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Abstract: We study filters on a linear order X by restricting our attention to the intervals of X that

belong to a given filter. We show that from this point of view, all filters are essentially principal: for every

filter F on X, there is an interval or cut CF in X, such that for any interval I ⊆ X we have I ∈ F if and

only if I contains CF , possibly strictly on one or both sides of CF .

As an application, we give Banach’s proof of the existence of a stationary and co-stationary subset of ω1

from an injection of ω1 into R.

Our first aim is to formalize and generalize an observation from the previous sketch: if I is a collection

of pairwise intersecting intervals from a linear order X, then
⋂
I determines an interval or a cut in X. This

is a version of Helly’s theorem for a general linear order. We then use this observation to characterize the

filters on X that have a base of intervals.

Fix a linear order X. A cut C is a pair (L,R) where L is an initial segment of X and R = X \ L is the

corresponding final segment. We think of C as the place between L and R. The cuts (∅, X) and (X, ∅) are
the leftmost and rightmost cuts of X, respectively. More generally, an interval I is a pair (L,R) where L is

an initial segment of X and R is a final segment of X such that L ∩ R = ∅. When X ̸= L ∪ R, we identify

I with X \ L ∪R, the convex set of points between L and R. We sometimes call intervals that are not cuts

standard intervals. Given intervals I = (L0, R0) and J = (L1, R1), we write I ⊆ J if L0 ⊇ L1 and R0 ⊇ R1.

We would like to have that when intervals intersect, they intersect in an interval. Since we are viewing

cuts as “empty intervals,” we need a finer notion of interval intersection than the usual one. Given intervals

I = (L0, R0) and J = (L1, R1), we write I ∩J = K if (L0 ∪L1)∩ (R0 ∪R1) = ∅ and K = (L0 ∪L1, R0 ∪R1).

If either R0 ∩ L1 ̸= ∅ or L0 ∩R1 ̸= ∅ we write I ∩ J = 0. In the first case we write I ≪ J and in the second

J ≪ I. In either case, we say that the intervals I and J are separated.

We avoid writing expressions of the form I ∩ J = ∅ for intervals I and J . The reason is that cuts, which

are empty, can intersect intervals, and pairs of intervals that would usually be viewed as having empty

intersection can intersect in cuts. For example, suppose that X = Q. Let I be the interval (L,R) where L is

the initial segment of Q consisting of points less than or equal to 1, and J is the final segment consisting of

points strictly above
√
2. Written in standard interval notation, I is the open interval (1,

√
2). Let J be the

open interval (
√
2, 3), written in standard notation. Let C be the cut (L′, R′) where L′ is the initial segment

of Q below
√
2 and R is the final segment of above

√
2. Notice that I∩C = J ∩C = I∩J = C. In particular,

I and J are not separated, since they intersect in the cut C, though if we view them in standard notation

as the convex sets (1,
√
2) and (

√
2, 3), their intersection is empty. On the other hand, the “same” intervals

I ′ = (1,
√
2) and J ′ = (

√
2, 3) in the order X ′ = Q ∪ {

√
2} are separated. This is because the final segment

corresponding to I ′ is now R0 = [
√
2,∞) and the initial segment corresponding to J ′ is now L1 = (−∞,

√
2],

so that R0 ∩ L1 = {
√
2} ≠ ∅, and we have I ′ ≪ J ′.

We analogously define intersections for larger collections of intervals. Given a family of intervals I = {Ik},
where Ik = (Lk, Rk), we write K =

⋂
I if (

⋃
k Lk) ∩ (

⋃
k Rk) = ∅ and K = (

⋃
k Lk,

⋃
k Rk). If for some k0

and k1 we have Lk0 ∩Rk1 ̸= ∅, we write
⋂
I = 0.

Proposition 1. Suppose that X is a linear order and I is a collection of intervals of X such that for all

I, J ∈ I we have I ∩ J ̸= 0. Then
⋂
I ≠ 0.
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Proof. If
⋂
I = 0, then there are intervals Ik0 = (Lk0 , Rk0) and Ik1 = (Lk1 , Rk1) such that Lk0 ∩ Rk1 ̸= ∅.

But then Ik0
∩ Ik1

= 0, a contradiction. □

Thus for such a family I we have that K =
⋂
I is either a cut or a standard interval.

A filter F on a set X is a collection of subsets of X satisfying the following conditions:

i. ∅ ̸∈ F and X ∈ F ,
ii. if A,B ∈ F then A ∩B ∈ F ,
iii. if A ∈ F and B ⊇ A then B ∈ F .

Suppose that X is a nonempty linear order and F is a filter on X. We write Int(F) for the set of intervals
of X that belong to F . The members of Int(F) are necessarily standard intervals. We always have Int(F) ̸= ∅
since X ∈ Int(F). If A ∈ F then A ∈ Int(F), where A is the convex closure of A.

By the definition of filter and the fact that intersections of intervals are intervals, we have that whenever

I, J ∈ Int(F) then I ∩ J ∈ Int(F). In particular, Int(F) satisfies the hypotheses of Proposition 1. We define

CF to be
⋂
Int(F), the interval or cut determined by Int(F).

Recall that for an interval I = (L,R), the right closure of I is the interval (L, ∅), which we denote I−→. The

left closure is the interval (∅, R), denoted I←−. The left side of I is the cut determined by the final segment

I−→, and the right side of I is the cut determined by I←−. Observe that I−→ ∩ I←− = I. Given another interval

J = (L′, R′), we say that J extends I to the left if L′ is a strict subset of L, and J extends I to the right if

R′ is a strict subset of R.

Theorem 2. Suppose that X is a linear order and F is a filter on X. Let C = CF =
⋂
Int(F) be the

interval or cut determined by the intervals belonging to F . Trivially, exactly one of the following holds:

1. C−→, C←− ∈ F ,
2. C−→ ∈ F but C←− ̸∈ F ,
3. C←− ∈ F but C−→ ̸∈ F ,
4. C−→, C←− ̸∈ F .

Fix a standard interval I ⊆ X. In each of these four cases we have, respectively:

i. I ∈ F if and only if C ⊆ I,

ii. I ∈ F if and only if C ⊆ I and I extends C to the right,

iii. I ∈ F if and only if C ⊆ I and I extends C to the left,

iv. I ∈ F if and only if C ⊆ I and I extends C to the right and left.

Proof. Fix a standard interval I ⊆ X. By definition of C, if I ∈ F we automatically have C ⊆ I.

Suppose we are in case (1). If I ∈ F , we have C ⊆ I by what we just observed. Conversely, suppose

C ⊆ I. The hypothesis (1) implies that C−→ and C←− are both standard intervals. Their membership in F
implies their intersection C−→∩ C←− also belongs to F and is therefore also a standard interval. But C−→∩ C←− = C,

giving C ∈ F . It follows I ∈ F , as desired.
Suppose we are in case (2). Notice C ̸∈ F , since otherwise we would have C←− ∈ F . If I ∈ F and I does

not extend C to the right, then I ∩ C−→ = C. This gives C ∈ F , a contradiction, so I must extend C to

the right. Conversely, suppose I extends C to the right. Since C =
⋂

Int(F), there must exist I0 ∈ Int(F)
whose right side falls strictly below the ride side of I. But then I0 ∩ C−→ ⊆ I, giving I ∈ F , as desired.

The argument for case (3) is symmetric, and (4) is similar. □



All four cases from Theorem 2 can be realized. Take X = Q, and let C = [0, 1] be the closed interval

between 0 and 1. Define:

• B1 = {I ⊆ Q : I is an interval and C ⊆ I},
• B2 = {I ⊆ Q : I is an interval and C ⊆ I and there is q > 1 such that q ∈ I},
• B3 = {I ⊆ Q : I is an interval and C ⊆ I and there is q < 0 such that q ∈ I},
• B4 = {I ⊆ Q : I is an interval and C ⊆ I and there is q > 1 and q′ < 0 such that q, q′ ∈ I}.

Each one of these families is closed under pairwise intersection and is therefore a base for a filter on

Q. Label the corresponding filters F1,F2,F3,F4, respectively. It is not hard to check the C = CFi
for all

i ∈ {1, 2, 3, 4}, and that each Fi satisfies case (i) from Theorem 2.

We note that if F is an ultrafilter on a linear order X, then the corresponding interval CF must be either a

cut or a singleton. For if CF contains two points x < y, then the initial segment L = {x}
←−−

and corresponding

final segment R = X \ L would constitute a partition of X with neither L ∈ F nor R ∈ F (as neither L nor

R contains CF ), contradicting that F is an ultrafilter.

We conclude with a proof (the essence of which I have seen attributed to Banach) of the existence of a

stationary and co-stationary subset of ω1 that uses Theorem 2.

Proposition. (AC) There is a subset S ⊆ ω1 that is both stationary and co-stationary.

Proof. Using the axiom of choice, fix an injection f : ω1 → R. By identifying ω1 with its image under f ,

view ω1 as a subset of R. Define a family F of subsets of R by the rule A ∈ F if A contains a club subset of

ω1. Then F is a filter on R extending the club filter on ω1. Let C = CF be the corresponding interval.

We claim that C cannot be a singleton or a cut. Suppose otherwise, and fix a sequence r0 < r1 < . . .

converging to C from below and a sequence s0 > s1 > . . . converging to C from above. Let Ik = (rk, sk).

Then each Ik extends C to both sides, and hence Ik ∈ F . Thus each Ik contains a club subset of ω1. Since a

countable intersection of club sets is club, we have
⋂

k Ik contains a club subset of ω1. But this intersection

is a singleton, a contradiction.

Thus there are at least two points x < y in C. Let L = {x}
←−−

and let R = R \ L. Let Sl = L ∩ ω1 and

let Sr = R ∩ ω1. Neither Sl nor Sr contain a club, as their convex closures in R do not contain C. On the

other hand it cannot be that there are clubs cl, cr ⊆ ω1 that are disjoint from Sl and Sr respectively, as

then the club cl ∩ cr would be disjoint from Sl ∪ Sr = ω1. Thus at least one of Sl and Sr intersects every

club. It follows that actually both do, since neither contains a club. That is, Sl and Sr are a stationary and

co-stationary pair. □


