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Abstract: Given a linear order X, we consider the structural features of the class L consisting of order

types A for which the lexicographic product AX is isomorphic to X.

In this leaf, we do not distinguish between linear orders and linear order types. Given a linear order A,

and for every a ∈ A a linear order Ia, recall that the replacement A(Ia) is the order obtained by replacing

each point a ∈ A by the corresponding order Ia. If there is an order B such that Ia = B for every a ∈ A, we

call the replacement A(Ia) the lexicographic product of A and B and write it AB. If A = 2 = {0, 1}, we call

the replacement A(Ia) the ordered sum of I0 and I1 and denote it I0 + I1.

We will need the following fact, due to Lindenbaum: ifX and Y are linear orders such thatX is isomorphic

to an initial segment of Y and Y is isomorphic to a final segment of X, then X ∼= Y .

Suppose that X is a linear order. The absorption spectrum of X is the class of order types LX = {A :

AX ∼= X}. Observe that 1 ∈ LX for every X, where 1 denotes the order type of the singleton order. We

say X is left-absorbing if LX contains an order other than 1.

For example, suppose X = Q. Since AQ ∼= Q for every countable linear order A, we have that LX is

exactly the class of countable order types. In contrast, if X = 1+Q+1 then LX contains exactly two order

types: 1 and 1 +Q+ 1.

Theorem 1. Suppose that X is a linear order and LX is its absorption spectrum. Then:

1. 1 ∈ LX ,

2. If A ∈ LX , and Ia ∈ LX for every a ∈ A, then A(Ia) ∈ LX ,

3. For all order types A and B, we have A+ 1 +B ∈ LX if and only if A+ 1 ∈ LX and 1 +B ∈ LX .

Proof. We already observed (1.), and (2.) follows from the fact that products distribute over replacements

on the right, so that A(Ia)X ∼= A(IaX). For (3.), suppose first that A + 1 + B ∈ LX . We prove that

A + 1 ∈ LX , i.e. that (A + 1)X ∼= X. Observe that (A + 1)X is isomorphic to an initial segment of

(A + 1 + B)X ∼= (A + 1)X + BX. Since A + 1 + B ∈ LX , it follows (A + 1)X is isomorphic to an initial

segment of X. On the other hand, X is isomorphic to a final segment of (A + 1)X ∼= AX + X. By

Lindenbaum’s theorem, we have (A+ 1)X ∼= X, as desired. The proof that (1 +B)X ∼= X is symmetric.

Conversely, suppose that A+ 1 and 1 +B belong to LX . Then AX +X ∼= X +BX ∼= X. Observe that

(A + 1 + B)X ∼= AX +X + BX. Since X + BX ∼= X, we have AX + (X + BX) ∼= AX +X ∼= X, giving

A+ 1 +B ∈ LX , as desired. □

Suppose that L is a class of order types satisfying the properties (1.), (2.), and (3.) from Theorem 1. Is

L the absorption spectrum for some order X? Not necessarily. For example, if L consists of all order types

of cardinality at most ℵ1, then L satisfies (1.)− (3.). But for any given order X, we have ωX ̸∼= ω1X, since

ωX and ω1X have distinct cofinalities. Thus it cannot be that X ∼= ωX ∼= ω1X. Since ω, ω1 ∈ L , it follows

L ̸= LX . Even more, we cannot have L ⊆ LX .
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Question. Are there conditions extending those from Theorem 1 such that a class of order types L

satisfies the conditions if and only if L = LX for some order X?

Question. Suppose L is a class of order types satisfying the conditions from Theorem 1, and moreover

every A ∈ L has both a left and right endpoint. Is there an order X such that L = LX? In particular, is

there an order X such that LX is exactly the class of finite types?

Question. Fix a left-absorbing order X. What can be said about the orders Y such that LY = LX?

Fix a class of linear orders L satisfying conditions (1.) and (3.) from Theorem 1. Suppose A ∈ L and

[a, a′] is a closed interval in A with endpoints a < a′. Then [a, a′] (viewed as an order type) belongs to L .

Indeed, the initial segment I of A whose maximum is a′ belongs to L by (3.), and then again by (3.), the

final segment J of I with minimum point a belongs to L . Notice J = [a, a′].

Now fix a linear order Y . Define a relation ∼ on Y by the rule y ∼ z if the closed interval [{y, z}] belongs
to L . We claim that ∼ is a condensation of Y , i.e. an equivalence relation with convex equivalence classes.

Reflexivity of ∼ follows from condition (1.), and symmetry is immediate from the definition.

For transitivity, fix y0, y1, y2 ∈ Y and suppose y0 ∼ y1 and y1 ∼ y2. There are six possible orderings

of these three points. For four of these orderings, the left and right point are related by ∼, and it always

follows that y0 ∼ y2. For example, if y0 < y2 < y1, then since [y0, y1] ∈ L and [y0, y2] is an initial segment

of [y0, y1] with a top point, we have [y0, y2] ∈ L by (3.).

Thus it suffices to consider the ordering y0 < y1 < y2 since the argument for the ordering y0 > y1 > y2

is symmetric. But in this case, since [y0, y1] ∈ L and [y1, y2] ∈ L we have [y0, y2] ∈ L by (3). Thus

∼ transitive and therefore an equivalence relation. Its equivalence classes are convex, since if y ∼ y′ and

y < z < y′, we have y ∼ z by (3.).

Thus if L = LX for some order X, we can condense an order Y by the relation ∼ determined by LX .

The significance of this fact is obscure.


