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Abstract: We prove that there is a linear order X whose absorption spectrum LX = {A : AX ∼= X} is

exactly the class of finite order types.

As in the previous leaf, we readily confuse linear orders and linear order types. Recall that the absorption

spectrum LX of a linear order X is the collection of order types A for which the lexicographic product AX

is isomorphic to X. Our goal is to answer part of a question from the previous leaf, by showing that there

is an order X for which LX is exactly the class of finite order types.

Let ω = {0, 1, . . .} denote the set of natural numbers in their usual order. Let 2ω denote the set of

ω-sequences u = (u0, u1, . . .) with ui ∈ {0, 1} for all i ∈ ω. We linearly order 2ω lexicographically by the

rule u < v if ui = 0 and vi = 1, where i is least in ω such that ui ̸= vi. So ordered, 2ω is isomorphic to the

Cantor set. We write 0 for the sequence (0, 0, . . .) and 1 for the sequence (1, 1, . . .). These points are the left

and right endpoints of 2ω respectively.

Let 2<ω denote the set of finite sequences r = (r0, r1, . . . , rn−1) with entries from {0, 1}, including the

empty sequence ∅. Given a finite sequence r = (r0, r1, . . . , rn−1) and a finite or infinite sequence u =

(u0, u1, . . .), we write ru for the sequence (r0, . . . , rn−1, u0, u1, . . .) of r concatenated with u. Any sequence

of the form u′ = (un, un+1, . . .) is called a tail-sequence of u. We confuse sequences of length one with

elements of 2 = {0, 1}, writing for example r0u to mean the sequence r, followed by an entry 0, followed by

the tail-sequence u. We partially order 2<ω lexicographically, writing r < s if ri = 0 and si = 1, where i is

least such that ri ̸= si. If one of r or s strictly extends the other, we put no order between them.

Given u, v ∈ 2ω, we write u ∼ v and say that u and v are tail-equivalent if there exist finite sequences

r, s ∈ 2<ω and an infinite sequence u′ ∈ 2ω such that u = ru′ and v = su′. It is not hard to verify that ∼ is

an equivalence relation on 2ω. We write [u] for the equivalence class of a given u ∈ 2ω; it consists exactly

of sequences of the form ru′, where r ∈ 2<ω is an arbitrary finite sequence and u′ is a tail-sequence of u. It

follows that u ∈ [0] if and only if u = r0 for some finite sequence r, and u ∈ [1] if and only if u = r1 for some

finite sequence r.

We will need two facts, which we leave to the reader to verify. First, for every finite sequence r ∈ 2<ω, the

sequence r01 is the immediate predecessor of r10 in 2ω. Such pairs are the only jumps in 2ω, in the sense

that if u, v are distinct points in 2ω and {u, v} ≠ {r01, r10} for some r, then there is a point in 2ω between u

and v. Second, 2ω is Dedekind complete: every increasing sequence u0 < u1 < . . . of points in 2ω converges

to some u ∈ 2ω. Likewise, every decreasing sequence in 2ω converges.

Let X = 2ω. A closed interval [u, v] ⊆ X is called a color copy of X if there is an isomorphism f : X →
[u, v] such that f(x) ∼ x for all x ∈ X.

For every finite sequence r ∈ 2<ω, let Xr denote the interval {u ∈ X : ∃u′ ∈ X,u = ru′} consisting of

sequences beginning with r. It is not hard to check that the map fr : X → Xr defined by fr(u) = ru is

an order-isomorphism of X with Xr, and moreover that f(u) ∼ u for all u ∈ X (so that f [[u]] = [u] ∩Xr).

Thus Xr is a color copy of X.

We call the fr maps projections. Notice that fr ◦ fs = frs for any finite sequences r and s. If r < s then

Xr < Xs, in the sense that every u ∈ Xr is less than every v ∈ Xs, so that Xr and Xs are disjoint color

copies of X.
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We claim that for any n ≥ 1 we can partition X into n color copies of itself. To see this, we need only find

an ordered sequence r0 < r1 < . . . < rn−1 of elements of 2<ω such that for every u ∈ X there is an i such

that u ∈ Xr, as then the corresponding color copies Xr0 < . . . < Xrn−1
constitute such a partition. There

are many ways to do this. For example, let r0 = 0, r1 = 10, r2 = 110, . . ., rn−2 = 11 . . . 10, rn−1 = 11 . . . 1,

where the number of 1s in the second to last expression is n−2, and in the last expression is n−1. It follows

that any interval I ⊆ X that can be decomposed into n color copies of X is itself a color copy of X.

Since it will be relevant for the proof of the claim below, observe that if r0 < r1 < . . . < r2n−1 is the

increasing list of all finite sequences in 2<ω of length n, then the corresponding color copies Xr0 < Xr1 <

. . . < Xr2n−1 partition X into 2n color copies of itself. If ri < ri+1 < . . . < ri+k−1 is a segment of this list,

then the corresponding copies Xri < . . . < Xri+k−1
compose an interval consisting of k color copies of X.

This interval is exactly the closed interval [u, v], where u = ri0 and v = ri+k−11. Since X can be decomposed

into k color copies itself, we have that [u, v] is also a color copy of X.

Claim. Fix u < v in X. Then [u, v] is a color copy of X if and only if u ∈ [0] and v ∈ [1].

Proof. The forward direction is clear, so suppose u ∼ 0 and v ∼ 1. Since u < v, we have u = r0u′ and

v = r1v′ for some u′, v′ ∈ 2ω. If u′ = 0 and v′ = 1, then [u, v] = Xr, which is a color copy of X. Otherwise

for some finite sequences s and t we have u = r0s0 and v = r1t1, where either s contains a 1 or t contains

a 0. Since it does not alter u or v to do so, by either appending some 0s to the end of s or some 1s to

the end of t if need be, we may assume that s and t have the same length. Suppose that length is n − 1.

Let r0 < r1 < . . . < r2n−1 be the increasing list of finite sequences of length n. We have that 0s = ri and

1t = ri+k−1 for some i, k so that i + k ≤ n. The corresponding color copies Xri < Xri+1
< . . . < Xri+k−1

compose an interval consisting of k color copies of X, which is itself a color copy of X by the discussion above.

This interval is exactly [0s0, 1t1]. Since the projection map fr preserves tail-equivalence (i.e. fr(x) ∼ x for

all x ∈ X), it follows that the projected interval [r0s0, r1t1] = [u, v] is also a color copy of X, as claimed. □

Though X can be partitioned into n color copies of itself for any natural number n ≥ 1, we have, in

contrast, the following.

Claim. X cannot be partitioned into infinitely many color copies of itself.

Proof. Suppose that X =
⋃

i∈I Xi is a partition of X into color copies Xi that are indexed by an infinite set

I. By the claim above, we have for every i that Xi = [ui, vi] for some ui ∈ [0] and vi ∈ [1]. Since every infinite

linear order contains either an infinite increasing or infinite decreasing sequence, we may assume without

loss of generality that the set of left endpoints {ui}i∈I contains an increasing sequence ui0 < ui1 < ui2 < . . ..

(It follows that ui0 < vi0 < ui1 < vi1 < . . ..) By the completeness of X, this sequence converges to a point

x. We have x ∈ Xi for some i, and it must be that x is the left endpoint of Xi since it is the limit of points

not belonging to Xi. But then x ∈ [0], which is impossible, since no element of [0] is a limit of an increasing

sequence: if y ∈ [0] then either y = 0 or y has an immediate predecessor in X. The contradiction gives the

claim. □

Recall that if A is a linear order, and for every a ∈ A we are given an order Ia, the replacement A(Ia) is

the order obtained by replacing every point a with the corresponding order Ia. Formally, A(Ia) is the set



of pairs {(a, i) : a ∈ A, i ∈ Ia} ordered lexicographically. If there is an order B such that Ia = B for every

a ∈ A, then we write A(Ia) as AB. Let n = 0 < 1 < . . . < n−1 denote the order type with exactly n points.

We are now ready to construct an order whose absorption spectrum is exactly the class of non-empty

finite order types. Our order will not be X = 2ω but rather a replacement of X. For every tail-equivalence

class [u] ⊆ 2ω, fix a scattered linear order I[u], such that if u ̸∼ v then I[u] ̸∼= I[v]. It will be convenient to

choose I[0] to be ω∗ and I[1] to be ω, where ω∗ denotes the reverse of ω. It will also be convenient to assume

that I[u] ̸∼= ω + ω∗ for every u ∈ 2ω.

Let Y denote the replacement 2ω(Iu) of 2
ω, where for each u ∈ 2ω we have Iu = I[u]. Write Y = 2ω(I[u])

Claim. Y ∼= nY for every n ∈ ω, n ≥ 1.

Proof. Fix n ≥ 1. Find a sequence r0 < r1 < . . . < rn−1 of elements ri ∈ 2<ω such that the corresponding

color copies Xr0 < Xr1 < . . . < Xrn−1
partition X = 2ω into n color copies of itself. Observe that

nY = n2ω(I[u]) consists of triples (k, u, i) where k < n, u ∈ 2ω, and i ∈ I[u]. Define a map F : nY → Y by

the rule F ((k, u, i)) = (frk(u), i). The definition of this map is meaningful because the set of points of the

form (k, u, ·) for a fixed k and u is exactly Iu = I[u], and the same is true for points of the form (frk(u), ·),
since frk(u) ∼ u. It is not hard to check that in fact F is an isomorphism of nY with Y . □

Claim. Y ̸∼= AY for any infinite order A.

Proof. First, observe that if I ⊆ 2ω is an interval, then either I is a singleton, or I = [r01, r10] is a jump, or

I is non-scattered, i.e. contains a dense suborder.

Suppose toward a contradiction that there is an infinite order A and an isomorphism F : AY → Y .

We view AY as a replacement of A2ω, and write I(a,u) for the set of points (a, u, ·) in AY . Notice that

I(a,u) ∼= Iu = I[u] for every a and u.

Fix a and u, and let I = I(a,u). We claim that there is v ∈ 2ω such that F [I] ⊆ Iv. Fix any v such

that F [I] ∩ Iv ̸= ∅. If F [I] ̸⊆ Iv, then there is v′ ̸= v such that F [I] ∩ Iv′ ̸= ∅. It must either be that

{v, v′} = {r01, r10} is a jump pair, or F [I] contains a dense suborder. The second case is impossible, as

F [I] ∼= I is scattered. In the first case, we have that Ir01 and Ir10 are adjacent and therefore constitute an

interval isomorphic to Ir01 + Ir10
∼= ω + ω∗ in Y . The only intervals K ⊆ ω + ω∗ that intersect both ω and

ω∗ are actually isomorphic to ω+ω∗. But F [I] ∼= I ̸∼= ω+ω∗ by construction. This shows that the first case

is impossible as well. Thus F [I] ⊆ Iv as claimed.

Now let J = Iv. By a very similar argument, we must have F−1[J ] ⊆ I(b,w) for some b, w. And then it

must be that (b, w) = (a, u) since we already know F−1[J ] ∩ I(a,u) ̸= ∅.
Thus F [I] = J , that is, F [I(a,u)] = Iv. Since I(a,u) ∼= Iu, we must have u ∼ v. It follows that F induces

an isomorphism f : A2ω → 2ω defined by the rule f(a, u) = v if and only if F [I(a,u)] = Iv. By what we have

just observed, we have f(a, u) ∼ u for every a ∈ A and u ∈ 2ω. If we write a2ω for the set of points (a, ·)
in A2ω, we have that f [a2ω] = [ua, va] where ua = f(a, 0) and va = f(a, 1). Since ua ∼ 0 and va ∼ 1, it

follows from the claim above that f [a2ω] is a color copy of 2ω. But then {a2ω : a ∈ A} is a partition of 2ω

into infinitely many color copies of itself, a contradiction. □

The combination of the previous two claims proves our main theorem.



Theorem. For a linear order A, we have AY ∼= Y if and only if A ∈ {1, 2, 3, . . .}. In the language of the

previous leaf, we have that LY is the class of non-empty finite order types.

□

Question: Is there an order X such that LX is the class of countable scattered types? Or the class of

countable ordinals?


