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Abstract: We prove a structure theorem for linear orders whose self-embeddings cannot be separated,

and from it deduce Jullien’s indecomposability theorem.

Given a linear order X and a subset A ⊆ X, the right closure of A is the set A−→ = {x ∈ X : ∃a ∈ A (a ≤ x)}
and the left closure is A←− = {x ∈ X : ∃a ∈ A (a ≥ x)}. The convex closure of A is A = A−→ ∩ A←− = {x ∈ X :

∃a0, a1 ∈ A (a0 ≤ x ≤ a1)}.
A subset I ⊆ X is an interval if it is convex, that is, if I = I. It is an initial segment if I←− = I, and a

final segment if I−→ = I. Complements of initial segments are final segments, and vice versa. An interval is

a middle segment if it is neither an initial nor final segment.

If I ⊆ X is an initial segment of X and J = X \ I is the corresponding final segment, the pair (I, J) is

called a cut in X. We think of a cut as the place between I and J . If I does not have a maximum and J

does not have a minimum, the cut (I, J) is called a gap. The leftmost cut of X is the cut (∅, X), and the

rightmost cut is (X, ∅). The leftmost cut is a gap if X has no left endpoint, and the rightmost cut is a gap

if X has no right endpoint.

For an interval I ⊆ X, the left side of I is the cut determined by the final segment I−→, and the right side

of I is the cut determined by the initial segment I←−.
Given orders X and Y , we write X + Y for the order obtained by placing a copy of Y to the right of a

copy of X.

For a fixed order X, the cuts of X are one-to-one with representations of X as a sum of two orders, in

the sense that if (I, J) is a cut in X then X ∼= I + J , and conversely if X ∼= I + J for some orders I and J ,

then (I, J) is a cut in X.

Points are intervals. It will sometimes be convenient to think of cuts as being intervals as well. If we do

this, then the intervals of X are one-to-one with the pairs (L,R), where L is an initial segment of X and R

is a final segment such that L ∩ R = ∅. The interval associated to (L,R) is the convex set I = X \ L ∪ R.

When (L,R) is a cut, we think of the associated “interval” as being the cut itself. This allows us to say that

whenever we have a nested sequence of intervals A0 ⊇ A1 ⊇ . . . ⊇ Aα ⊇ . . ., the intersection
⋂

α Aα is an

interval. When such an intersection is non-empty, it is an interval in the usual sense. When it is empty, it

is the cut (I, J), where I is the union of the initial segments Iα = X \ Aα−→ and J is the union of the final

segments Jα = X \Aα←−.
We will also treat cuts like intervals in our notation, and write expressions of the form X = L+C +R to

mean that C the is interval or cut in X determined by the initial segment L and final segment R.

Given an interval I ⊆ X and another interval K, we say that K properly contains I if, in the cases when

I is an initial or final segment of X, K strictly extends I (to the right or left, respectively), and in the case

when I is a middle segment, K strictly extends I to both the right and left. If I is a cut, say I = (L,R),

we say that K properly extends I if, in the case when L = ∅, K is a nonempty initial segment of X, in the

case when R = ∅, K is a nonempty final segment of X, and in the case when both L and R are nonempty,

K intersects both L and R.

Our goal is to study the self-embeddings f of a given linear order X by examining how the intervals f [X]

spanned by their images overlap. Here is an observation whose proof is trivial.
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Proposition 1. Suppose that X is a linear order. Then exactly one of the following holds.

1. The only embedding f : X → X is the identity.

2. There is an embedding of X + X into X. Equivalently, there are embeddings f : X → X and

g : X → X such that f [X] ∩ g[X] = ∅.
3. There is no embedding of X +X into X. There is an embedding f : X → X such that f [X] ̸= X.

4. There is no embedding X +X into X. There is a non-identity embedding f : X → X, but for all

embeddings we have f [X] = X.

□

For an example of case (1), take X to be any finite order, for (2) think of X = Q, for (3) think of

X = ω + 1 + ω∗, and for (4) think of X = 1 + Z+ 1. Our main objective is to prove that in case (3), there

is a canonical decomposition of X as a sum of three orders with certain indecomposability and invariance

properties. This decomposition mirrors the decomposition of ω + 1 + ω∗ into the left ω term, the central 1,

and the right ω∗ term.

An order X is indecomposable if whenever X ∼= I +J , there is an embedding of X into either I or J . It is

indecomposable to the right if whenever X ∼= I+J and J ̸= ∅, there is an embedding of X into J . It is strictly

indecomposable to the right if moreover X embeds in none of its strict initial segments I. Indecomposable to

the left and strictly indecomposable to the left are defined symmetrically.

The following theorem is due to Jullien.

Theorem. (Jullien’s indecomposability theorem) Suppose that X is an indecomposable scattered linear

order. Then X is either strictly indecomposable to the left or strictly indecomposable to the right.

After we have proved our decomposition theorem for case (3) above, we will deduce Jullien’s theorem as

a corollary.

Fix an order X and suppose that f : X → X is a self-embedding of X such that f [X] ̸= X. Then at

least one of the initial segment L0 = X \ f [X]
−−→

and the final segment R0 = X \ f [X]
←−−

is nonempty. One might

think of f as being a kind of contraction map.

Define L1 = f [X] \ f2[X]
−−−→

. Observe that L1 is an initial segment of f [X] and f [L0] ⊆ L1. It is not hard

to see that in fact f [L0] = L1. We continue iteratively, defining Ln = fn[X] \ fn+1[X]
−−−−−→

for every n ∈ N.
Symmetrically, define Rn = fn[X] \ fn+1[X]

←−−−−−
for every n. If we consider the nested sequence of intervals

X ⊇ f [X] ⊇ f2[X] ⊇ . . ., we have the decomposition fn[X] = Ln + fn+1[X] + Rn for every n. Letting

Cf =
⋂

n f
n[X], we have

X = L0 + L1 + . . .+ Cf + . . .+R1 +R0.

Notice that Ln is empty if and only if L0 is empty, and symmetrically for Rn. Since we are assuming

f [X] ̸= X, at least one of the sums L0 + L1 + . . . and . . .+R1 +R0 is nonempty.

Let Lf = L0 + L1 + . . . and Rf = . . . + R1 + R0 so that X = Lf + Cf + Rf . Let L′
f = Lf \ L0

and let R′
f = Rf \ R0. Since for every n we have f [Ln] ⊆ Ln+1 and f [Rn] ⊆ Rn+1, we get f [Lf ] ⊆ L′

f

and f [Rf ] ⊆ R′
f . In fact, it is not hard to see that f [Lf ] = L′

f and f [Rf ] = R′
f . Consequently we have

f [Cf ] ⊆ Cf , though it need not always be true that f [Cf ] = Cf . This gives us a more detailed view of

the trivial statement that a self-embedding f : X → X maps X into the interval f [X], in the case when

f [X] ̸= X.



Given a linear order X, define I(X) = {I ⊆ X : I is an interval and there is an embedding f : X → I}.
The statement that X +X does not embed in X is equivalent to the assertion that for all I, J ∈ I(X) we

have I ∩ J ̸= ∅.
Here is our decomposition theorem for case (3) above.

Theorem 2. Suppose that X is a linear order that does not embed X + X, but for which there is an

embedding f : X → X such that f [X] ̸= X. Then the intersection C =
⋂
I(X) is an interval of X or a

cut, and for any interval I, we have I ∈ I(X) if and only if I properly contains C. Moreover, writing X as

X = L + C + R, we have that the initial segment L is indecomposable to the right, the final segment R is

indecomposable to the left, and at least one of L and R is nonempty.

Proof. We prove first that for any pair of intervals I, J ∈ I(X) we also have I ∩ J ∈ I(X). It suffices to

show that if we are given embeddings f : X → X and g : X → X, then f [X] ∩ g[X] ∈ I(X). Fix two such

embeddings f and g and let A = f [X] and B = g[X]. We will show that there is an embedding h : X → X

such that h[X] = A ∩B.

Since X +X does not embed in X, we have that A ∩B ̸= ∅. If either A ⊆ B or B ⊆ A, we are done. So

without loss of generality, assume that A extends B to the right, and B extends A to the left.

Consider the initial segment Lf and final segment Rg of X. We claim that Lf and Rg are disjoint, so

that Lf lies completely to the left of Rg. If not, then it follows from our analysis above that we can find n

and k such that fn[X] lies completely to the right of gk[X]. But then gk[X] + fn[X] is a copy of X +X in

X, contradicting our hypothesis. Thus Lf lies to the left of Rg, as claimed.

Let Ch be the segment of X between Lf and Rg, so that X = Lf + Ch +Rg. Notice by our assumption

on A and B that L′
f + Ch + R′

g = A ∩ B. Define h : X → X by the rules h ↾ Lf = f , h ↾ Rg = g, and

h ↾ Ch = id. Then since f [Lf ] ⊆ L′
f and g[Rg] ⊆ R′

g we have that h is a self-embedding of X. Certainly

h[X] ⊆ A ∩B, and it follows from our work above that actually h[X] = A ∩B.

Thus for any pair I, J ∈ I(X) we have I ∩ J ∈ I(X), as desired.

We next claim that the intersection
⋂
I(X) is an interval in our liberal sense, that is, is either an interval

or a cut. What does this mean? Since I(X) consists of intervals, if
⋂
I(X) is nonempty, it is an interval.

What we are claiming is that if I(X) = ∅, then
⋂
I(X) determines a cut, in the sense if we consider

two different enumerations I(X) = {I0, I1, . . . Iα, . . .} = {J0, J1, . . . , Jα, . . .} and the corresponding nested

sequences of intervals M0 ⊇ M1 ⊇ . . . ⊇ Mα ⊇ . . . and N0 ⊇ N1 ⊇ . . . ⊇ Nα ⊇ . . ., where Mi =
⋂

k<i Ik,

Mi =
⋂

k<i Jk, then these sequences converge to the same cut.

To see this, suppose not. Without loss of generality, assume that the cut C1 determined by theMi sequence

falls to the left of the cut C2 determined by the Ni sequence. That is X = L1+C1+R1 = L2+C2+R2, where

C1 = C2 = ∅ and R2 strictly contains R1. We write X = L2 +C1 +M +C2 +R1, where M = L1 ∩R2 ̸= ∅.
Fix x ∈M . Since the Mi sequence converges to C1 and the Ni sequence converges to C2, we can find indices

i0 and i1 such that Mi0 and Ni1 are nonempty, and Mi0 lies to the left of Ni1 in the sense that Mi0 ∩Ni1 is

either empty or {x}. But then we can find k0 < i0 and k1 < i1 such that Ik0 ∩ Ik1 is either empty or {x}.
Thus Ik0 ∩ Ik1 ⊆ {x}. By the above, Ik0 ∩ Ik1 contains a copy of X, so that X must be a singleton. But X

is infinite, since there exist strict self-embeddings of X, a contradiction.

Thus C =
⋂
I(X) is an interval or a cut. Since we are assuming there are embeddings f : X → X for

which f [X] ̸= X, we have C ̸= X. It may be that C is either an initial, final, or middle segment of X.



We next claim that for an interval I ⊆ X, we have I ∈ I(X) if and only if I properly contains C. For

concreteness, we work through the case when C is a middle segment of X. (If C = (L,R) is a cut, this

means both L and R are nonempty.)

Suppose first that I ∈ I(X). Then certainly C ⊆ I, by definition of C. Suppose that I does not properly

contain C. Without loss of generality assume that the left sides of I and C coincide, say at the cut (L,R),

where R = I−→ = C−→. Fix an embedding f : X → I, which exists since I ∈ I(X). Since C is a middle segment

of X, L is nonempty, so that f [L]
−−→

is a nonempty initial segment of f [X]
−−→

⊆ I. Thus the left side of f [I]
−−→

falls

strictly to the right of the left side of C, so that C ̸⊆ f [I]
−−→

. But f2 embeds X into f [I]
−−→

, so that f [I]
−−→
∈ I(X)

and thus C ⊆ f [I]
−−→

, a contradiction. Thus I properly contains C, as claimed.

Now suppose I properly contains C. Then we can find I0, I1 ∈ I(X) such that the left side of I0 is strictly

greater than the left side of I and the right side of I1 is strictly less than the right side of I. But then

I0∩ I1 ∈ I(X), and since I0∩ I1 ⊆ I, we have I ∈ I(X), as claimed. Thus I ∈ I(X) if and only if I properly

contains C. The cases when C is an initial or final segment of X are similar.

Now, if we write X = L+C+R, it follows immediately from C ̸= X that at least one of L,R is nonempty.

It remains to prove that L is indecomposable to the right, and R is indecomposable to the left. We show

that L is indecomposable to the right; the argument for R is similar. If L is empty, there is nothing to show.

So suppose that L ̸= ∅ and that L = A+B is a partition of L into an initial segment A and nonempty final

segment B. Consider the interval I = B−→ in X. This interval properly contains C and therefore there is an

embedding f : X → I. We claim f [L] ⊆ B. If not, then there is a point x ∈ L such that f(x) ∈ C ∪R. Let

J = {x}
−−→

. This interval properly contains C and hence there is an embedding of g : X → J . But then fg is an

embedding of X into f [J ]
−−→

. By choice of x, this interval does not properly contain C, a contradiction. Thus

f [L] ⊆ B, as claimed, so that f ↾ L is an embedding of L into its final segment B. Since the decomposition

L = A+B was arbitrary, L is indecomposable to the right, as desired. □

It is worth noting that the argument in the last paragraph of the proof shows that the decomposition

X = L + C + R is invariant under any embedding f : X → X, in the sense that we must have f [L] ⊆ L,

f [C] ⊆ C, and f [R] ⊆ R.

Finally, let us deduce Jullien’s theorem from Theorem 2. Recall that a linear order is scattered if it

does not contain a suborder that is isomorphic to Q. Suppose that X is scattered and indecomposable.

It is well-known that since X is scattered, X + X cannot embed in X. Thus, since X is indecomposable,

if we decompose X as X = I + J , with both I and J nonempty, it must be that X embeds in exactly

one of I and J . In particular, there are self-embeddings f of X for which f [X]
−−→

̸= X. Thus we are in

case (3) from Proposition 1. By our Theorem 2, we have X = L + C + R. If at least two of the terms

L,C,R are nonempty, then by Theorem 2 we would have that X embeds in none of L, C, and R. But

then X = L + C + R is a decomposition of X into three segments, none of which embed X, contradicting

indecomposability. Thus exactly one of these terms is nonempty. It cannot be C, by Theorem 2. If it is L,

then X = L is indecomposable to the right, and if it is R, then X = R is indecomposable to the left. The

strictness of the indecomposability follows again from the fact that X +X does not embed in X. □


