders of magnitude when placed in a positive feedback
loop to make an oscillator. In the time-domain picture, this ob-
Fig. 10. Linewidth compression. servation is equivalent to the fact that the virtual damping rate

of the oscillator is eight orders of magnitude smaller than the
damping rate of the resonator.

) _ S ) o This linewidth compression concept, with the aid of Fig. 10,
subsection will explain this viewpoint, giving a fundamental yef|cidates that the phase noise of the resonator-based oscillators
intuitive understanding of linewidth compression (Fig. 10). g optimized by awo-step procedureThe first step is to select

The left-hand side of Fig. 10 shows a parall€l resonator. g resonator with the narrowest possible linewidth. Since the res-
The energy loss due to the parasitic resistaficeauses the gnator's linewidth isA .. ~ 1/(2RC) = wo/2Q, whereQ is
voltage across the tank to damp exponentially from a given igjiven by (8), this first optimization step is actually equivalent
tial value, as shown in the figure. This damping in the timg, high-) resonator selection. The second optimization step is
domain corresponds to the line broadening in the energy Spggachieve the highest possible linewidth compression by mini-
trum in the frequency domain. . ~ mizingr in (7) in placing the resonator in the positive feedback

The right-hand side of Fig. 10 shows an oscillator derivagop. As will be seen in Section VI, the linewidth compression

from the samé.C resonator by driving it in positive active feed-ratio - strongly depends on the noise-to-carrier ratio (NCR) de-
back. The phase diffusion due to the active and passive devigq as [30]

noise is responsible for the line broadening of oscillator’s power
spectrum (phase noise), as discussed earlier. Since the virtual
damping is another manifestation of the phase diffusion, the
line broadening in the oscillator's power spectrum can be al-
ternatively thought of as the result of the exponential virtuathere Eihermar = ks7T/2 and Eiane = C’VO2 /2 are the
damping and, henceforth, the virtual damping rate in the tintkermal and tank energy, respectively. Therefore, the maximum
domain corresponds to the spectrum linewidth in the frequenlayewidth compression in the second step may be achieved
domain3 The virtual damping is much slower than the oscilthrough the minimization of the NCR.
lation frequency, as discussed earlier, and, hence, it is almosEach of these two steps is well known in the context of
always much slower than the damping in the resonator. Corprase-noise optimization. The first step of optimizing res-
spondingly, the linewidth of the oscillator’s output spectrum isnator's@ has been a traditional focus in the oscillator design.
much smaller than the linewidth of the resonator’s energy spéiche second step of the NCR minimization is typically exer-
trum, as shown hypothetically in Fig. 10. cised through oscillation amplitude maximization, but there
In conclusion, placing a resonator in a positive feedback lotyave recently been emphases on the more proper tank energy
to make a self-sustained oscillator resultfnewidth compres- maximization [26], [30], [32]. However, these two quantities,
o _ %and NCR, have been understood rather separately but not in
3To be most accurate, the linewidth of the oscillator power spectrum corrg- .
sponds to the damping rate of the autocorrelaioiit)V'(t + 7)), as opposed the context Of_ the two-step procedure, and l.mderStandmg of
to the virtual damping rate of the me&¥i (¢)), since the power spectrum is the how phase noise behaves as a whole depending ontbatid
Fourier transform of the autocorrelation. However, since the virtual dampife NCR has been lacking. For instance, the link between the
of the mean and the damping of the autocorrelation are of the same phys R and th h ise h b ’ | | lained
origin, the simpler view of relating the virtual damping of the mean to the spet* and the phase noise has r_1ever een ¢ eary_eXp ained to
trum linewidth in this paper will serve the essential purpose. Additionally, tH#e best of our knowledge. The linewidth compression concept

damping rate of the autocorrelation calculated in [18xsctlythe same as the
virtual damping rate of the mean. 4In most practical cases, these two optimization steps are intermingled.

Ethcrmal _ kBT

NCR = =
Etank CV[)2

©)
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tion (ISFP [12], [34]. Then the governing equation of the phase
dynamics can be written as
dv indt indt

dp = vor(t) = C—Vor(t) = Qmaxr(t) (10)

where

dmax = C'Vo (11)

signifies the charge amplitude.

Additionally, the noise sourcé,(t) is cyclostationary in
general due to the periodic change of the operating point and,
hence, should be replaced with(t)«(t) wherei,(t) is sta-
tionary noise and(t) is the unitless periodic noise modulating
function (NMF) [12], [34]. Then the generalized version of
(10) is given by

limit cycle

2 ﬁin(t)l“eg(t) (12)
addresses this issue, establishing the link between the NCR 4figre the unitless periodic functidnyg (t) = a(t)I'(?) is the
the phase noise and leading to a global picture of phase noigdfective ISF [12], [34]. As can be seen, the phage) is an
This understanding of phase noise via linewidth compressiiegration of the white noisé, (¢) and, hence, represents a dif-
will be further enhanced after the study of phase-noise physft§ion process, as mentioned earlier. .
in Section V with an explicit expression fap in terms of cir- N order to find the phase diffusion constafi{ we derive
cuit parameters in hand. Section VI will revisit the concept dfom (12) the diffusion equation describing the time evolution
linewidth compression. The following section derives the vif the phase probability distributio®(¢,?), introduced in

Fig. 11. Geometric description of phase dynamics.

tual damping rate in terms of circuit parameters. Section Il. [See Fig. 4(c).] This type of conversion is a standard
exercise in stochastic theory [18] and in this special case leads
to [35]
oP o%p
— =D(t)— 13
5 = P05 (13)
where
IV. VIRTUAL DAMPING RATE Dt 1 2 .y 14
()_%'A_f'cﬁ(/)' (14)

In order to derive the virtual damping rafe, we first have Equation (13) resembles the typical diffusion equation [18], [19]
to find the governing equation of phase dynamics in the pr@xcept that the diffusion ratB(¢) is not constant but periodic,
ence of white noise. To this end, let us consider tigcir- due to the time-varying effect represented iy (¢). Seem-
cuit in Fig. 1 and its associatdd-I state space and limit cycle INgly complicated, it can be rather easily shown that solving the
in Fig. 11. At timet, the oscillation point is assumed to be atime-varying diffusion equation (13) is equivalent to solving the
point A on the limit cycle. During an infinitesimal time in- following typical diffusion equation:
terval (¢,t + dt), a noise current,, will dump a charge,,d¢ 9P — __9%P
to the capacitor, resulting in the instantaneous voltage change ot D( )3752 (15)

dV = 1,dt/C across the capacitor, or, equivalently, the mo- - _ .

mentary shift of the state point from to A’ whereAA” = 4. WhereD(t) signifies the time average db(i) over its funda-
The perturbed poinA’ will eventually return to the limit cycle Mental period, or, equivalently, its dc component (See the Ap-
at pointB’ after traveling along the trajectory shown with th@&ndix for the proof.). In other words, even in the presence of
broken curve. During the same amount of time, if there were H¢€ Periodic time-varying effects, the diffusion occurs with the
such perturbation, the state poiitwould travel along the limit diffusion constant oD(t), or (¢*(t)) = 2 D(t) - ¢, as if there
cycle to end up at poirB. This shift fromB to B’ is responsible Were no time-varying effectJhis verifies (2) in the general
for the phase chang#) due to the noise perturbation [5], [12].time-varying case where the phase diffusion constant, or the vir-
For small enough perturbation#j is proportional taV and is  tual damping ratep, is given by

inversely proportional to the oscillation amplitudlg. For the 2,
samedV/, the resultant phase changig also depends on where D =D(t) = 12 Af Lot rms- (16)

the state point was on the limit cycle at the time of the noise _ . o N _
injection due to the periodic Sensitivity of the state point to the_5Analyt|caI evaluation of the ISF is difficult as it |nvq|v_es a detailed mecha-

bati Wi itless periodic functign to denote nism of how the perturbed state point returns to the limit cycle [6], [12], [34].
perturbation. We use a uni periodic 1u ficg ) - In practice, we can use an empirical method to obtain the ISF utilizing charge
this periodic sensitivity, the so-calléthpulse sensitivity func- injection simulation [12], [34].
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Here,l«f s Signifies the root mean square (rms) of the effec- sensitivity
tive ISF. 1

While the phase diffusion itself occurs as if there were no Y
time-varying effects, the shape of the perioflig:(¢) doesaf- ._.'3 '\
fect the diffusion speed by modifying the averaged (rms) value /""‘.\. \ \
in (16). This is essentially because diffusion is an accumulation \ /' “"""/
process:D represents an overall diffusion speed, which is ob- \.f \
tained through accumulation of a large number of phase random Y
walks during numerous oscillation cycles. In this accumulation friction (energy loss)

process, the details of the time-varying effects are all lost except

for its average effect. Put in the language of measurement, efén12. Brownian motion.

though we cannot see the time-variations themselves in the mea-

sured oscillator power spectrum, the measured phase noise goeginstein Relation in Brownian Motion
reflect the time-varying effects in an averaged sense and, thus ) ) _ _ o
the time-varying effects cannot be ignored in the calculation of A Brownian particle of mass: immersed in a liquid at tem-

phase noise. One example of modifying the averaged diffusiBRraturél’ with frictional coefficient of~, shown in Fig. 12, -
speed via the shape Bt (#) is to align ISF with NMF differ- undergoes a diffusion process. This is because the Brownian
ently, as fully discussed in [12]. particle walks randomly, incessantly bombarded by thermally

The foregoing argument only dealt with a single white-noigdditated liquid molecules. When the random force exerted by
source. In the presence of multiple uncorrelated white-noilef liquid molecules has a white spectrum, the variance of the

sources, it can be easily shown that the overall diffusion cofliSPlacement: of the Brownian particle increases proportion-

A N ; P .
stantD is the sum of all the diffusion constants due to the muf!lY With time, i.e.,(x%) = 2Dt, whereD is the diffusion con

tiple noise sources. I, represents the diffusion constant du§t@nt [18], [19], [37]. This is a key signature of any diffusion
to thekth white noise current, , in Fig. 1, and if there ar@7  Process subject to white noise, and is analogous to (2) for the

total uncorrelated noise sources, then the overall diffusion cdfase-diffusion case. _ o
stantD is given by The diffusion constanb of the Brownian patrticle is given by

the Einstein relatiof{18], [19], [37]

M
kT 1
D:E:D;c p= B (18)

k=1 W—’m \’Y/
M 1 L2_ sensitivity |ogg

= Lk 2 17

- Z 4q2 Af eff k,rms ( ) .
k=1 “dmax wherekp is the Boltzmann constant. Thg1' /m factor rep-

resents thaensitivityof the Brownian particle to perturbations

whereT '« 1, is the effective ISF associated with thth white-  and becomes smaller for a heavier particle, agreeing with our
noise current. Combining (17) and (5), we see that the phaguition. Fundamentally, this sensitivity factor derives from the
noise model predicted by this work is commensurate with thgyuipartition theorem stating that each independent degree of
phase-noise modelin [12] and [34]. The emphasis in this sectigBedom of a system in equilibrium at temperatiiteas a mean
was on illuminating the time-varying effects in the context ofnergy ofkpT/2 [19], that is,(mv?/2) = kgT/2, or (v?) =
phase diffusion. ksT/m, wherev is the velocity of the Brownian particle.

The virtual damping raté in (17) looks rather complicated  On the other hand, if two identical Brownian particles with
and, hence, a physical interpretation is still needed to understaRg same mass are immersed in liquids with different frictions,
the phase-noise phenomenon better. Section V is devoted to {his Brownian particle in a medium with higher friction will ex-

physical interpretation. hibit a slower diffusion, as we can guess intuitively, and, hence,
the second factar/~ in (18), originating from thédriction (en-
V. PHYSICS OF PHASE NOISE ergy los$ of the environment. In summary, the diffusion con-

i i . _ _ stant can be determined only when both sensitivity and friction
The key to a meaningful interpretation of the virtual damp'”@bnergy loss) elements are known

rate, or the phase diffusion constafy, is to note that the rate
of any diffusion process is determined by two essential eIeme%ts
affecting the process: treensitivityof the physical quantity un- —
dergoing the diffusion and tHection (energy loss) of the envi- The phase diffusion in the oscillator is analogous to the dif-
ronment in which the diffusion process occurs. This importafi¢sion of the Brownian particle and, hence, the phase diffusion
notion is perfectly captured in the Einstein relation, which heenstant can be also explained using the Einstein relation. To
derived to explain Brownian motion [36], [37]. We will beginthis end, we recast the expression for the phase-diffusion con-
with a brief introduction to the Einstein relation in the context
of Brownian motion. This mechanical example facilitates intu- _ _ o o

In semiconductor physics, the Einstein relation is usually expressed as

itive understan.dlng, appealing to our everyday experience (€ 87, — 1,7 /e, wherey is mobility [38]. It can be easily shown that this
an ink droplet in water). expression is equivalent to (18) [19].

Einstein Relation in Phase Noise
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stantin (17) into a different form by expressing the noise intem¢hereR; is the tank los$?, as mentioned before. Then, we can

sity of the kth noise current as rewrite the phase-diffusion constant in (20) as
72 1 /{JBT wo
Uok  4kgT D=_—;. . . (23)
Y Il (19) Ve O RigadeaCuwo

Comparing this overall diffusion constant to the diffusion
constant only due to the tank loss in (21), one can see that the

the kth noise current. If the noise is of thermal origiRy : . . : :
represents the loss associated with the thermal noise accort#‘f)r‘\al ding effect of the active devices is reflected via the change
rogn R t0 Rjoaqeqa. Accordingly, we define the loaded tank

to the fluctuation-dissipation theorem [19], which states the ..
deep-seated link between thermal noise and loss. For instancl:uea}“ty factor,Qioaded, as

in the case of an ohmic resistdt, such as the tank loss Qloaded = RioadedCwo (24)
in Fig. 1, R, simply becomesk and (19) is no more than .=

the Johnson—Nyquist formula for thermal noise. As anoth&fmPlifying (23) to

example, for the MOS transistor whose channel thermal noise 1 kT wo
C

whereR;. is theeffective equivalent resistanaessociated with

intensity is given bylkgTvga0, wherey is the MOS thermal D= vz’

noise factor ang, is the channel transconductancé’at = 0
[39], Ry is equal tol /(vgao).- On the other hand, if the noise is
of nonthermal origin (e.g., shot noisd};, does not necessarily Note thatQj,.q.a defined above in the oscillator context is dif-
represent the loss since the fluctuation-dissipation relation of@fent from the conventional definition Gfioadeq in the context
holds true for the thermal-noise sources. In this cégecan of linear time-invariant (LTI) circuits such as tuned-tank am-
be simply thought of as an alternative measure of the noiglfiers. Conventionally, the loaded quality factor refers to the

& g . (25)
loaded

sensitivity loss/noise

intensity in the form of resistance. overall quality factor taking into account all the relevant circuit
By plugging (19) into (17) and ignoring the time-varying efparasitics.
fects for simplicity, we obtain As can be seen from (19), (22), and (28),.4.q4 defined here
o is a direct measure of the amount of noise in the oscillator. If
1 kgT 1 (20) all the noise sources are of thermal origin in Figtl,.deq IS

R
Vg C & RC

‘ a measure of energy loss in the circuit due to the connection

between thermal noise and loss (the fluctuation-dissipation the-
where we have also usegl..x = CVy from (11). Now, we orem). At any ratew/Qoadeq in (25) consists of noise and/or
will demonstrate this phase-diffusion constant as the Einstegys elements whilds7/C in the equation is the sensitivity
relation. factor, hence, demonstrating the direct correspondence between
First, let us consider the diffusion constant only due to thfie Einstein relation and the overall phase-diffusion constant.
thermal noise of the tank losk in Fig. 1. From now on, we |n this section, we identified the two key components deter-
will always reserve the indek = 1 for the tank loss, that is, mining the oscillator phase noise using a simple physical argu-
Ry = R. Then, the diffusion constant due to the tank loss igent; apart from theé/V;? factor, the phase noise is determined

given by by the sensitivity of the resonator and the overall circuit noise
represented by they / Q1..4eqa factor, in perfect agreement with
1 k‘BT wo . .. . . . . .
Di=— —f/ = (21) our intuition. Although in this paper the Einstein relation was
Vs C Q . . . i .
— —~~ used as a means of interpreting phase noise, the Einstein rela-
sensitivity ogg tionin the phase diffusion is so fundamental that the phase-noise

whereQ is the unloaded tank quality factor defined in (8). ~ formula can be directly obtained through a cogent physical ar-
In (21), theksT/C factor represents the sensitivity of thedument utl_llzmg th_e E_mst_eln rela\_tlon,wnhoutgomg through the

tank, analogous to thies T /m sensitivity factor of the Brownian Mathematical derivation in Section IV [40].

particle in (18). This sensitivity factor can be obtained resorti .

to the equipartition theorem [19] again, that {§/V?2/2) = €. NCR Versus Phase Noise

ksT/2, or (V) = kgT/C. At the same time, the, /Q factor Using the definition of NCR in (9), we can rewrite (25) as

in (21) is analogous to the/~ factor in (18) for the Brownian Eihormal wo

motion and is associated with energy loss, as the quality factor D= B Oronded = [NCR] -

obviously indicates. These sensitivity and energy loss elements ' ) i

in the phase-diffusion constant prove the direct correspondeéaere the thermal energy and the tank energy of the oscillator

R _ _ 2
between the Einstein relation and the phase-diffusion constdH€ 9Ven byEinerma = ksT/2 and Exanc = CVg'/2, respec-
The additional factot /V2 in (21) is simply to convert the dif- tively, as mentlongd earlier. Although there hav_e recently been
fusion on the limit cycle to the diffusion in the phase angle (e. mphases on the importance of the NCR in design of oscillators

wo

26
Qloaded ( )

Fig. 11). 30], [32], [33], the link between the phase noise and the NCR
Now, let us consider the overall phase-diffusion consfant has not been clearly explained. Now, the above equation in as-
in Fig. 1. We first define théoaded resistanc|oaqeq as sociation with the Einstein relation elucidates the link, spelling

out that the NCR originates from the sensitivity factey7’/C
Rioaded = R1||R2]| - - - ||Rum (22) and thel/V;? factor which converts the diffusion on the limit
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cycle to the diffusion in the phase angle. As shown in (26), phase resonator oscillator

noise and the NCR are connected throughua$g .44 factor, _l_ I

which represents the overall noise in the oscillator. L8 ¢ R L% C-RZ gz‘v‘lvcce @ cee @
Often in the NCR, only the/V{? factor is emphasized while T T Iy,1 I

thekpT /C factor is neglected, leading to the widely held belief
that a larger oscillator amplitude always results in better phase
noise. However, as can be seen in (26), what actually matters to | damping rate : 1/2RC)
reduce the NCR is ndty alone butE .., determined by both

C andV,. If C is already fixed, every effort should be made
to maximizeV, in the design. If botiC' andV;, are the design
variables, for a given tank energy, increasiticand, thus, de-
creasingV, doesnotworsen the NCR. Therefore, if increasing
C can benefit the extr@ay / Q10adea factor in (26),C' must be in-
creased (and, hendg, must be decreased) to improve the phase
noise [30].

140 virtual damping rate : D
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D. Fluctuation-Based and Dissipation-Based Phase-Noise —_— 0 |

w
Wy
Models !
Using the relation in (19), we were able to express the same N ANNDN%
2

phase-diffusion constant either in the fluctuation-based form

— >
Wy

linewidth
(17) or in the dissipation-based form (25). As mentioned ear- loss compression by sensitivity loss/noise
lier, the fluctuation-based form (17) is commensurate with the (unloaded) 0 (loaded)
model of [12]. On the other hand, it can be shown that the dis- ~ V_12 % — B aand
sipation-based form (25) is equivalent to the familiar Leeson 0 Qtaie Einstein relation

model [7]. By USiNgQoaded ~ woBrank/Ps = woCVZ/(2P,) sensitivity
in (25), whereP; is the power dissipation in the resistive part o;‘:ig_ 13. Anatomy of linewidth compression.
the resonator, we can rewrite (25) as

kT — wi (27) s associated with the loss factor in the Einstein relation. In the
Py Q7. ea second step, the resonator’s linewidth is compressedrb{28)

which in conjunction with (5) leads to the Leeson model. Thighen the resonator is placed in the positive feedback loop to
consideration establishes a clear link between fluctuation-badggke an oscillator, resulting in the final oscillator’s linewidth on
phase-noise models such as [12] and dissipation-based phif¥@[ight-hand side of Fig. 13. As can be seen in (28), this second
noise models such as [7]. While apparently very different, th&eP is closely related to both the sensitivity fadtgi’/C' in the

are indeed not contradictory but complementary expressiofdStein relation and the voltage swing. As a result, the second

both describing the same physical phase-diffusion process. step of the linewidth compression overall strongly depends on
the NCR. This explains the hitherto unclear link between the

VI. LINEWIDTH COMPRESSIONREVISITED NCR and the phase noise.
) ) o Another factor in the linewidth compression ratio in (28)
In Section Ill, we introduced the concept of the linewidthnat deserves discussion@y Qoadeq. Since the active devices
compression. By comparing the damping rate of the resonajgfming the positive feedback loop load the tagk,in A e
to the virtual damping rate of the oscillator as in Fig. 10, we oloy|d be changed ©1oaded in Aose, Which is taken care of by

tained the linewidth compression ratio given by (7). This raﬂ@liSQ/Qloaded factor. This validates of our earlier definition of
is a measure of how much linewidth compression is achieved i |paded tank quality fact@®ioadeq in (24).

placing a resonator into a positive feedback loop. By plugging
(25) into (7), we can now explicitly write the linewidth com-
pression ratio in terms of circuit parameters

D ~

VIl. CONCLUSION

This paper presented a new point of view of oscillator

T~ iz . kT . _@ = [NCR] - Q (28) phase noise. We introduced the virtual damping concept as
Vo O Quoaded Qloaded a fundamental measure of phase noise along with the exper-

where( is the unloaded tank quality factor defined in (8) andmental verification. The virtual damping concept puts the
we neglected the numeric proportional constant. oscillator phase-noise theory and the well-known resonator

Here, we will look at the linewidth compression once againheory in the same framework, providing a deep and intuitive
now in connection with the Einstein relation. As already disinderstanding of linewidth compression. Demonstration of
cussed in Section I, the linewidth compression concept shote correspondence between the phase noise and the Einstein
that the phase noise is determined through a two-step proces®lation illuminated the underlying physics of phase noise.
the design of the resonator-based oscillator (Fig. 13). In the filsdhese fundamental considerations allowed a meaningful
step, the resonator’s linewidth on the left-hand side of Fig. 13ascount for the link between the noise—carrier ratio (NCR)
determined by the unloadeg of the resonator. This first stepand the phase noise. Additionally, our fundamental treatment
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established a link between currently available dissipation-baseds]
and fluctuation-based phase-noise models.

(7]
(8]

APPENDIX

Here, we will demonstrate that the time-varying diffusion
equation (13) and the typical diffusion equation (15) lead to the[®]
same solution. Plugging the following Gaussian distribution [10]

P(p,t) = (29)

1 2
2m? () T [_ 20%)] [11]

into the time-varying diffusion equation (13), we obtain [12]

(23]

oz(t) :<¢2(t>>
-2 /0 Dy -
:% (T2, cms - t + [sinand cos termg) 1l
zZCg—Vgrzﬂ, rms * ¢ e
2. D¢ (B0) 7

wherel'e# »ms Signifies the rms of the effective ISF. The third [1g]
line was obtained by decomposing the time-varying diffusion
constantD(t) into its dc component and non-dc components[lg]
in the second line. Since in the third line the first term grows[20]
unboundedly with time while the sine and cosine terms are
bounded, the first term will eventually dominate, leading to the,,
fourth line.

_However, the Gaussian distribution in (29) with(t) = 2 -
D(t) - ¢ in (30) is the solution of the diffusion equation (15),
as is well known. Therefore, solving the time-varying diffusion [23]
equation (13) and the typical diffusion equation (15) essentiall¥24]
result in the same solution.

(22]
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