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Abstract: We prove that there is a linear order X whose absorption spectrum .Zx = {4 : AX = X} is

exactly the class of finite order types.

As in the previous leaf, we readily confuse linear orders and linear order types. Recall that the absorption
spectrum Zx of a linear order X is the collection of order types A for which the lexicographic product AX
is isomorphic to X. Our goal is to answer part of a question from the previous leaf, by showing that there
is an order X for which Zx is exactly the class of finite order types.

Let w = {0,1,...} denote the set of natural numbers in their usual order. Let 2¥ denote the set of
w-sequences u = (ug,u1,...) with u; € {0,1} for all i € w. We linearly order 2* lexicographically by the
rule u < v if u; = 0 and v; = 1, where i is least in w such that u; # v;. So ordered, 2% is isomorphic to the
Cantor set. We write 0 for the sequence (0,0, ...) and 1 for the sequence (1,1,...). These points are the left
and right endpoints of 2“ respectively.

Let 2<¢ denote the set of finite sequences r = (rg,71,...,7,—1) with entries from {0, 1}, including the
empty sequence (). Given a finite sequence r = (rg,71,...,7,—1) and a finite or infinite sequence u =
(ug,uq,...), we write ru for the sequence (rg, ..., n—1,u0,u1,...) of  concatenated with u. Any sequence

of the form u' = (up,unt1,...) is called a tail-sequence of u. We confuse sequences of length one with
elements of 2 = {0, 1}, writing for example rOu to mean the sequence r, followed by an entry 0, followed by
the tail-sequence u. We partially order 2<% lexicographically, writing r < s if 7; = 0 and s; = 1, where i is
least such that r; # s;. If one of r or s strictly extends the other, we put no order between them.

Given u,v € 2¢, we write u ~ v and say that u and v are tail-equivalent if there exist finite sequences
r,s € 2<% and an infinite sequence v’ € 2* such that u = ru’ and v = su/. It is not hard to verify that ~ is
an equivalence relation on 2¢. We write [u] for the equivalence class of a given u € 2¥; it consists exactly
of sequences of the form ru’, where r € 2<% is an arbitrary finite sequence and v’ is a tail-sequence of u. It
follows that u € [0] if and only if u = 70 for some finite sequence 7, and u € [1] if and only if u = r1 for some
finite sequence r.

We will need two facts, which we leave to the reader to verify. First, for every finite sequence r € 2<%, the
sequence 701 is the immediate predecessor of 710 in 2¥. Such pairs are the only jumps in 2%, in the sense
that if u, v are distinct points in 2* and {u, v} # {r01,710} for some r, then there is a point in 2% between u
and v. Second, 2¢ is Dedekind complete: every increasing sequence u® < u' < ... of points in 2¥ converges
to some u € 2“. Likewise, every decreasing sequence in 2% converges.

Let X = 2¢. A closed interval [u,v] C X is called a color copy of X if there is an isomorphism f: X —
[, v] such that f(x) ~ x for all x € X.

For every finite sequence r € 2<%, let X,. denote the interval {u € X : Ju' € X, u = ru’} consisting of
sequences beginning with 7. It is not hard to check that the map f, : X — X, defined by f.(u) = ru is
an order-isomorphism of X with X,., and moreover that f(u) ~ u for all u € X (so that f[[u]] = [u] N X,).
Thus X, is a color copy of X.

We call the f, maps projections. Notice that f,. o fs = f,.s for any finite sequences r and s. If r < s then
X, < X, in the sense that every u € X, is less than every v € X, so that X, and X, are disjoint color
copies of X.



We claim that for any n > 1 we can partition X into n color copies of itself. To see this, we need only find
an ordered sequence 1o < r1 < ... < r,_1 of elements of 2<% such that for every u € X there is an ¢ such
that v € X,, as then the corresponding color copies X,, < ... < X, , constitute such a partition. There
are many ways to do this. For example, let rg =0, ry = 10, ro = 110, ..., r,_o = 11...10, rp_y = 11...1,
where the number of 1s in the second to last expression is n — 2, and in the last expression is n — 1. It follows
that any interval I C X that can be decomposed into n color copies of X is itself a color copy of X.

Since it will be relevant for the proof of the claim below, observe that if rp < 1y < ... < r9n-1 is the
increasing list of all finite sequences in 2<“ of length n, then the corresponding color copies X,, < X,, <
... < X, , partition X into 2" color copies of itself. If r; < 711 < ... <7i1k—1 is a segment of this list,

then the corresponding copies X,, < ... < X compose an interval consisting of & color copies of X.
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This interval is exactly the closed interval [u, v], where v = ;0 and v = 7,4, _11. Since X can be decomposed

into k color copies itself, we have that [u,v] is also a color copy of X.

Claim. Fix u < v in X. Then [u,v] is a color copy of X if and only if u € [0] and v € [1].

Proof. The forward direction is clear, so suppose u ~ 0 and v ~ 1. Since u < v, we have u = r0u’ and
v =rlv for some u',v’ € 2¥. If v’ =0 and v' = 1, then [u,v] = X,., which is a color copy of X. Otherwise
for some finite sequences s and t we have v = r0s0 and v = r1t1, where either s contains a 1 or ¢ contains
a 0. Since it does not alter u or v to do so, by either appending some 0s to the end of s or some 1s to
the end of ¢ if need be, we may assume that s and ¢ have the same length. Suppose that length is n — 1.
Let rg < 71 < ... < Ton-1 be the increasing list of finite sequences of length n. We have that 0s = r; and

1t = riyk—1 for some ¢,k so that ¢ + k < n. The corresponding color copies X,, < X, < ... < X,
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compose an interval consisting of k color copies of X, which is itself a color copy of X by the discussion above.
This interval is exactly [0s0, 1¢1]. Since the projection map f, preserves tail-equivalence (i.e. f.(x) ~ x for

all z € X), it follows that the projected interval [r0s0,71¢1] = [u, v] is also a color copy of X, as claimed. [J

Though X can be partitioned into n color copies of itself for any natural number n > 1, we have, in

contrast, the following.

Claim. X cannot be partitioned into infinitely many color copies of itself.

Proof. Suppose that X =

I. By the claim above, we have for every i that X; = [u’, v?] for some u’ € [0] and v* € [1]. Since every infinite

icr Xi is a partition of X into color copies X; that are indexed by an infinite set
linear order contains either an infinite increasing or infinite decreasing sequence, we may assume without
loss of generality that the set of left endpoints {u'};c; contains an increasing sequence u < u’t < u® < .. ..
(It follows that u’o < v’ <yt < v < ....) By the completeness of X, this sequence converges to a point
x. We have z € X; for some 4, and it must be that z is the left endpoint of X; since it is the limit of points

not belonging to X;. But then x € [0], which is impossible, since no element of [0] is a limit of an increasing

sequence: if y € [0] then either y = 0 or y has an immediate predecessor in X. The contradiction gives the

claim. 0

Recall that if A is a linear order, and for every a € A we are given an order I, the replacement A(I,) is

the order obtained by replacing every point a with the corresponding order I,. Formally, A(1,) is the set



of pairs {(a,i) : a € A,i € I,} ordered lexicographically. If there is an order B such that I, = B for every
a € A, then we write A(I,) as AB. Let n =0 <1 < ... <n—1 denote the order type with exactly n points.

We are now ready to construct an order whose absorption spectrum is exactly the class of non-empty
finite order types. Our order will not be X = 2% but rather a replacement of X. For every tail-equivalence
class [u] C 2¢, fix a scattered linear order I}, such that if u ¢ v then Ip,; 2 Ij,). It will be convenient to
choose Iy to be w* and Iy to be w, where w* denotes the reverse of w. It will also be convenient to assume
that Ij,) # w + w* for every u € 2.

Let Y denote the replacement 2“(1,) of 2¢, where for each u € 2¢ we have I, = I},,). Write Y = 2¥(I}))

Claim. Y 2 nY for every n € w, n > 1.

Proof. Fix n > 1. Find a sequence rg < r; < ... < r,_1 of elements r; € 2<% such that the corresponding
color copies X,, < X,, < ... < X, _, partition X = 2“ into n color copies of itself. Observe that
nY = n2%(I},)) consists of triples (k,u,i) where k < n, u € 2*, and i € If,). Define a map F': nY — Y by
the rule F((k,u,)) = (fr,(u),7). The definition of this map is meaningful because the set of points of the
form (k,u,-) for a fixed k and u is exactly I, = Ij,, and the same is true for points of the form (f;, (u),"),

since fr, (u) ~ u. It is not hard to check that in fact F is an isomorphism of nY with Y. O

Claim. Y 2 AY for any infinite order A.

Proof. First, observe that if I C 2% is an interval, then either I is a singleton, or I = [r01,710] is a jump, or
I is non-scattered, i.e. contains a dense suborder.

Suppose toward a contradiction that there is an infinite order A and an isomorphism F : AY — Y.
We view AY as a replacement of A2%, and write I(4,,) for the set of points (a,u,-) in AY. Notice that
Iqu) & Iy = I}y for every a and u.

Fix a and u, and let I = I(,,). We claim that there is v € 2¥ such that F[I] C I,. Fix any v such
that F[I] N1, # 0. If F[I] € I,, then there is v' # v such that F[I| NI, # @. It must either be that
{v,v'} = {r01,r10} is a jump pair, or F[I] contains a dense suborder. The second case is impossible, as
F[I] = I is scattered. In the first case, we have that I 47 and I,,5 are adjacent and therefore constitute an
interval isomorphic to I o7 + 1,15 = w +w* in Y. The only intervals K C w + w* that intersect both w and
w* are actually isomorphic to w+w*. But F[I] 2 I % w+ w* by construction. This shows that the first case
is impossible as well. Thus F[I] C I, as claimed.

Now let J = I,. By a very similar argument, we must have F~1[J] C Iy, for some b,w. And then it
must be that (b, w) = (a,u) since we already know F~![J] N I, ) # 0.

Thus F[I] = J, that is, F[I(4.)] = I,. Since I(4,) = I, we must have u ~ v. It follows that F' induces
an isomorphism f : A2¥ — 2¢ defined by the rule f(a,u) = v if and only if F[I(, )] = I,. By what we have
just observed, we have f(a,u) ~ u for every a € A and u € 2¥. If we write a2* for the set of points (a,-)
in A2%, we have that f[a2¥] = [ug,vs] Where u, = f(a,0) and v, = f(a,1). Since u, ~ 0 and v, ~ 1, it
follows from the claim above that f[a2“] is a color copy of 2¥. But then {a2¥ : a € A} is a partition of 2¢

into infinitely many color copies of itself, a contradiction. |

The combination of the previous two claims proves our main theorem.



Theorem. For a linear order A, we have AY Y if and only if A € {1,2,3,...}. In the language of the
previous leaf, we have that %y is the class of non-empty finite order types.

O

Question: Is there an order X such that Zx is the class of countable scattered types? Or the class of

countable ordinals?



