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Virtual Damping and Einstein Relation in Oscillators
Donhee Ham, Member, IEEE,and Ali Hajimiri, Member, IEEE

Abstract—This paper presents a new physical theory of oscil-
lator phase noise. Built around the concept of phase diffusion, this
work bridges the fundamental physics of noise and existing oscil-
lator phase-noise theories. The virtual damping of an ensemble
of oscillators is introduced as a measure of phase noise. The ex-
planation of linewidth compression through virtual damping pro-
vides a unified view of resonators and oscillators. The direct corre-
spondence between phase noise and the Einstein relation is demon-
strated, which reveals the underlying physics of phase noise. The
validity of the new approach is confirmed by consistent experi-
mental agreement.

Index Terms—Analog integrated circuits, LC oscillators, oscilla-
tors, phase noise, radio-frequency (RF) circuits, resonators, ring
oscillators.

I. INTRODUCTION

OSCILLATOR phase noise has been studied from several
different angles, ranging from a mathematical physics

treatment [1]–[4] to CAD-oriented methods [5], [6] and
design-oriented approaches [7]–[12], to name a few. The
design-oriented approaches have evolved from a familiar linear
time-invariant approach [7] to a more accurate time-varying
theory [12], adding additional insight into the oscillator design.
These studies have helped circuit designers understand the
evolution of noise in oscillators, leading to more accurate
phase-noise predictions and lower noise designs (e.g., [13],
[14]). However, the currently available works on the phase
noise assume rather phenomenological or pure mathematical
standpoints and a more fundamental yet intuitive understanding
of the phase-noise phenomenon is still needed.

The primary goal of this paper is to provide essential physical
understanding of phase noise. This work develops a framework
with a supporting measurement that fills in the gap between the
fundamental physics of noise and the existing phase-noise theo-
ries. Based on thought experiments and fundamental arguments,
this theory emphasizes a simple physical picture of phase noise.
The results are commensurate with the time-varying theory in
[12], but the different emphasis leads to several new insights.
The specific contributions and outline of the paper are listed
below.

Section IIreviewsphase noise from the perspective of phase
diffusion based on the original contributions in [1]–[4].
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The new contributions are presented beginning in Section III,
where we introduce the concept ofvirtual dampingthrough a
thought experiment. We show that virtual damping is another
manifestation of phase diffusion and demonstrate the virtual
damping rate as a fundamental measure of phase noise, both the-
oretically and experimentally. The virtual damping concept will
enable us to view oscillators and resonators in a unified frame-
work, leading to a deep and intuitive understanding oflinewidth
compression.

Section IV derives the virtual damping rate in terms of circuit
parameters in a general time-varying case. The derivation using
the diffusion equation explains intuitively how the time-varying
effects physically modify the virtual damping rate, but why we
never directly observe the time variations themselves in phase-
noise measurement.

In Section V, we give a physical interpretation of the vir-
tual damping rate, revealing the direct correspondence between
the Einstein relation and phase noise. This interpretation elu-
cidates the underlying physics of phase noise by identifying
its two key elements,sensitivityand energy loss. The funda-
mental argument also establishes a link between existing dis-
sipation-based phase-noise models (e.g., [7]) and fluctuation-
based phase-noise models (e.g., [12]).

Finally, Section VI combines the results from the previous
sections to calculate the ratio of the resonator’s linewidth to the
oscillator’s linewidth. The anatomy of this linewidth compres-
sion in conjunction with the phase-noise physics of Section V
will form a simple yet essential perspective of the oscillator
phase noise.

II. REVIEW OF PHASE-NOISE FUNDAMENTALS

In this section, wereview phase noise fundamentals from
the viewpoint ofphase diffusion. This review is based on the
original works presented in [1]–[4], in which central concepts
and equations of this section are found (perhaps apart from cer-
tain notational differences). Essentially the same equations have
reappeared in numerous subsequent developments to analyze
phase noise (e.g., [6], [15], and [16], to name a few). We will
refer only to original source(s) in this section.

The phase diffusion concept reviewed in this section will be
crucial in understanding the material presented in later sections.
Since the treatments in currently available phase-diffusion lit-
erature are often very mathematical, we have made this section
self-contained, emphasizing intuitive understanding.

A. Phase Diffusion

Self-sustained oscillators are realized by combining some
sort of frequency selection mechanism and positive active
feedback. For example, anLC oscillator is derived by placing
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Fig. 1. Generic model for the self-sustainedLC oscillator.

Fig. 2. Limit cycle in theV –I state space.

the LC resonator in a positive feedback loop with gain larger
than one. Fig. 1 depicts a generic model for theLC oscillator.
The resistance represents the parasitic tank loss. The active
devices form the positive feedback loop, which compensates
the tank loss by converting dc energy to ac energy and injecting
it into the LC tank. The oscillation frequency is given by

. The tank loss and the active devices generate
noise, which are modeled as the current sources in Fig. 1.

The dynamics of anLC oscillator can be visualized by map-
ping the voltage across the capacitor and the currentof the
inductor onto a trajectory in the – state space, as shown in
Fig. 2. For a stable oscillator, the limit cycle representing the
steady-state oscillation is a closed curve due to the periodicity
[17]. Regardless of its starting point, the state will be ultimately
attracted to the limit cycle after the initial transient fades away,
as shown in Fig. 2.

This peculiar property of the self-sustained oscillator directly
affects its fluctuation behavior in the presence of noise. The fluc-
tuations would remain small in the radial (amplitude) direction
due to the tendency of the state to return to the limit cycle. How-
ever, fluctuations in the direction along the limit cycle do not
experience any restoring force to return the phase to its original
value. Consequently, in the presence of noise, the state point
walks randomlyalong the limit cycle, or, the phase undergoes a
“diffusion” process [1]–[4].

To see thisphase diffusionmore clearly, let us perform a
thought experiment using an ensemble ofidentical oscilla-
tors, as in Fig. 3, where is a very large number. All the os-
cillators are assumed to be at the same initial phase of zero at

. In the state-space picture shown in Fig. 4(a), the state

Fig. 3. Ensemble ofN identical oscillators.

Fig. 4. (a) Phase diffusion in the state space. (b) Phase diffusion in the time
domain. (c) Time evolution ofP (�; t). In all cases,t < t .

points from the ensemble are all on top of one another initially,
rotating on the limit cycle together. However, the rotating oscil-
lation points diffuse along the limit cycle with time, eventually
spreading over the entire limit cycle. This implies that the os-
cillator will completely lose its initial phase information after a
sufficiently long time.

In the time domain, the fundamental component of the
voltage across theLC tank in Fig. 1 is expressed as

(1)

where is the amplitude of the fundamental component. We
ignored the amplitude noise since it remains relatively small, as
discussed before. The fluctuation along the direction of the limit
cycle in the state space corresponds to the phase fluctuation
in (1), which assumes a diffusion process, as mentioned ear-
lier. The time-domain picture of this phase diffusion is shown
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in Fig. 4(b). Initially, the oscillator output signals from the en-
semble are all on top of one another since the oscillators are at
the same initial phase. After a sufficiently long time, however,
the output signals become incoherent due to the phase diffusion
and eventually go totally “out of sync.”

Based on the ensemble, we can define the time-dependent
probability distribution of the phase . By definition,

represents the probability for the phase to be in
for a given time . Fig. 4(c) shows the evolution

of with time. Since all the oscillators in the ensemble
are at the same initial phase of zero, the initial distribution is
given by , where is the Dirac delta. As
time elapses, the phase undergoes diffusion and the probability
distribution of spreads out. As demonstrated in [1]–[4], if the
phase diffusion is due to white noise, the variance of, which
signifies the width of the probability distribution, is given by

(2)

a key signature of any diffusion process subject to white
noise (a.k.a., Wiener process) [18], [19]. The validity of (2)
in the general time-varying case will be positively confirmed
in Section IV. Extensive discussion of (2) can also be found
in [20]–[22] in the special context of timing jitters in ring
oscillators. Thephase diffusion constant indicates how fast
the phase diffusion occurs.1 As will be seen shortly, this phase
diffusion constant will be thesole parameter that determines
the phase noise of an oscillator subject to white noise.

In Fig. 4(a) and (b), is a measure of how fast the oscil-
lator loses its initial phase information or how fast the ensemble
evolves to the ultimately random state (the maximum entropy
state) at . Therefore, can be also thought of as theen-
tropy growth rate.

While the phase diffusion is the fundamental phenomenon
solely responsible for the oscillator phase noise, the phase noise
is usually characterized in terms of the oscillator power spec-
trum broadening due to its ease of measurement. Indeed, the
spectrum broadening is a natural outcome of the phase diffusion.
In the following subsection, we will discuss the relation between
phase diffusion and phase noise (spectrum broadening).

B. Phase Noise

As shown in [1]–[4], when the oscillator phase is a dif-
fusion process satisfying (2), subject to white noise, the power
spectral density of in (1) is given by the familiar Lorentzian

(3)

where is the offset frequency from the carrier.
Note that regardless of the value of, the total oscillation en-
ergy remains the same, , as can be seen by integrating

over the entire frequency range.
Fig. 5 shows versus for different phase diffusion

constants for the fixed oscillator energy of . For a larger ,

1AlthoughD is a notation traditionally used for the diffusion constant, dif-
ferent notations are often found in the literature. For example, in [1],W is
used as an indicator of the diffusion rate whereD = W=2. The constant�,
used in the context of timing jitters in [21] and [22], is related toD through
D = � ! =2.

Fig. 5. Power spectral densities of the oscillator output for different diffusion
constants for the same oscillation energy.

the Lorentzian shape is shorter and fatter, distributing the same
oscillation energy (the area under the power spectrum curves)
more widely around the center frequency, hence, increasing the
errors in the reference frequency. This is the frequency-domain
meaning of the phase diffusion constant.

The degree of this energy spreading about the center fre-
quency for a given total energy is characterized by phase noise.
The phase noise at a given offset frequencyis defined as the
ratio of the power spectral density at the frequency of
(or, alternatively, at ) to the total oscillation energy

[23], which is given by

(4)

This definition of phase noise is widely used due to its ease
of measurement using common instruments such as spectrum
analyzers. If the offset frequency is large enough as compared
to , i.e., for , (4) assumes a familiar behavior [7]

(5)

We have to emphasize once again thatthe phase noise due to
white noise solely depends upon the phase diffusion constant.
In other words, the phase diffusion constant is a direct measure
of the phase noise. A slower phase diffusion corresponds to a
smaller spectrum broadening in the frequency domain.

III. V IRTUAL DAMPING

Section II reviewed phase-noise fundamentals based on
[1]–[4]. The rest of this paper presents our work on phase noise,
beginning withvirtual dampingin this section.

A. Virtual Damping Concept

To derive the virtual damping concept, we resort again to the
thought experiment of Fig. 3 which involves the ensemble of
identical oscillators. The time-domain picture of the phase dif-
fusion was depicted in Fig. 4(b) using the ensemble of oscilla-
tors and is redrawn at the top of Fig. 6. Initially, the oscillators
in the ensemble have the same phase and, hence, the ensemble
average is equal to the of any single oscillator in
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Fig. 6. Ensemble average ofV (t) and virtual damping.

the ensemble. After a sufficiently long time, however, the oscil-
lator signals become incoherent due to the phase diffusion and,
hence, tends to zero with time, as shown at the bottom
of Fig. 6. We refer to this damping of the ensemble average as
virtual damping. Even though the single oscillator output
per sesustains itself, its ensemble average, which matters in
the measurement of phase noise,virtually damps. One can in-
tuitively guess that the phase diffusion constantis associated
with the virtual damping rate: A slower phase diffusion is ex-
pected to result in a slower virtual damping.

A quantitative verification of the virtual damping is given
here. For a Gaussian distribution of, and

[18]. In the presence of white noise, the oscillator
phase satisfies (2) and, hence, the ensemble average of
in (1) is given by

(6)

which clearly shows the virtual damping. The virtual damping
assumes an exponential behavior andthe virtual damping rate is
identical to the phase diffusion constant, as we guessed ear-
lier. From the mathematical perspective, (6)per seis not sur-
prisingly new as it results from the standard probability cal-
culation similar to the one shown in [24], which alone does
not necessarily provide a physical meaning in conjunction with
phase diffusion or its far-reaching implications. However, the
virtual damping concept indeed has important impact, leading
to an intuitive understanding of phase noise in a unified frame-
work where resonators and oscillators are viewed from the same
angle, as will be seen shortly.

The virtual damping rate, , and the phase noise of the oscil-
lator are related through (5). To get a feel for the size of the vir-
tual damping rate, let us consider an example: A 1-GHz radio-
frequency (RF) oscillator whose phase noise is121 dBc/Hz at
600-kHz offset has Hz or , according to
(5). As this numerical example shows,typical oscillators have
very slow virtual damping rates when compared to oscillation
frequencies. The time constant associated with this partic-
ular virtual damping is approximately 0.2 s and phase errors will
be apparent after this amount of time. Within this time constant,
there are approximately 10oscillation cycles.

More numerical examples are tabulated in Table I, which lists
phase-noise values of a 1-GHz RF oscillator at 600-kHz offset
for different virtual damping rates. All the phase-noise values

TABLE I
PHASE NOISE OF A1-GHZ OSCILLATOR AT 600-KHZ OFFSET FORDIFFERENT

VALUES OFD OBTAINED USING (5). THE WHITE NOISE FLOOR OF THE

REAL MEASUREMENTSYSTEM IS IGNORED

are calculated using (5) and some of the smaller values cannot be
measured in the practical measurement due to the white-noise
floor of the measurement system. As can be seen, currently
available silicon-based on-chip oscillators whose phase-noise
values range typically between100 dBc/Hz and 140 dBc/Hz
at the offset frequency (e.g., [13], [14], [25]–[31]) have vir-
tual damping time constants roughly between milliseconds and
seconds.

B. Experimental Verification

We can observe the virtual damping phenomenon experi-
mentally as well. TypicalLC oscillators have very slow virtual
damping rates as compared to the oscillation frequency, making
them less suitable for experimental verification. Instead, we use
a ring oscillator whose phase noise is intentionally degraded by
injection of a white-noise current whose power spectrum can
be controlled externally. However, we must emphasize that the
exponential virtual damping is a general phenomenon in any
type of oscillators influenced by white noise, as the generic
mathematical model in Section III-A suggests.

The experimental setup is shown in Fig. 7. The ring oscillator
is obtained by placing a cascade of five inverter stages in a feed-
back loop. The oscillation frequency is controlled by adjusting
the supply voltage . The externally injected noise is gener-
ated by an HP33120A arbitrary waveform generator and has a
white spectrum across the bandwidth of interest. This bandwidth
refers to the frequency band within which the spectrum of the
oscillator is above the noise floor and phase noise is measurable.

A Tektronix TDS3054 digital oscilloscope is used to sample
the output waveform multiple times and calculate the average
over samples, i.e., . The output waveforms are
triggered at the same phase at . To make this average
as close to the mathematical ensemble average as possible, a
large of 512 was chosen and the environmental parameters
such as temperature were maintained as constant as possible
throughout the measurement. Under these carefully controlled
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Fig. 7. Measurement setup for the virtual damping.

Fig. 8. Measurement example. MeasuredhV (t)i versust.

environmental conditions, the average of the output waveforms
from the same oscillator sampled at different time intervals con-
verge to ensemble average asincreases.2

Fig. 8 shows this average for 512 samples as a function of
time. As can be seen clearly, the average is an exponentially
damping sinusoidal even though the single output waveform is a
steady-state sinusoidal. This measurement result is in complete
agreement with the virtual damping concept and (6).

Using this experiment, the virtual damping ratewas mea-
sured for different injected noise power levels. As (6) indicates,

is the inverse of the time constant of the best-fit exponen-
tial to the resultant time-domain averaged waveform such as the
one in Fig. 8. The measured virtual damping rate was used in
(5) to predict the phase noise at the 1-MHz offset frequency.
The oscillator phase noise was also directly measured at the
same offset frequency using an HP8563E spectrum analyzer
with phase-noise measurement utility. Table II summarizes the
experimental results. As can be seen, there is close and con-
sistent agreement between the two phase-noise measurement
methods, thus, confirming the validity of the virtual damping
concept.

Apart from the virtual damping, the measurement setup
in Fig. 8 also facilitates observation of the full Lorentzian

2We assume ergodicity that the time average is equal to the ensemble average,
which is a fundamental assumption used in many measurement systems such as
spectrum analyzers.

TABLE II
MEASUREDD, PHASE NOISE CALCULATED FROM THE MEASUREDD, AND

PHASE NOISE MEASUREDUSING A SPECTRUMANALYZER AT DIFFERENT

INJECTEDNOISE POWER LEVELS FOR THERING OSCILLATOR WITH

CENTER FREQUENCY SET AT 5 MHZ. PHASE NOISE WAS MEASURED

AT 1-MHZ OFFSETFREQUENCY

Fig. 9. Measured phase noise versus offset frequency for a very largeD. The
Lorentzian shape is apparent.

behavior given by (4). For practically usable oscillators, the
virtual damping rate is very small as compared with the
typical offset frequencies (e.g., see Table I), which justifies
the widely used approximation in (5) for phase-noise
characterization. In other words, the plateau of the Lorentzian
spectrum predicted by (4) is hard to observe for the typical
good oscillators due to their relatively small. However, in
the oscillator of Fig. 8 where can be made comparable to
the typical offset frequencies via injection of external white
noise, the full Lorentzian spectrum becomes observable. Fig. 9
shows a phase-noise measurement example using the spectrum
analyzer for a very large . In the figure, the plateau as well
as the familiar 20 dB/decade reduction part is apparent and,
hence, the full Lorentzian spectrum.

C. Linewidth Compression

The virtual damping concept provides a unified framework to
view the resonator and the oscillator from the same angle. This
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Fig. 10. Linewidth compression.

subsection will explain this viewpoint, giving a fundamental yet
intuitive understanding of linewidth compression (Fig. 10).

The left-hand side of Fig. 10 shows a parallelLC resonator.
The energy loss due to the parasitic resistancecauses the
voltage across the tank to damp exponentially from a given ini-
tial value, as shown in the figure. This damping in the time
domain corresponds to the line broadening in the energy spec-
trum in the frequency domain.

The right-hand side of Fig. 10 shows an oscillator derived
from the sameLC resonator by driving it in positive active feed-
back. The phase diffusion due to the active and passive device
noise is responsible for the line broadening of oscillator’s power
spectrum (phase noise), as discussed earlier. Since the virtual
damping is another manifestation of the phase diffusion, the
line broadening in the oscillator’s power spectrum can be al-
ternatively thought of as the result of the exponential virtual
damping and, henceforth, the virtual damping rate in the time
domain corresponds to the spectrum linewidth in the frequency
domain.3 The virtual damping is much slower than the oscil-
lation frequency, as discussed earlier, and, hence, it is almost
always much slower than the damping in the resonator. Corre-
spondingly, the linewidth of the oscillator’s output spectrum is
much smaller than the linewidth of the resonator’s energy spec-
trum, as shown hypothetically in Fig. 10.

In conclusion, placing a resonator in a positive feedback loop
to make a self-sustained oscillator results inlinewidth compres-

3To be most accurate, the linewidth of the oscillator power spectrum corre-
sponds to the damping rate of the autocorrelationhV (t)V (t+ �)i, as opposed
to the virtual damping rate of the meanhV (t)i, since the power spectrum is the
Fourier transform of the autocorrelation. However, since the virtual damping
of the mean and the damping of the autocorrelation are of the same physical
origin, the simpler view of relating the virtual damping of the mean to the spec-
trum linewidth in this paper will serve the essential purpose. Additionally, the
damping rate of the autocorrelation calculated in [1] isexactlythe same as the
virtual damping rate of the mean.

sion. The ratio of the oscillator’s virtual damping rate to
the resonator’s damping rate is the measure of the
linewidth compression ratio

(7)

where theunloaded quality factor of theLC tank is defined
as usual as

(8)

To obtain a sense for the size of this linewidth compression
ratio, let us consider an example of a 1-GHzLCoscillator whose
phase noise at 600-kHz offset is121 dBc/Hz. Let us assume
that theLC tank has of 10. According to (5), Hz
and, therefore, . As can be seen, the linewidth
compression ratio for this typical example is extremely small,
showing that the linewidth of a resonator is narrowed by almost
eight orders of magnitude when placed in a positive feedback
loop to make an oscillator. In the time-domain picture, this ob-
servation is equivalent to the fact that the virtual damping rate
of the oscillator is eight orders of magnitude smaller than the
damping rate of the resonator.

This linewidth compression concept, with the aid of Fig. 10,
elucidates that the phase noise of the resonator-based oscillators
is optimized by atwo-step procedure. The first step is to select
a resonator with the narrowest possible linewidth. Since the res-
onator’s linewidth is , where is
given by (8), this first optimization step is actually equivalent
to high- resonator selection. The second optimization step is
to achieve the highest possible linewidth compression by mini-
mizing in (7) in placing the resonator in the positive feedback
loop. As will be seen in Section VI, the linewidth compression
ratio strongly depends on the noise-to-carrier ratio (NCR) de-
fined as [30]

NCR (9)

where and are the
thermal and tank energy, respectively. Therefore, the maximum
linewidth compression in the second step may be achieved
through the minimization of the NCR.4

Each of these two steps is well known in the context of
phase-noise optimization. The first step of optimizing res-
onator’s has been a traditional focus in the oscillator design.
The second step of the NCR minimization is typically exer-
cised through oscillation amplitude maximization, but there
have recently been emphases on the more proper tank energy
maximization [26], [30], [32]. However, these two quantities,

and NCR, have been understood rather separately but not in
the context of the two-step procedure, and understanding of
how phase noise behaves as a whole depending on bothand
the NCR has been lacking. For instance, the link between the
NCR and the phase noise has never been clearly explained to
the best of our knowledge. The linewidth compression concept

4In most practical cases, these two optimization steps are intermingled.
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Fig. 11. Geometric description of phase dynamics.

addresses this issue, establishing the link between the NCR and
the phase noise and leading to a global picture of phase noise.

This understanding of phase noise via linewidth compression
will be further enhanced after the study of phase-noise physics
in Section V with an explicit expression for in terms of cir-
cuit parameters in hand. Section VI will revisit the concept of
linewidth compression. The following section derives the vir-
tual damping rate in terms of circuit parameters.

IV. V IRTUAL DAMPING RATE

In order to derive the virtual damping rate, we first have
to find the governing equation of phase dynamics in the pres-
ence of white noise. To this end, let us consider theLC cir-
cuit in Fig. 1 and its associated– state space and limit cycle
in Fig. 11. At time , the oscillation point is assumed to be at
point on the limit cycle. During an infinitesimal time in-
terval , a noise current will dump a charge
to the capacitor, resulting in the instantaneous voltage change

across the capacitor, or, equivalently, the mo-
mentary shift of the state point from to where .
The perturbed point will eventually return to the limit cycle
at point after traveling along the trajectory shown with the
broken curve. During the same amount of time, if there were no
such perturbation, the state pointwould travel along the limit
cycle to end up at point . This shift from to is responsible
for the phase change due to the noise perturbation [5], [12].
For small enough perturbations, is proportional to and is
inversely proportional to the oscillation amplitude. For the
same , the resultant phase changealso depends on where
the state point was on the limit cycle at the time of the noise
injection due to the periodic sensitivity of the state point to the
perturbation. We use a unitless periodic function to denote
this periodic sensitivity, the so-calledimpulse sensitivity func-

tion (ISF)5 [12], [34]. Then the governing equation of the phase
dynamics can be written as

(10)

where

(11)

signifies the charge amplitude.
Additionally, the noise source is cyclostationary in

general due to the periodic change of the operating point and,
hence, should be replaced with where is sta-
tionary noise and is the unitless periodic noise modulating
function (NMF) [12], [34]. Then the generalized version of
(10) is given by

(12)

where the unitless periodic function is the
effective ISF [12], [34]. As can be seen, the phase is an
integration of the white noise and, hence, represents a dif-
fusion process, as mentioned earlier.

In order to find the phase diffusion constant, we derive
from (12) the diffusion equation describing the time evolution
of the phase probability distribution , introduced in
Section II. [See Fig. 4(c).] This type of conversion is a standard
exercise in stochastic theory [18] and in this special case leads
to [35]

(13)

where

(14)

Equation (13) resembles the typical diffusion equation [18], [19]
except that the diffusion rate is not constant but periodic,
due to the time-varying effect represented by . Seem-
ingly complicated, it can be rather easily shown that solving the
time-varying diffusion equation (13) is equivalent to solving the
following typical diffusion equation:

(15)

where signifies the time average of over its funda-
mental period, or, equivalently, its dc component (See the Ap-
pendix for the proof.). In other words, even in the presence of
the periodic time-varying effects, the diffusion occurs with the
diffusion constant of , or , as if there
were no time-varying effects. This verifies (2) in the general
time-varying case where the phase diffusion constant, or the vir-
tual damping rate, , is given by

(16)

5Analytical evaluation of the ISF is difficult as it involves a detailed mecha-
nism of how the perturbed state point returns to the limit cycle [6], [12], [34].
In practice, we can use an empirical method to obtain the ISF utilizing charge
injection simulation [12], [34].
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Here, signifies the root mean square (rms) of the effec-
tive ISF.

While the phase diffusion itself occurs as if there were no
time-varying effects, the shape of the periodic doesaf-
fect the diffusion speed by modifying the averaged (rms) value
in (16). This is essentially because diffusion is an accumulation
process: represents an overall diffusion speed, which is ob-
tained through accumulation of a large number of phase random
walks during numerous oscillation cycles. In this accumulation
process, the details of the time-varying effects are all lost except
for its average effect. Put in the language of measurement, even
though we cannot see the time-variations themselves in the mea-
sured oscillator power spectrum, the measured phase noise does
reflect the time-varying effects in an averaged sense and, thus,
the time-varying effects cannot be ignored in the calculation of
phase noise. One example of modifying the averaged diffusion
speed via the shape of is to align ISF with NMF differ-
ently, as fully discussed in [12].

The foregoing argument only dealt with a single white-noise
source. In the presence of multiple uncorrelated white-noise
sources, it can be easily shown that the overall diffusion con-
stant is the sum of all the diffusion constants due to the mul-
tiple noise sources. If represents the diffusion constant due
to the th white noise current in Fig. 1, and if there are
total uncorrelated noise sources, then the overall diffusion con-
stant is given by

(17)

where is the effective ISF associated with theth white-
noise current. Combining (17) and (5), we see that the phase-
noise model predicted by this work is commensurate with the
phase-noise model in [12] and [34]. The emphasis in this section
was on illuminating the time-varying effects in the context of
phase diffusion.

The virtual damping rate in (17) looks rather complicated
and, hence, a physical interpretation is still needed to understand
the phase-noise phenomenon better. Section V is devoted to this
physical interpretation.

V. PHYSICS OFPHASE NOISE

The key to a meaningful interpretation of the virtual damping
rate, or the phase diffusion constant,, is to note that the rate
of any diffusion process is determined by two essential elements
affecting the process: thesensitivityof the physical quantity un-
dergoing the diffusion and thefriction (energy loss) of the envi-
ronment in which the diffusion process occurs. This important
notion is perfectly captured in the Einstein relation, which he
derived to explain Brownian motion [36], [37]. We will begin
with a brief introduction to the Einstein relation in the context
of Brownian motion. This mechanical example facilitates intu-
itive understanding, appealing to our everyday experience (e.g.,
an ink droplet in water).

Fig. 12. Brownian motion.

A. Einstein Relation in Brownian Motion

A Brownian particle of mass immersed in a liquid at tem-
perature with frictional coefficient of , shown in Fig. 12,
undergoes a diffusion process. This is because the Brownian
particle walks randomly, incessantly bombarded by thermally
agitated liquid molecules. When the random force exerted by
the liquid molecules has a white spectrum, the variance of the
displacement of the Brownian particle increases proportion-
ally with time, i.e., , where is the diffusion con-
stant [18], [19], [37]. This is a key signature of any diffusion
process subject to white noise, and is analogous to (2) for the
phase-diffusion case.

The diffusion constant of the Brownian particle is given by
the Einstein relation6 [18], [19], [37]

(18)

where is the Boltzmann constant. The factor rep-
resents thesensitivityof the Brownian particle to perturbations
and becomes smaller for a heavier particle, agreeing with our
intuition. Fundamentally, this sensitivity factor derives from the
equipartition theorem stating that each independent degree of
freedom of a system in equilibrium at temperaturehas a mean
energy of [19], that is, , or

, where is the velocity of the Brownian particle.
On the other hand, if two identical Brownian particles with

the same mass are immersed in liquids with different frictions,
the Brownian particle in a medium with higher friction will ex-
hibit a slower diffusion, as we can guess intuitively, and, hence,
the second factor in (18), originating from thefriction (en-
ergy loss) of the environment. In summary, the diffusion con-
stant can be determined only when both sensitivity and friction
(energy loss) elements are known.

B. Einstein Relation in Phase Noise

The phase diffusion in the oscillator is analogous to the dif-
fusion of the Brownian particle and, hence, the phase diffusion
constant can be also explained using the Einstein relation. To
this end, we recast the expression for the phase-diffusion con-

6In semiconductor physics, the Einstein relation is usually expressed as
D=� = k T=e, where� is mobility [38]. It can be easily shown that this
expression is equivalent to (18) [19].
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stant in (17) into a different form by expressing the noise inten-
sity of the th noise current as

(19)

where is theeffective equivalent resistanceassociated with
the th noise current. If the noise is of thermal origin,
represents the loss associated with the thermal noise according
to the fluctuation-dissipation theorem [19], which states the
deep-seated link between thermal noise and loss. For instance,
in the case of an ohmic resistor, such as the tank loss
in Fig. 1, simply becomes and (19) is no more than
the Johnson–Nyquist formula for thermal noise. As another
example, for the MOS transistor whose channel thermal noise
intensity is given by , where is the MOS thermal
noise factor and is the channel transconductance at
[39], is equal to . On the other hand, if the noise is
of nonthermal origin (e.g., shot noise), does not necessarily
represent the loss since the fluctuation-dissipation relation only
holds true for the thermal-noise sources. In this case,can
be simply thought of as an alternative measure of the noise
intensity in the form of resistance.

By plugging (19) into (17) and ignoring the time-varying ef-
fects for simplicity, we obtain

(20)

where we have also used from (11). Now, we
will demonstrate this phase-diffusion constant as the Einstein
relation.

First, let us consider the diffusion constant only due to the
thermal noise of the tank loss in Fig. 1. From now on, we
will always reserve the index for the tank loss, that is,

. Then, the diffusion constant due to the tank loss is
given by

(21)

where is the unloaded tank quality factor defined in (8).
In (21), the factor represents the sensitivity of the

tank, analogous to the sensitivity factor of the Brownian
particle in (18). This sensitivity factor can be obtained resorting
to the equipartition theorem [19] again, that is,

, or . At the same time, the factor
in (21) is analogous to the factor in (18) for the Brownian
motion and is associated with energy loss, as the quality factor
obviously indicates. These sensitivity and energy loss elements
in the phase-diffusion constant prove the direct correspondence
between the Einstein relation and the phase-diffusion constant.
The additional factor in (21) is simply to convert the dif-
fusion on the limit cycle to the diffusion in the phase angle (e.g.,
Fig. 11).

Now, let us consider the overall phase-diffusion constant
in Fig. 1. We first define theloaded resistance as

(22)

where is the tank loss , as mentioned before. Then, we can
rewrite the phase-diffusion constant in (20) as

(23)

Comparing this overall diffusion constant to the diffusion
constant only due to the tank loss in (21), one can see that the
loading effect of the active devices is reflected via the change
from to . Accordingly, we define the loaded tank
quality factor, , as

(24)

simplifying (23) to

(25)

Note that defined above in the oscillator context is dif-
ferent from the conventional definition of in the context
of linear time-invariant (LTI) circuits such as tuned-tank am-
plifiers. Conventionally, the loaded quality factor refers to the
overall quality factor taking into account all the relevant circuit
parasitics.

As can be seen from (19), (22), and (24), defined here
is a direct measure of the amount of noise in the oscillator. If
all the noise sources are of thermal origin in Fig. 1, is
a measure of energy loss in the circuit due to the connection
between thermal noise and loss (the fluctuation-dissipation the-
orem). At any rate, in (25) consists of noise and/or
loss elements while in the equation is the sensitivity
factor, hence, demonstrating the direct correspondence between
the Einstein relation and the overall phase-diffusion constant.

In this section, we identified the two key components deter-
mining the oscillator phase noise using a simple physical argu-
ment; apart from the factor, the phase noise is determined
by the sensitivity of the resonator and the overall circuit noise
represented by the factor, in perfect agreement with
our intuition. Although in this paper the Einstein relation was
used as a means of interpreting phase noise, the Einstein rela-
tion in the phase diffusion is so fundamental that the phase-noise
formula can be directly obtained through a cogent physical ar-
gument utilizing the Einstein relation, without going through the
mathematical derivation in Section IV [40].

C. NCR Versus Phase Noise

Using the definition of NCR in (9), we can rewrite (25) as

NCR (26)

where the thermal energy and the tank energy of the oscillator
are given by and , respec-
tively, as mentioned earlier. Although there have recently been
emphases on the importance of the NCR in design of oscillators
[30], [32], [33], the link between the phase noise and the NCR
has not been clearly explained. Now, the above equation in as-
sociation with the Einstein relation elucidates the link, spelling
out that the NCR originates from the sensitivity factor
and the factor which converts the diffusion on the limit
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cycle to the diffusion in the phase angle. As shown in (26), phase
noise and the NCR are connected through the factor,
which represents the overall noise in the oscillator.

Often in the NCR, only the factor is emphasized while
the factor is neglected, leading to the widely held belief
that a larger oscillator amplitude always results in better phase
noise. However, as can be seen in (26), what actually matters to
reduce the NCR is not alone but , determined by both

and . If is already fixed, every effort should be made
to maximize in the design. If both and are the design
variables, for a given tank energy, increasingand, thus, de-
creasing doesnot worsen the NCR. Therefore, if increasing

can benefit the extra factor in (26), must be in-
creased (and, hence, must be decreased) to improve the phase
noise [30].

D. Fluctuation-Based and Dissipation-Based Phase-Noise
Models

Using the relation in (19), we were able to express the same
phase-diffusion constant either in the fluctuation-based form
(17) or in the dissipation-based form (25). As mentioned ear-
lier, the fluctuation-based form (17) is commensurate with the
model of [12]. On the other hand, it can be shown that the dis-
sipation-based form (25) is equivalent to the familiar Leeson
model [7]. By using
in (25), where is the power dissipation in the resistive part of
the resonator, we can rewrite (25) as

(27)

which in conjunction with (5) leads to the Leeson model. This
consideration establishes a clear link between fluctuation-based
phase-noise models such as [12] and dissipation-based phase-
noise models such as [7]. While apparently very different, they
are indeed not contradictory but complementary expressions,
both describing the same physical phase-diffusion process.

VI. L INEWIDTH COMPRESSIONREVISITED

In Section III, we introduced the concept of the linewidth
compression. By comparing the damping rate of the resonator
to the virtual damping rate of the oscillator as in Fig. 10, we ob-
tained the linewidth compression ratio given by (7). This ratio
is a measure of how much linewidth compression is achieved by
placing a resonator into a positive feedback loop. By plugging
(25) into (7), we can now explicitly write the linewidth com-
pression ratio in terms of circuit parameters

NCR (28)

where is the unloaded tank quality factor defined in (8) and
we neglected the numeric proportional constant.

Here, we will look at the linewidth compression once again,
now in connection with the Einstein relation. As already dis-
cussed in Section III, the linewidth compression concept shows
that the phase noise is determined through a two-step process in
the design of the resonator-based oscillator (Fig. 13). In the first
step, the resonator’s linewidth on the left-hand side of Fig. 13 is
determined by the unloaded of the resonator. This first step

Fig. 13. Anatomy of linewidth compression.

is associated with the loss factor in the Einstein relation. In the
second step, the resonator’s linewidth is compressed byin (28)
when the resonator is placed in the positive feedback loop to
make an oscillator, resulting in the final oscillator’s linewidth on
the right-hand side of Fig. 13. As can be seen in (28), this second
step is closely related to both the sensitivity factor in the
Einstein relation and the voltage swing. As a result, the second
step of the linewidth compression overall strongly depends on
the NCR. This explains the hitherto unclear link between the
NCR and the phase noise.

Another factor in the linewidth compression ratio in (28)
that deserves discussion is . Since the active devices
forming the positive feedback loop load the tank,in
should be changed to in , which is taken care of by
this factor. This validates of our earlier definition of
the loaded tank quality factor in (24).

VII. CONCLUSION

This paper presented a new point of view of oscillator
phase noise. We introduced the virtual damping concept as
a fundamental measure of phase noise along with the exper-
imental verification. The virtual damping concept puts the
oscillator phase-noise theory and the well-known resonator
theory in the same framework, providing a deep and intuitive
understanding of linewidth compression. Demonstration of
the correspondence between the phase noise and the Einstein
relation illuminated the underlying physics of phase noise.
These fundamental considerations allowed a meaningful
account for the link between the noise–carrier ratio (NCR)
and the phase noise. Additionally, our fundamental treatment
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established a link between currently available dissipation-based
and fluctuation-based phase-noise models.

APPENDIX

Here, we will demonstrate that the time-varying diffusion
equation (13) and the typical diffusion equation (15) lead to the
same solution. Plugging the following Gaussian distribution7

(29)

into the time-varying diffusion equation (13), we obtain

and terms

(30)

where signifies the rms of the effective ISF. The third
line was obtained by decomposing the time-varying diffusion
constant into its dc component and non-dc components
in the second line. Since in the third line the first term grows
unboundedly with time while the sine and cosine terms are
bounded, the first term will eventually dominate, leading to the
fourth line.

However, the Gaussian distribution in (29) with
in (30) is the solution of the diffusion equation (15),

as is well known. Therefore, solving the time-varying diffusion
equation (13) and the typical diffusion equation (15) essentially
result in the same solution.
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