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Abstract: We observe that several fundamental facts due to Lindenbaum about sums of linear orders

extend verbatim to linear orders equipped with colorings.

The following proposition is perhaps the fundamental fact in the study of automorphisms of linear orders,

and more generally, convex embeddings of linear orders. It can be viewed as a version of the Cantor-

Schroeder-Bernstein theorem. It says that if a linear order X is isomorphic to a middle segment of itself, it

is also isomorphic to the leftward and rightward closures of the middle segment.

Proposition. (Lindenbaum) Suppose X is a linear order such that for some linear orders A and B we

have X ∼= A+X +B. Then X ∼= A+X and X ∼= X +B.

Proof. Fix f : A+X +B → X an isomorphism, and let A0 = f [A], X0 = f [X], and B0 = f [B]. Then A0 is

an initial segment of X isomorphic to A, B0 is a final segment isomorphic to B, and X0 is a middle segment

isomorphic to X.

Fix an isomorphism g : X → X0. Iteratively define An+1 = g[An], Xn+1 = g[Xn] and Bn+1 = g[Bn].

By induction, An+1, Xn+1, and Bn+1 partition Xn into an initial, middle, and final segment, respectively

(isomorphic to A, X, and B, respectively). It follows that for every n, An+1 immediately succeeds An and

Bn+1 immediately precedes Bn in X.

Define

A∞ =
⋃

n An,

X∞ =
⋂

n Xn,

B∞ =
⋃

n Bn.

The above then shows that A∞, X∞, and B∞ partition X into an initial, middle, and final segment,

respectively. Moreover, these segments are invariant under g, in the sense that

g[A∞] = g[
⋃

n An] =
⋃

n g[An] =
⋃

n An+1 = A∞ \A0 ⊆ A∞,

g[X∞] = g[
⋂

n Xn] =
⋂

n g[Xn] =
⋂

n Xn+1 = X∞,

g[B∞] = g[
⋃

n Bn] =
⋃

n g[Bn] =
⋃

n Bn+1 = B∞ \B0 ⊆ B∞.

Now define h : X → X by

h(x) =

{
g(x) x ∈ A∞

x x ∈ X∞ ∪B∞.

Since both g and the identity are order-preserving, h is order-preserving on both A∞ and X∞∪B∞. Since

g sends A∞ into A∞, and hence below X∞ ∪ B∞, h is order-preserving globally, i.e. an order-isomorphism

of X with its image under h. That image is X \A0, i.e. X0∪B0. Hence X ∼= X+B. A symmetric argument

shows X ∼= A+X. □

Corollary: Suppose X is a linear order such that X ∼= A+X +M +X +B for some linear orders A,B,

and M . Then X ∼= X +M +X.
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Proof. Writing X ∼= (A+X +M)+X +B we have X ∼= (A+X +M)+X by the proposition applied to B.

Now writing X ∼= A+X + (M +X) we have X ∼= X + (M +X) by the proposition, now applied to A. □

For X and Y linear orders, we write X ⩽c Y if there is a convex embedding of X into Y . We say that X

is splitting if X ∼= 2X ∼= X +X.

The following corollary says that X is splitting if and only if 2X ⩽c X.

Corollary: Suppose that X is a linear order. Then 2X ∼= X if and only if 2X ⩽c X.

Proof. Since isomorphisms are in particular convex embeddings, we need only prove the reverse direction. If

X +X ⩽c X, then X ∼= A+X +X +B for some linear orders A and B. By the previous corollary (applied

to X +X ∼= X + ∅+X) we have X ∼= X +X = 2X, as desired. □

Suppose that C is a fixed, non-empty set of colors. For a linear order X, a coloring of X is a function

C : X → C. We also call the pair (X,C) a coloring of X.

Given colorings (X,C) of X and (Y,D) of Y , a map f : X → Y is, respectively, a color embedding,

convex color embedding, or color isomorphism if f is, respectively, an embedding, convex embedding, or

isomorphism of the underlying orders X and Y such that for every x ∈ X we have D(f(x)) = C(x). We

write (X,C) ⩽ (Y,D), (X,C) ⩽c (Y,D), or (X,C) ∼= (Y,D) if there exists, respectively, a color embedding,

convex color embedding, or color isomorphism from X to Y . When X and Y are understood to be colored,

we may suppress mention of the colorings C and D, and write for example X ∼= Y to mean not only that X

is isomorphic to Y , but in fact color isomorphic to Y .

Given colorings (X,C) and (Y,D), their colored sum (X,C) + (Y,D) is the coloring (X + Y,C + D) of

X + Y , where C +D : X + Y → C is defined by (C +D)(x) = C(x) for x in the initial segment of X + Y

corresponding to X, and (C+D)(y) = D(y) for y in the final segment of X +Y corresponding to Y . Again,

when C and D are understood, we will write simply X + Y for (X + Y,C +D).

More generally, given a linear order X, and for every point x ∈ X a coloring (Ix, Cx) of a linear order Ix,

we define the colored replacement ofX by the colorings (Ix, Cx), as the coloring (X(Ix), C) of the replacement

X(Ix), where C : X(Ix) → C is defined by C(x, i) = Cx(i) for all x ∈ X and i ∈ Ix.

Lindenbaum’s proposition and the resulting corollaries also hold for orders with colorings.

Proposition: Suppose that (X,C) is a coloring of a linear order X such that for colorings (A,D) and

(B,E) of some linear orders A and B we have X ∼= A+X +B. Then X ∼= A+X and X ∼= X +B.

Proof. If we assume the maps f and g from the proof of Lindenbaum’s proposition are color-preserving,

then since the identity is also color-preserving, the map h constructed piecewise from g and the identity

is color-preserving. It follows X is color isomorphic to X + B. Symmetrically, X is color isomorphic to

A+X. □

It follows that the two corollaries of Lindenbaum’s result also hold for orders with colorings, if we assume

the isomorphisms and embeddings in their hypotheses are color-preserving.


