Abstract: We prove a structure theorem for linear orders whose self-embeddings cannot be separated, and from it deduce Jullien's indecomposability theorem.

Given a linear order X and a subset $A \subseteq X$, the right closure of A is the set $\underline{A} = \{x \in X : \exists a \in A \ (a \leq x)\}$ and the left closure is $\underline{A} = \{x \in X : \exists a \in A \ (a \geq x)\}$. The convex closure of A is $\underline{A} = \underline{A} \cap \underline{A} = \{x \in X : \exists a_0, a_1 \in A \ (a_0 \leq x \leq a_1)\}$.

A subset $I \subseteq X$ is an *interval* if it is convex, that is, if $\underline{I} = I$. It is an *initial segment* if $\underline{I} = I$, and a final segment if $\underline{I} = I$. Complements of initial segments are final segments, and vice versa. An interval is a middle segment if it is neither an initial nor final segment.

If $I \subseteq X$ is an initial segment of X and $J = X \setminus I$ is the corresponding final segment, the pair (I, J) is called a *cut* in X. We think of a cut as the place between I and J. If I does not have a maximum and J does not have a minimum, the cut (I, J) is called a *gap*. The *leftmost cut* of X is the cut (\emptyset, X) , and the *rightmost cut* is (X, \emptyset) . The leftmost cut is a gap if X has no left endpoint, and the rightmost cut is a gap if X has no right endpoint.

For an interval $I \subseteq X$, the *left side* of I is the cut determined by the final segment \underline{I} , and the *right side* of I is the cut determined by the initial segment \underline{I} .

Given orders X and Y, we write X + Y for the order obtained by placing a copy of Y to the right of a copy of X.

For a fixed order X, the cuts of X are one-to-one with representations of X as a sum of two orders, in the sense that if (I, J) is a cut in X then $X \cong I + J$, and conversely if $X \cong I + J$ for some orders I and J, then (I, J) is a cut in X.

Points are intervals. It will sometimes be convenient to think of cuts as being intervals as well. If we do this, then the intervals of X are one-to-one with the pairs (L,R), where L is an initial segment of X and R is a final segment such that $L \cap R = \emptyset$. The interval associated to (L,R) is the convex set $I = X \setminus L \cup R$. When (L,R) is a cut, we think of the associated "interval" as being the cut itself. This allows us to say that whenever we have a nested sequence of intervals $A_0 \supseteq A_1 \supseteq \ldots \supseteq A_\alpha \supseteq \ldots$, the intersection $\bigcap_\alpha A_\alpha$ is an interval. When such an intersection is non-empty, it is an interval in the usual sense. When it is empty, it is the cut (I,J), where I is the union of the initial segments $I_\alpha = X \setminus A_\alpha$ and J is the union of the final segments $J_\alpha = X \setminus A_\alpha$.

We will also treat cuts like intervals in our notation, and write expressions of the form X = L + C + R to mean that C the is interval or cut in X determined by the initial segment L and final segment R.

Given an interval $I \subseteq X$ and another interval K, we say that K properly contains I if, in the cases when I is an initial or final segment of X, K strictly extends I (to the right or left, respectively), and in the case when I is a middle segment, K strictly extends I to both the right and left. If I is a cut, say I = (L, R), we say that K properly extends I if, in the case when $L = \emptyset$, K is a nonempty initial segment of X, in the case when $R = \emptyset$, K is a nonempty final segment of X, and in the case when both L and R are nonempty, K intersects both L and R.

Our goal is to study the self-embeddings f of a given linear order X by examining how the intervals $\underline{f[X]}$ spanned by their images overlap. Here is an observation whose proof is trivial.

Proposition 1. Suppose that X is a linear order. Then exactly one of the following holds.

- 1. The only embedding $f: X \to X$ is the identity.
- 2. There is an embedding of X+X into X. Equivalently, there are embeddings $f:X\to X$ and $g:X\to X$ such that $f[X]\cap g[X]=\emptyset$.
- 3. There is no embedding of X + X into X. There is an embedding $f: X \to X$ such that $f[X] \neq X$.
- 4. There is no embedding X + X into X. There is a non-identity embedding $f : X \to X$, but for all embeddings we have f[X] = X.

For an example of case (1), take X to be any finite order, for (2) think of $X = \mathbb{Q}$, for (3) think of $X = \omega + 1 + \omega^*$, and for (4) think of $X = 1 + \mathbb{Z} + 1$. Our main objective is to prove that in case (3), there is a canonical decomposition of X as a sum of three orders with certain indecomposability and invariance properties. This decomposition mirrors the decomposition of $\omega + 1 + \omega^*$ into the left ω term, the central 1, and the right ω^* term.

An order X is indecomposable if whenever $X \cong I + J$, there is an embedding of X into either I or J. It is indecomposable to the right if whenever $X \cong I + J$ and $J \neq \emptyset$, there is an embedding of X into J. It is strictly indecomposable to the right if moreover X embeds in none of its strict initial segments I. Indecomposable to the left and strictly indecomposable to the left are defined symmetrically.

The following theorem is due to Jullien.

Theorem. (Jullien's indecomposability theorem) Suppose that X is an indecomposable scattered linear order. Then X is either strictly indecomposable to the left or strictly indecomposable to the right.

After we have proved our decomposition theorem for case (3) above, we will deduce Jullien's theorem as a corollary.

Fix an order X and suppose that $f: X \to X$ is a self-embedding of X such that $\underline{f[X]} \neq X$. Then at least one of the initial segment $L_0 = X \setminus \underline{f[X]}$ and the final segment $R_0 = X \setminus \underline{f[X]}$ is nonempty. One might think of f as being a kind of contraction map.

Define $L_1 = \underline{f[X]} \setminus \underline{f^2[X]}$. Observe that L_1 is an initial segment of $\underline{f[X]}$ and $\underline{f[L_0]} \subseteq L_1$. It is not hard to see that in fact $\underline{f[L_0]} = L_1$. We continue iteratively, defining $L_n = \underline{f^n[X]} \setminus \underline{f^{n+1}[X]}$ for every $n \in \mathbb{N}$. Symmetrically, define $R_n = \underline{f^n[X]} \setminus \underline{f^{n+1}[X]}$ for every n. If we consider the nested sequence of intervals $X \supseteq \underline{f[X]} \supseteq \underline{f^2[X]} \supseteq \ldots$, we have the decomposition $\underline{f^n[X]} = L_n + \underline{f^{n+1}[X]} + R_n$ for every n. Letting $C_f = \bigcap_n \underline{f^n[X]}$, we have

$$X = L_0 + L_1 + \ldots + C_f + \ldots + R_1 + R_0.$$

Notice that L_n is empty if and only if L_0 is empty, and symmetrically for R_n . Since we are assuming $f[X] \neq X$, at least one of the sums $L_0 + L_1 + \ldots$ and $\ldots + R_1 + R_0$ is nonempty.

Let $L_f = L_0 + L_1 + \ldots$ and $R_f = \ldots + R_1 + R_0$ so that $X = L_f + C_f + R_f$. Let $L'_f = L_f \setminus L_0$ and let $R'_f = R_f \setminus R_0$. Since for every n we have $f[L_n] \subseteq L_{n+1}$ and $f[R_n] \subseteq R_{n+1}$, we get $f[L_f] \subseteq L'_f$ and $f[R_f] \subseteq R'_f$. In fact, it is not hard to see that $\underline{f[L_f]} = L'_f$ and $\underline{f[R_f]} = R'_f$. Consequently we have $f[C_f] \subseteq C_f$, though it need not always be true that $\underline{f[C_f]} = C_f$. This gives us a more detailed view of the trivial statement that a self-embedding $f: X \to X$ maps X into the interval $\underline{f[X]}$, in the case when $\underline{f[X]} \neq X$.

Given a linear order X, define $\mathcal{I}(X) = \{I \subseteq X : I \text{ is an interval and there is an embedding } f : X \to I\}$. The statement that X + X does not embed in X is equivalent to the assertion that for all $I, J \in \mathcal{I}(X)$ we have $I \cap J \neq \emptyset$.

Here is our decomposition theorem for case (3) above.

Theorem 2. Suppose that X is a linear order that does not embed X + X, but for which there is an embedding $f: X \to X$ such that $\underline{f[X]} \neq X$. Then the intersection $C = \bigcap \mathcal{I}(X)$ is an interval of X or a cut, and for any interval I, we have $I \in \mathcal{I}(X)$ if and only if I properly contains C. Moreover, writing X as X = L + C + R, we have that the initial segment L is indecomposable to the right, the final segment R is indecomposable to the left, and at least one of L and R is nonempty.

Proof. We prove first that for any pair of intervals $I, J \in \mathcal{I}(X)$ we also have $I \cap J \in \mathcal{I}(X)$. It suffices to show that if we are given embeddings $f: X \to X$ and $g: X \to X$, then $\underline{f[X]} \cap \underline{g[X]} \in \mathcal{I}(X)$. Fix two such embeddings f and g and let $A = \underline{f[X]}$ and $B = \underline{g[X]}$. We will show that there is an embedding $h: X \to X$ such that $h[X] = A \cap B$.

Since X + X does not embed in X, we have that $A \cap B \neq \emptyset$. If either $A \subseteq B$ or $B \subseteq A$, we are done. So without loss of generality, assume that A extends B to the right, and B extends A to the left.

Consider the initial segment L_f and final segment R_g of X. We claim that L_f and R_g are disjoint, so that L_f lies completely to the left of R_g . If not, then it follows from our analysis above that we can find n and k such that $f^n[X]$ lies completely to the right of $g^k[X]$. But then $g^k[X] + f^n[X]$ is a copy of X + X in X, contradicting our hypothesis. Thus L_f lies to the left of R_g , as claimed.

Let C_h be the segment of X between L_f and R_g , so that $X = L_f + C_h + R_g$. Notice by our assumption on A and B that $L'_f + C_h + R'_g = A \cap B$. Define $h: X \to X$ by the rules $h \upharpoonright L_f = f$, $h \upharpoonright R_g = g$, and $h \upharpoonright C_h = \text{id}$. Then since $f[L_f] \subseteq L'_f$ and $g[R_g] \subseteq R'_g$ we have that h is a self-embedding of X. Certainly $h[X] \subseteq A \cap B$, and it follows from our work above that actually $h[X] = A \cap B$.

Thus for any pair $I, J \in \mathcal{I}(X)$ we have $I \cap J \in \mathcal{I}(X)$, as desired.

We next claim that the intersection $\cap \mathcal{I}(X)$ is an interval in our liberal sense, that is, is either an interval or a cut. What does this mean? Since $\mathcal{I}(X)$ consists of intervals, if $\cap \mathcal{I}(X)$ is nonempty, it is an interval. What we are claiming is that if $\mathcal{I}(X) = \emptyset$, then $\cap \mathcal{I}(X)$ determines a cut, in the sense if we consider two different enumerations $\mathcal{I}(X) = \{I_0, I_1, \dots I_{\alpha}, \dots\} = \{J_0, J_1, \dots, J_{\alpha}, \dots\}$ and the corresponding nested sequences of intervals $M_0 \supseteq M_1 \supseteq \dots \supseteq M_{\alpha} \supseteq \dots$ and $N_0 \supseteq N_1 \supseteq \dots \supseteq N_{\alpha} \supseteq \dots$, where $M_i = \bigcap_{k < i} I_k$, $M_i = \bigcap_{k < i} J_k$, then these sequences converge to the same cut.

To see this, suppose not. Without loss of generality, assume that the cut C_1 determined by the M_i sequence falls to the left of the cut C_2 determined by the N_i sequence. That is $X = L_1 + C_1 + R_1 = L_2 + C_2 + R_2$, where $C_1 = C_2 = \emptyset$ and R_2 strictly contains R_1 . We write $X = L_2 + C_1 + M + C_2 + R_1$, where $M = L_1 \cap R_2 \neq \emptyset$. Fix $x \in M$. Since the M_i sequence converges to C_1 and the N_i sequence converges to C_2 , we can find indices i_0 and i_1 such that M_{i_0} and N_{i_1} are nonempty, and M_{i_0} lies to the left of N_{i_1} in the sense that $M_{i_0} \cap N_{i_1}$ is either empty or $\{x\}$. But then we can find $k_0 < i_0$ and $k_1 < i_1$ such that $I_{k_0} \cap I_{k_1}$ is either empty or $\{x\}$. Thus $I_{k_0} \cap I_{k_1} \subseteq \{x\}$. By the above, $I_{k_0} \cap I_{k_1}$ contains a copy of X, so that X must be a singleton. But X is infinite, since there exist strict self-embeddings of X, a contradiction.

Thus $C = \bigcap \mathcal{I}(X)$ is an interval or a cut. Since we are assuming there are embeddings $f: X \to X$ for which $f[X] \neq X$, we have $C \neq X$. It may be that C is either an initial, final, or middle segment of X.

We next claim that for an interval $I \subseteq X$, we have $I \in \mathcal{I}(X)$ if and only if I properly contains C. For concreteness, we work through the case when C is a middle segment of X. (If C = (L, R) is a cut, this means both L and R are nonempty.)

Suppose first that $I \in \mathcal{I}(X)$. Then certainly $C \subseteq I$, by definition of C. Suppose that I does not properly contain C. Without loss of generality assume that the left sides of I and C coincide, say at the cut (L,R), where $R = \underline{I} = \underline{C}$. Fix an embedding $f: X \to I$, which exists since $I \in \mathcal{I}(X)$. Since C is a middle segment of X, L is nonempty, so that $\underline{f[L]}$ is a nonempty initial segment of $\underline{f[X]} \subseteq I$. Thus the left side of $\underline{f[I]}$ falls strictly to the right of the left side of C, so that $C \nsubseteq \underline{f[I]}$. But f^2 embeds X into $\underline{f[I]}$, so that $\underline{f[I]} \in \mathcal{I}(X)$ and thus $C \subseteq f[I]$, a contradiction. Thus I properly contains C, as claimed.

Now suppose I properly contains C. Then we can find $I_0, I_1 \in \mathcal{I}(X)$ such that the left side of I_0 is strictly greater than the left side of I and the right side of I_1 is strictly less than the right side of I. But then $I_0 \cap I_1 \in \mathcal{I}(X)$, and since $I_0 \cap I_1 \subseteq I$, we have $I \in \mathcal{I}(X)$, as claimed. Thus $I \in \mathcal{I}(X)$ if and only if I properly contains C. The cases when C is an initial or final segment of X are similar.

Now, if we write X = L + C + R, it follows immediately from $C \neq X$ that at least one of L, R is nonempty. It remains to prove that L is indecomposable to the right, and R is indecomposable to the left. We show that L is indecomposable to the right; the argument for R is similar. If L is empty, there is nothing to show. So suppose that $L \neq \emptyset$ and that L = A + B is a partition of L into an initial segment A and nonempty final segment B. Consider the interval I = B in X. This interval properly contains C and therefore there is an embedding $f: X \to I$. We claim $f[L] \subseteq B$. If not, then there is a point $x \in L$ such that $f(x) \in C \cup R$. Let $J = \{x\}$. This interval properly contains C and hence there is an embedding of $g: X \to J$. But then fg is an embedding of X into f[J]. By choice of x, this interval does not properly contain C, a contradiction. Thus $f[L] \subseteq B$, as claimed, so that $f \upharpoonright L$ is an embedding of L into its final segment L. Since the decomposition L = A + B was arbitrary, L is indecomposable to the right, as desired.

It is worth noting that the argument in the last paragraph of the proof shows that the decomposition X = L + C + R is invariant under any embedding $f: X \to X$, in the sense that we must have $f[L] \subseteq L$, $f[C] \subseteq C$, and $f[R] \subseteq R$.

Finally, let us deduce Jullien's theorem from Theorem 2. Recall that a linear order is scattered if it does not contain a suborder that is isomorphic to \mathbb{Q} . Suppose that X is scattered and indecomposable. It is well-known that since X is scattered, X + X cannot embed in X. Thus, since X is indecomposable, if we decompose X as X = I + J, with both I and J nonempty, it must be that X embeds in exactly one of I and J. In particular, there are self-embeddings f of X for which $f[X] \neq X$. Thus we are in case (3) from Proposition 1. By our Theorem 2, we have X = L + C + R. If at least two of the terms L, C, R are nonempty, then by Theorem 2 we would have that X embeds in none of L, C, and R. But then X = L + C + R is a decomposition of X into three segments, none of which embed X, contradicting indecomposability. Thus exactly one of these terms is nonempty. It cannot be C, by Theorem 2. If it is L, then X = L is indecomposable to the right, and if it is R, then X = R is indecomposable to the left. The strictness of the indecomposability follows again from the fact that X + X does not embed in X.