Abstract: This leaf is a continuation of the previous one. We show that if \sim is an $\operatorname{Aut}(X)$ -condensation of a linear order X, and we color the condensed order X/\sim by the orbit equivalence relation E of the action $\operatorname{Aut}(X) \curvearrowright X/\sim$, then the quotient $\operatorname{Aut}(X)/N_\sim$ coincides with the color automorphism group $\operatorname{Aut}(X/\sim, E)$.

Suppose X is a linear order, and let $\operatorname{Aut}(X)$ denote the group of order-automorphisms of X. For a group G, an action of G on X is formally a homomorphism $\phi: G \to \operatorname{Aut}(X)$. We write $G \curvearrowright^{\phi} X$ to denote that ϕ is an action of G on X. When ϕ is understood, we write simply $G \curvearrowright X$. Given such an action, for $x \in X$ and $g \in G$ we write gx for $\phi(g)(x)$.

If $G \curvearrowright^{\phi} X$ is an action, the *kernel* of this action is $N_{\phi} = \{g \in G : \phi(g) = \mathrm{id}\}$. The kernel is a normal subgroup of G. We write \hat{g} for the coset gN_{ϕ} of a given $g \in G$. The quotient group G/N_{ϕ} acts faithfully on X by defining $\hat{g}x = gx$ for every $g \in G$ and $x \in X$. Equivalently, this is the action induced by the injective homomorphism $\hat{\phi}: G/N_{\sim} \to X$ defined by $\hat{\phi}(g) = \widehat{\phi(g)}$.

Given an action $G \curvearrowright X$, the *orbit equivalence relation* E_G is the relation defined by the rule xE_Gy if gx = y for some $g \in G$.

In practice, actions on X usually arise in one of two ways. The first is that the acting group G is a subgroup of Aut(X) and ϕ is the identity. The second is that we find a condensation of X which is invariant under the action by a group G of automorphisms of X, and then consider the resulting action of G on the condensed order.

More explicitly, suppose $G \leq \operatorname{Aut}(X)$. For a condensation \sim of X, we write c(x) for the \sim -class of a given $x \in X$, and X/\sim for the collection of \sim -classes. Since X/\sim is a collection of pairwise disjoint intervals in X, it is naturally linearly ordered by the rule c(x) < c(y) if $c(x) \neq c(y)$ and x < y in X. We call this order the *induced order*. If we equip X/\sim with this order, the condensation map $c: X \to X/\sim$ is a surjective order-homomorphism.

We say \sim is a G-condensation if g[c(x)] = c(gx) for all $g \in G$ and $x \in X$. Given such a condensation, the action $G \curvearrowright X$ induces an action $G \curvearrowright X/\sim$, indeed by defining gc(x) = c(gx) for all $g \in G$ and $x \in X$. We write N_{\sim} for the kernel of this action. Observe that $N_{\sim} = \{g \in G : \forall x \in X, c(x) = c(gx)\} = \{g \in G : \forall x \in X, x \sim g(x)\}.$

Given a G-condensation \sim on X, a point $x \in X$, and $g \in G$, observe that since g acts as an automorphism of X, the condensation class c(x), viewed as an interval in X, is isomorphic to the interval gc(x) = c(gx).

Following the previous leaf, suppose \mathcal{C} is a class of colors, and $C: X \to \mathcal{C}$ is a coloring of our order X. We say that $f: X \to X$ is a *color automorphism* of (X, C) if f is a color isomorphism of X with itself under the coloring C. We denote the group of color automorphisms of (X, C) by $\operatorname{Aut}(X, C)$.

Now we turn to our main result. Consider the action $\operatorname{Aut}(X) \curvearrowright X$, and suppose \sim is an $\operatorname{Aut}(X)$ -condensation of X. Let E denote the orbit equivalence relation of the induced action $\operatorname{Aut}(X) \curvearrowright X/\sim$, and write $[c(x)]_E$ for the orbit equivalence class of a given $c(x) \in X/\sim$. We also view E as a coloring of X/\sim , where the color assigned to a given point $c(x) \in X/\sim$ is $[c(x)]_E$.

By above, we may identify $\operatorname{Aut}(X)/N_{\sim}$ with a subgroup of $\operatorname{Aut}(X/\sim)$. Having made this identification, we claim the following.

Proposition: $\operatorname{Aut}(X)/N_{\sim} = \operatorname{Aut}(X/{\sim}, E)$.

Proof. The left-to-right containment follows from the observation that the orbit equivalence relation of the induced action $\operatorname{Aut}(X)/N_{\sim} \propto X/\sim$ coincides with the orbit equivalence relation of the original action $\operatorname{Aut}(X) \curvearrowright X/\sim$ (that is, with E). More explicitly, given $\hat{g} \in \operatorname{Aut}(X)/N_{\sim}$, we have $\hat{g}c(x) = gc(x)$, so that $\hat{g}c(x)Ec(x)$, for all $c(x) \in X/\sim$.

For the right-to-left containment, fix $f \in \operatorname{Aut}(X/\sim, E)$. We must find $g \in \operatorname{Aut}(X)$ so that $f = \hat{g}$. For a given $c(x) \in X/\sim$ we have c(x)Ef(c(x)) by assumption. Thus there is some $g_{c(x)} \in \operatorname{Aut}(X)$ such that $g_{c(x)}c(x) = f(c(x))$. In particular $g_{c(x)}$, when restricted to the interval c(x), is an isomorphism of c(x) with f(c(x)). Thus if for every $c(x) \in X/\sim$ we fix such an automorphism $g_{c(x)} \in \operatorname{Aut}(X)$, we may define a map $g: X \to X$ piecewise, by the rule $g(x) = g_{c(x)}(x)$. It is not hard to check that, so defined, g is an automorphism of X and moreover $\hat{g} = f$, as desired.