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Abstract: A condensation scheme is a procedure that decomposes every linear order into a collection of

disjoint intervals. We prove a theorem, essentially due to Morel and Tarski, that characterizes when such a

scheme is invariant under convex embeddings.

An equivalence relation ∼ on a linear order X is called a convex equivalence relation or condensation if

its equivalence classes are intervals (i.e. convex subsets of X). Given an order X and a condensation ∼ on

X, we write X/ ∼ for the set of equivalence classes of the condensation, and c : X → X/ ∼ for the map that

sends each x ∈ X to its equivalence class c(x). We think of each equivalence class c(x) as being condensed

to a point in X/ ∼.

A condensation scheme is a map that associates to every linear order X a condensation ∼X on X. A

condensation scheme is idealistic if

1.) the scheme depends only on the isomorphism type of the input order, that is, if X and Y are linear

orders and f : X → Y is an isomorphism, then for any x, y ∈ X we have x ∼X y if and only if

f(x) ∼Y f(y); and

2.) for every linear order X and every interval I ⊆ X (viewed as a linear order itself under the inherited

order), the condensation ∼I associated to I is the restriction of ∼X to I.

Equivalently, a condensation scheme is idealistic if and only if it is invariant under convex embeddings,

that is, if and only if whenever X and Y are linear orders and f : X → Y is an embedding such that

f [X] ⊆ Y is an interval, then x ∼X y iff f(x) ∼Y f(y) for all x, y ∈ X.

Intuitively, an idealistic condensation scheme condenses intervals that are in some sense small. More

precisely, we will see that an idealistic scheme puts x ∼ y in a given order X if the interval between x and y

belongs to a class of orders possessing certain closure properties reminiscent of those possessed by an ideal

of sets.

As in previous leaves, we confuse linear orders with their order types when it is convenient. Since all

of our definitions in this leaf depend only on the isomorphism type of the orders under consideration, this

won’t get us into trouble. Given orders X and Y we write X + Y for the order, unique up to isomorphism,

obtained by placing a copy of Y to the right of a copy of X. Let 1 denote the order type of a singleton.

Given a non-empty linear order Z, we write Z = X + 1+ Y to indicate a decomposition of Z into an initial

segment X followed by a single point followed by a final segment Y . It may be in such a decomposition that

one or both of the segments X and Y are empty.

Definition. A class of linear orders I is called an interval ideal if:

1.) I is closed under isomorphism,

2.) 1 ∈ I ,

3.) Given any non-empty order Z and any decomposition Z = X + 1 + Y , we have Z ∈ I if and only

if X + 1 ∈ I and 1 + Y ∈ I .

The third condition gives that if Z belongs to the ideal I , then for any point z ∈ Z the segments

{x ∈ Z : x ≤ z} and {y ∈ Z : y ≥ z} belong to I . We call this operation splitting. By splitting twice, it

follows that for any pair z ≤ z′ in Z, the closed interval [z, z′] belongs to I . On the other hand, if an order
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X + 1 with a top point and an order 1 + Y with a bottom point both belong to I , then so does the order

Z = X + 1 + Y . We call this operation welding. Given any class of orders J , there is a smallest interval

ideal I containing J , namely the ideal obtained from J by adding 1 and closing under splitting, welding,

and isomorphism.

Given an interval ideal I , we write I − for the subclass of I consisting of orders X ∈ I with both top

and bottom points. We call I − the bounded ideal associated to I , and sometimes refer to the elements of

I − as the closed intervals of I . If I = I − we say that I is a bounded ideal. On the other hand, we

write I + for the class of orders X with the property that for every pair of points x ≤ y belonging to X,

the closed interval [x, y] belongs to I (or equivalently, to I −). We call I + the full ideal associated to I ,

and if I = I + we say simply that I is a full ideal. In any case, we have I − ⊆ I ⊆ I +. It is not hard

to check that both I − and I + are also interval ideals, and that for any other other ideal I ′ such that

I − ⊆ I ′ ⊆ I + we have (I ′)− = I − and (I ′)+ = I +. We will see that I ,I −,I + all generate the

same condensation scheme.

For a linear order X and a pair of points x, y ∈ X, we write [{x, y}] for the closed interval whose endpoints

are x and y. Here is our main result.

Theorem. (Morel and Tarski, essentially).

1.) Suppose that I is an interval ideal. For any linear order X, define a relation ∼X on X by the rule

x ∼X y if and only if [{x, y}] belongs to I (or equivalently, to I −). Then ∼X is a condensation of X

and the map X 7→∼X is an idealistic condensation scheme. Moreover, the full ideal I + associated

to I is exactly the class of linear orders X such that X/ ∼X
∼= 1 (i.e. the orders that are condensed

by the scheme to a singleton).

2.) Conversely, suppose X 7→∼X is an idealistic condensation scheme. Then the class I = {X : X/ ∼X

∼= 1}, consisting of orders that are condensed to 1 by the scheme, is a full ideal. Moreover, for any

order X and any pair x, y ∈ X, we have x ∼ y if and only if [{x, y}] belongs to the associated

bounded ideal I −.

Proof. 1.) Fix an order X. We check first that ∼X is a condensation. Fix x, y, z ∈ X. Since [x, x] ∼= 1,

1 ∈ I , and I is closed under isomorphism, we have x ∼X x. If x ∼X y then certainly y ∼X x

since our definition of ∼X is symmetric. Finally, suppose x ∼X y ∼X z. There are various cases to

consider, depending on how x, y, z are ordered with respect to one another in X. In each of these

cases we can conclude x ∼X z either by using that I is closed under splitting, or that I is closed

under welding. Hence ∼X is an equivalence relation. Its equivalence classes are convex since I is

closed under splitting, so that in fact ∼X is a condensation. Furthermore, it is clear that f : X → Y

is a convex embedding of X into another linear order Y , then x ∼X y if and only if f(x) ∼Y f(y)

for all x, y ∈ X. Hence the scheme X 7→∼X is idealistic, as desired.

2.) Let I be the class of orders condensed to 1 by the condensation scheme. Clearly, 1 ∈ I . Further-

more, since the scheme is idealistic, we have that I is closed under isomorphism. Fix a non-empty

order Z and a decomposition Z = X + 1 + Y . If Z ∈ I , then since ∼X+1 is the restriction of

∼Z to X + 1 it must be that X + 1 is condensed to 1, i.e. X + 1 ∈ I . Likewise 1 + Y ∈ I .

Conversely, suppose X + 1 and 1 + Y belong to I and consider ∼Z . Suppose there are at least

two ∼Z equivalence classes, say c(x) and c(y) for some points x, y ∈ Z such that x ̸∼Z y. Then



at least one of these equivalence excludes the central 1 from the decomposition Z = X + 1 + Y .

Suppose without loss of generality that it is c(x). Then c(x) is contained either entirely in X or in

Y . Suppose without loss that c(x) ⊆ X. Then since ∼X+1 is the restriction of ∼Z to X +1, it must

be that there are at least two ∼X+1 equivalence classes, namely c(x) and the class containing 1, a

contradiction, since X +1 is condensed to 1 by the scheme. Hence I is an ideal. That it is full, and

that the scheme is completely determined by the associated bounded ideal I −, is easily seen.

□


