Abstract: We prove that a strongly indecomposable linear order X always has a partition $X = A \cup B$ into suborders A and B that are each bi-embeddable with X.

A linear order X is strongly indecomposable if whenever $X = A \cup B$ is a partition of X, we have that X embeds into at least one of A or B. Observe that if X is strongly indecomposable then X is indecomposable, since any decomposition X = A + B into an initial segment segment A and final segment B is in particular a partition of X.

Proposition: Suppose that X is strongly indecomposable. Then there is a partition $X = A \cup B$ such that X embeds into both A and B.

Proof. If X + X embeds in X, then we are clearly done. If not, then since X is indecomposable, it is either strictly indecomposable to the right or strictly indecomposable to the left (see Leaf #2). We may assume X is strictly indecomposable to the right.

Let κ be the cofinality of X. Then κ is an infinite regular cardinal. Choose a strictly increasing cofinal sequence $\langle y_{\alpha} : \alpha < \kappa \rangle$ in X.

We recursively choose a cofinal sequence of points $\langle x_{\alpha} : \alpha < \kappa \rangle$ in X. Let $x_0 = y_0$. Given x_{α} , fix an embedding f_{α} from X into its final segment (x_{α}, ∞) . Such an embedding always exists by strict right indecomposability. Let $x_{\alpha+1}$ be $f_{\alpha}(x_{\alpha})$ or $y_{\alpha+1}$, whichever is greater.

If β is a limit ordinal below κ and we are given x_{α} for $\alpha < \beta$, let $x_{\beta} = y_{\gamma}$, where γ is least such that $y_{\gamma} > \sup_{\alpha < \beta} x_{\alpha}$. (Here, $\sup_{\alpha < \beta} x_{\alpha}$ denotes either the point or the cut at the least upper bound of the points $\{x_{\alpha} : \alpha < \beta\}$.)

Let X_0 denote the segment $(-\infty, x_0]$. Let $X_{\alpha+1}$ denote the segment $(x_{\alpha}, x_{\alpha+1}]$. For $\beta < \kappa$ a limit, let X_{β} denote the segment $[\sup_{\alpha < \beta} x_{\alpha}, x_{\beta}]$.

Observe that $X = X_0 + X_1 + \ldots + X_{\alpha} + \ldots = \sum_{\alpha < \kappa} X_{\alpha}$. Observe also that f_{α} embeds the initial segment $(-\infty, x_{\alpha}]$ into $X_{\alpha+1}$. Since X_{α} is a subsegment of $(-\infty, x_{\alpha}]$, we have in particular that X_{α} embeds in $X_{\alpha+1}$. It follows that X_{α} embeds in X_{β} for every $\alpha < \beta < \kappa$. Hence $X = \sum_{\alpha < \kappa} X_{\alpha}$ embeds in $\sum_{i < \kappa} X_{\alpha_i}$, where $\langle \alpha_i : i < \kappa \rangle$ is any fixed cofinal subsequence of κ .

Thus if we let $A = \sum_{\alpha \in \kappa, \alpha \text{ even}} X_{\alpha}$ and $B = \sum_{\alpha \in \kappa, \alpha \text{ odd}} X_{\alpha}$ we have $X = A \cup B$ is a partition, and X embeds in both A and B, as desired.