Abstract: We prove that there is a linear order X whose absorption spectrum $\mathcal{L}_X = \{A : AX \cong X\}$ is exactly the class of finite order types.

As in the previous leaf, we readily confuse linear orders and linear order types. Recall that the absorption spectrum \mathcal{L}_X of a linear order X is the collection of order types A for which the lexicographic product AX is isomorphic to X. Our goal is to answer part of a question from the previous leaf, by showing that there is an order X for which \mathcal{L}_X is exactly the class of finite order types.

Let $\omega = \{0, 1, ...\}$ denote the set of natural numbers in their usual order. Let 2^{ω} denote the set of ω -sequences $u = (u_0, u_1, ...)$ with $u_i \in \{0, 1\}$ for all $i \in \omega$. We linearly order 2^{ω} lexicographically by the rule u < v if $u_i = 0$ and $v_i = 1$, where i is least in ω such that $u_i \neq v_i$. So ordered, 2^{ω} is isomorphic to the Cantor set. We write $\overline{0}$ for the sequence (0, 0, ...) and $\overline{1}$ for the sequence (1, 1, ...). These points are the left and right endpoints of 2^{ω} respectively.

Let $2^{<\omega}$ denote the set of finite sequences $r=(r_0,r_1,\ldots,r_{n-1})$ with entries from $\{0,1\}$, including the empty sequence \emptyset . Given a finite sequence $r=(r_0,r_1,\ldots,r_{n-1})$ and a finite or infinite sequence $u=(u_0,u_1,\ldots)$, we write ru for the sequence $(r_0,\ldots,r_{n-1},u_0,u_1,\ldots)$ of r concatenated with u. Any sequence of the form $u'=(u_n,u_{n+1},\ldots)$ is called a tail-sequence of u. We confuse sequences of length one with elements of $2=\{0,1\}$, writing for example r0u to mean the sequence r, followed by an entry 0, followed by the tail-sequence u. We partially order $2^{<\omega}$ lexicographically, writing r< s if $r_i=0$ and $s_i=1$, where i is least such that $r_i \neq s_i$. If one of r or s strictly extends the other, we put no order between them.

Given $u,v\in 2^{\omega}$, we write $u\sim v$ and say that u and v are tail-equivalent if there exist finite sequences $r,s\in 2^{<\omega}$ and an infinite sequence $u'\in 2^{\omega}$ such that u=ru' and v=su'. It is not hard to verify that \sim is an equivalence relation on 2^{ω} . We write [u] for the equivalence class of a given $u\in 2^{\omega}$; it consists exactly of sequences of the form ru', where $r\in 2^{<\omega}$ is an arbitrary finite sequence and u' is a tail-sequence of u. It follows that $u\in [\overline{0}]$ if and only if $u=r\overline{0}$ for some finite sequence r, and $u\in [\overline{1}]$ if and only if $u=r\overline{1}$ for some finite sequence r.

We will need two facts, which we leave to the reader to verify. First, for every finite sequence $r \in 2^{<\omega}$, the sequence $r0\overline{1}$ is the immediate predecessor of $r1\overline{0}$ in 2^{ω} . Such pairs are the only jumps in 2^{ω} , in the sense that if u, v are distinct points in 2^{ω} and $\{u, v\} \neq \{r0\overline{1}, r1\overline{0}\}$ for some r, then there is a point in 2^{ω} between u and v. Second, 2^{ω} is Dedekind complete: every increasing sequence $u^0 < u^1 < \ldots$ of points in 2^{ω} converges to some $u \in 2^{\omega}$. Likewise, every decreasing sequence in 2^{ω} converges.

Let $X = 2^{\omega}$. A closed interval $[u, v] \subseteq X$ is called a *color copy* of X if there is an isomorphism $f: X \to [u, v]$ such that $f(x) \sim x$ for all $x \in X$.

For every finite sequence $r \in 2^{<\omega}$, let X_r denote the interval $\{u \in X : \exists u' \in X, u = ru'\}$ consisting of sequences beginning with r. It is not hard to check that the map $f_r : X \to X_r$ defined by $f_r(u) = ru$ is an order-isomorphism of X with X_r , and moreover that $f(u) \sim u$ for all $u \in X$ (so that $f[[u]] = [u] \cap X_r$). Thus X_r is a color copy of X.

We call the f_r maps projections. Notice that $f_r \circ f_s = f_{rs}$ for any finite sequences r and s. If r < s then $X_r < X_s$, in the sense that every $u \in X_r$ is less than every $v \in X_s$, so that X_r and X_s are disjoint color copies of X.

1

We claim that for any $n \ge 1$ we can partition X into n color copies of itself. To see this, we need only find an ordered sequence $r_0 < r_1 < \ldots < r_{n-1}$ of elements of $2^{<\omega}$ such that for every $u \in X$ there is an i such that $u \in X_r$, as then the corresponding color copies $X_{r_0} < \ldots < X_{r_{n-1}}$ constitute such a partition. There are many ways to do this. For example, let $r_0 = 0$, $r_1 = 10$, $r_2 = 110$, ..., $r_{n-2} = 11 \ldots 10$, $r_{n-1} = 11 \ldots 1$, where the number of 1s in the second to last expression is n-2, and in the last expression is n-1. It follows that any interval $I \subseteq X$ that can be decomposed into n color copies of X is itself a color copy of X.

Since it will be relevant for the proof of the claim below, observe that if $r_0 < r_1 < \ldots < r_{2^{n-1}}$ is the increasing list of all finite sequences in $2^{<\omega}$ of length n, then the corresponding color copies $X_{r_0} < X_{r_1} < \ldots < X_{r_{2^{n-1}}}$ partition X into 2^n color copies of itself. If $r_i < r_{i+1} < \ldots < r_{i+k-1}$ is a segment of this list, then the corresponding copies $X_{r_i} < \ldots < X_{r_{i+k-1}}$ compose an interval consisting of k color copies of K. This interval is exactly the closed interval [u,v], where $u=r_i\overline{0}$ and $v=r_{i+k-1}\overline{1}$. Since K can be decomposed into k color copies itself, we have that [u,v] is also a color copy of K.

Claim. Fix u < v in X. Then [u, v] is a color copy of X if and only if $u \in [0]$ and $v \in [1]$.

Proof. The forward direction is clear, so suppose $u \sim \overline{0}$ and $v \sim \overline{1}$. Since u < v, we have u = r0u' and v = r1v' for some $u', v' \in 2^{\omega}$. If $u' = \overline{0}$ and $v' = \overline{1}$, then $[u, v] = X_r$, which is a color copy of X. Otherwise for some finite sequences s and t we have $u = r0s\overline{0}$ and $v = r1t\overline{1}$, where either s contains a 1 or t contains a 0. Since it does not alter u or v to do so, by either appending some 0s to the end of s or some 1s to the end of t if need be, we may assume that s and t have the same length. Suppose that length is n-1. Let $r_0 < r_1 < \ldots < r_{2^{n-1}}$ be the increasing list of finite sequences of length n. We have that $0s = r_i$ and $1t = r_{i+k-1}$ for some i, k so that $i + k \le n$. The corresponding color copies $X_{r_i} < X_{r_{i+1}} < \ldots < X_{r_{i+k-1}}$ compose an interval consisting of k color copies of X, which is itself a color copy of X by the discussion above. This interval is exactly $[0s\overline{0}, 1t\overline{1}]$. Since the projection map f_r preserves tail-equivalence (i.e. $f_r(x) \sim x$ for all $x \in X$), it follows that the projected interval $[r0s\overline{0}, r1t\overline{1}] = [u, v]$ is also a color copy of X, as claimed. \square

Though X can be partitioned into n color copies of itself for any natural number $n \geq 1$, we have, in contrast, the following.

Claim. X cannot be partitioned into infinitely many color copies of itself.

Proof. Suppose that $X = \bigcup_{i \in I} X_i$ is a partition of X into color copies X_i that are indexed by an infinite set I. By the claim above, we have for every i that $X_i = [u^i, v^i]$ for some $u^i \in [\overline{0}]$ and $v^i \in [\overline{1}]$. Since every infinite linear order contains either an infinite increasing or infinite decreasing sequence, we may assume without loss of generality that the set of left endpoints $\{u^i\}_{i \in I}$ contains an increasing sequence $u^{i_0} < u^{i_1} < u^{i_2} < \dots$ (It follows that $u^{i_0} < v^{i_0} < u^{i_1} < v^{i_1} < \dots$) By the completeness of X, this sequence converges to a point x. We have $x \in X_i$ for some i, and it must be that x is the left endpoint of X_i since it is the limit of points not belonging to X_i . But then $x \in [\overline{0}]$, which is impossible, since no element of $[\overline{0}]$ is a limit of an increasing sequence: if $y \in [\overline{0}]$ then either $y = \overline{0}$ or y has an immediate predecessor in X. The contradiction gives the claim.

Recall that if A is a linear order, and for every $a \in A$ we are given an order I_a , the replacement $A(I_a)$ is the order obtained by replacing every point a with the corresponding order I_a . Formally, $A(I_a)$ is the set

of pairs $\{(a,i): a \in A, i \in I_a\}$ ordered lexicographically. If there is an order B such that $I_a = B$ for every $a \in A$, then we write $A(I_a)$ as AB. Let n = 0 < 1 < ... < n-1 denote the order type with exactly n points.

We are now ready to construct an order whose absorption spectrum is exactly the class of non-empty finite order types. Our order will not be $X=2^{\omega}$ but rather a replacement of X. For every tail-equivalence class $[u] \subseteq 2^{\omega}$, fix a scattered linear order $I_{[u]}$, such that if $u \not\sim v$ then $I_{[u]} \not\cong I_{[v]}$. It will be convenient to choose $I_{[\overline{0}]}$ to be ω^* and $I_{[\overline{1}]}$ to be ω , where ω^* denotes the reverse of ω . It will also be convenient to assume that $I_{[u]} \not\cong \omega + \omega^*$ for every $u \in 2^{\omega}$.

Let Y denote the replacement $2^{\omega}(I_u)$ of 2^{ω} , where for each $u \in 2^{\omega}$ we have $I_u = I_{[u]}$. Write $Y = 2^{\omega}(I_{[u]})$

Claim. $Y \cong nY$ for every $n \in \omega$, $n \geq 1$.

Proof. Fix $n \geq 1$. Find a sequence $r_0 < r_1 < \ldots < r_{n-1}$ of elements $r_i \in 2^{<\omega}$ such that the corresponding color copies $X_{r_0} < X_{r_1} < \ldots < X_{r_{n-1}}$ partition $X = 2^{\omega}$ into n color copies of itself. Observe that $nY = n2^{\omega}(I_{[u]})$ consists of triples (k, u, i) where $k < n, u \in 2^{\omega}$, and $i \in I_{[u]}$. Define a map $F : nY \to Y$ by the rule $F((k, u, i)) = (f_{r_k}(u), i)$. The definition of this map is meaningful because the set of points of the form (k, u, \cdot) for a fixed k and u is exactly $I_u = I_{[u]}$, and the same is true for points of the form $(f_{r_k}(u), \cdot)$, since $f_{r_k}(u) \sim u$. It is not hard to check that in fact F is an isomorphism of nY with Y.

Claim. $Y \not\cong AY$ for any infinite order A.

Proof. First, observe that if $I \subseteq 2^{\omega}$ is an interval, then either I is a singleton, or $I = [r0\overline{1}, r1\overline{0}]$ is a jump, or I is non-scattered, i.e. contains a dense suborder.

Suppose toward a contradiction that there is an infinite order A and an isomorphism $F: AY \to Y$. We view AY as a replacement of $A2^{\omega}$, and write $I_{(a,u)}$ for the set of points (a,u,\cdot) in AY. Notice that $I_{(a,u)} \cong I_u = I_{[u]}$ for every a and u.

Fix a and u, and let $I=I_{(a,u)}$. We claim that there is $v\in 2^\omega$ such that $F[I]\subseteq I_v$. Fix any v such that $F[I]\cap I_v\neq\emptyset$. If $F[I]\not\subseteq I_v$, then there is $v'\neq v$ such that $F[I]\cap I_{v'}\neq\emptyset$. It must either be that $\{v,v'\}=\{r0\overline{1},r1\overline{0}\}$ is a jump pair, or F[I] contains a dense suborder. The second case is impossible, as $F[I]\cong I$ is scattered. In the first case, we have that $I_{r0\overline{1}}$ and $I_{r1\overline{0}}$ are adjacent and therefore constitute an interval isomorphic to $I_{r0\overline{1}}+I_{r1\overline{0}}\cong\omega+\omega^*$ in Y. The only intervals $K\subseteq\omega+\omega^*$ that intersect both ω and ω^* are actually isomorphic to $\omega+\omega^*$. But $F[I]\cong I\not\cong\omega+\omega^*$ by construction. This shows that the first case is impossible as well. Thus $F[I]\subseteq I_v$ as claimed.

Now let $J = I_v$. By a very similar argument, we must have $F^{-1}[J] \subseteq I_{(b,w)}$ for some b, w. And then it must be that (b, w) = (a, u) since we already know $F^{-1}[J] \cap I_{(a,u)} \neq \emptyset$.

Thus F[I] = J, that is, $F[I_{(a,u)}] = I_v$. Since $I_{(a,u)} \cong I_u$, we must have $u \sim v$. It follows that F induces an isomorphism $f: A2^{\omega} \to 2^{\omega}$ defined by the rule f(a,u) = v if and only if $F[I_{(a,u)}] = I_v$. By what we have just observed, we have $f(a,u) \sim u$ for every $a \in A$ and $u \in 2^{\omega}$. If we write $a2^{\omega}$ for the set of points (a,\cdot) in $A2^{\omega}$, we have that $f[a2^{\omega}] = [u_a, v_a]$ where $u_a = f(a, \overline{0})$ and $v_a = f(a, \overline{1})$. Since $u_a \sim \overline{0}$ and $v_a \sim \overline{1}$, it follows from the claim above that $f[a2^{\omega}]$ is a color copy of 2^{ω} . But then $\{a2^{\omega} : a \in A\}$ is a partition of 2^{ω} into infinitely many color copies of itself, a contradiction.

The combination of the previous two claims proves our main theorem.

Theorem. For a linear order A, we have $AY \cong Y$ if and only if $A \in \{1, 2, 3, \ldots\}$. In the language of the previous leaf, we have that \mathcal{L}_Y is the class of non-empty finite order types.

Question: Is there an order X such that \mathscr{L}_X is the class of countable scattered types? Or the class of countable ordinals?