Abstract: We define a notion of equivalence between cuts of linear orders, and show that any collection $\mathscr S$ of equivalence classes of cuts determines an idealistic condensation scheme, namely the scheme that identifies two points x < y in a linear order X if the interval [x, y] does not contain a cut type from $\mathscr S$.

We present an alternative view of the material from Leaf #6. There, we showed that an *idealistic* condensation scheme is determined uniquely by the associated full interval ideal. We show here that such ideals (and hence such schemes) are determined by specifying a collection of cuts that are forbidden to appear in intervals in the ideal, up to a natural notion of equivalence between cuts.

A *cut* is an ordered pair (I, J) of non-empty linear orders I and J. We often identify a given cut (I, J) with the linear order X = I + J along with its representation as an ordered sum of I and J, and think of the cut at the + sign in X.

Given a cut (I, J) and points x < y in X = I + J, we say that the cut falls between x and y if $x \in I$ and $y \in J$. If S is a segment (i.e. convex subset) of X, we say that S contains (I, J) if (I, J) falls between a pair of points x < y from S.

Given two non-empty linear orders I and I', we say that I and I' are right equivalent, and write $I \approx_r I'$, if there are non-empty final segments K of I and K' of I' such that $K \cong K'$. Symmetrically, we say that I and I' are left equivalent, and write $I \approx_l I'$, if they have non-empty isomorphic initial segments.

Given two cuts (I, J) and (I', J'), we write $(I, J) \approx (I', J')$ if $I \approx_r I'$ and $J \approx_l J'$. It is not hard to see that \approx is an equivalence relation on the class of cuts. We write [(I, J)] or [I + J] for the \approx -equivalence class of a given cut (I, J).

Fix a collection of cut types \mathscr{S} .

We say that a linear order S contains a cut from $\mathscr S$ if there is a decomposition S=I+J with both I and J non-empty such that $[(I,J)] \in \mathscr S$.

Given a linear order X, we may define a relation $\sim_{\mathscr{S}}^X$ on X by the rule $x \sim_{\mathscr{S}}^X y$ if the closed interval $[\{x,y\}]$ does not contain a cut from \mathscr{S} . (Recall: $[\{x,y\}]$ denotes the closed interval between x and y.)

Proposition. For any linear order X, $\sim_{\mathscr{S}}^X$ is a convex equivalence relation on X.

Proof. Since there is no decomposition [x,x]=I+J of a singleton interval $[x,x]=\{x\}$ with both I and J non-empty, the relation is reflexive. It is symmetric by definition. It is transitive, since if there are no cuts from $\mathscr S$ in the intervals $[\{x,y\}]$ and $[\{y,z\}]$, then there are no cuts from $\mathscr S$ in $[\{x,z\}]$. (Note that it is important that we are actually working with cut types here. For example, suppose we are in the case when x < y < z. Then more explicitly we have that if there were a cut from $\mathscr S$ in [x,z], so that there is a decomposition [x,z]=I+J with $[I+J]\in\mathscr S$, then either $y\in J$, in which case $[x,y]=I+J\cap[x,y]\approx I+J$, and so $[I+J\cap[x,y]]\in\mathscr S$, or $y\in I$, in which case $[y,z]=I\cap[y,z]+J\approx I+J$ and so $[I\cap[y,z]+J]\in\mathscr S$. For the remainder, similar arguments will only be indicated informally.) And it is convex, since if x< y< z and there are no cuts from $\mathscr S$ in [x,z], then there are no cuts from $\mathscr S$ in either [x,y] or [y,z].

In the language of Leaf #6, the proposition says that the map $X \mapsto \sim_{\mathscr{S}}^X$ is a condensation scheme. Viewing the scheme as defining a condensation on every linear order, we drop the superscript and write $\sim_{\mathscr{S}}$ for this condensation regardless of the underlying order.

1

Let $\mathscr{I}(\mathscr{S})$ denote the class of all linear orders that do not contain a cut from \mathscr{S} .

Proposition.

- (1.) $\sim_{\mathscr{S}}$ is an idealistic condensation scheme.
- (2.) $\mathscr{I}(\mathscr{S})$ is a full interval ideal. Moreover, the corresponding condensation scheme \sim , defined on a given linear order X by the rule $x \sim x'$ if $[\{x, x'\}] \in \mathscr{I}(\mathscr{S})$, coincides with $\sim_{\mathscr{S}}$.
- Proof. (1.) As observed in Leaf #6, it suffices to check that $\sim_{\mathscr{S}}$ is invariant under convex embeddings. Suppose X, Y are linear orders and $f: X \to Y$ is a convex embedding of X into Y. Fix x < x' in X. Then there is a cut from \mathscr{S} in [x, x'] if and only if there is a cut from \mathscr{S} in [f(x), f(x')], which gives the desired invariance.
 - (2.) We verify the conditions in the definition of interval ideal from Leaf #6. That $\mathscr{I}(\mathscr{S})$ is closed under isomorphism follows from the fact that "not containing a cut from \mathscr{S} " is invariant under isomorphism. $1 \in \mathscr{S}$ holds since no singleton order contains a cut from \mathscr{S} . Finally, given a linear order Z and a decomposition Z = X + 1 + Y, we have that Z contains a cut from \mathscr{S} if and only if either X + 1 or 1 + Y contains the cut. Hence $Z \in \mathscr{I}(\mathscr{S})$ if and only if both X + 1 and X + 1 and X + 1 belong to X + 1 and X + 1

Thus $\mathscr{I}(\mathscr{S})$ is an interval ideal. That it is full follows from the fact that an order Z does not contain a cut from \mathscr{S} if and only if all of its closed intervals do not contain such a cut.

That the corresponding scheme \sim coincides with $\sim_{\mathscr{S}}$ follows from the definition of $\mathscr{I}(\mathscr{S})$.

Conversely, from a full interval ideal \mathscr{I} we can recover a class of cuts \mathscr{S} that determines \mathscr{I} .

Proposition. Suppose \mathscr{I} is a full interval ideal and let \sim denote the corresponding condensation scheme. Let \mathscr{S} consist of all equivalence classes of cuts of the form [I+J] where

- i. I+J (viewed as a linear order) does not belong to \mathscr{I} (i.e. consists of at least two \sim -classes),
- ii. I + J (viewed as a cut) is not contained in any \sim -class.

Then $\mathscr{I} = \mathscr{I}(\mathscr{S})$.

Proof. Exercise. \Box