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Abstract: We define a notion of equivalence between cuts of linear orders, and show that any collection

S of equivalence classes of cuts determines an idealistic condensation scheme, namely the scheme that iden-

tifies two points x < y in a linear order X if the interval [x, y] does not contain a cut type from S .

We present an alternative view of the material from Leaf #6. There, we showed that an idealistic

condensation scheme is determined uniquely by the associated full interval ideal. We show here that such

ideals (and hence such schemes) are determined by specifying a collection of cuts that are forbidden to appear

in intervals in the ideal, up to a natural notion of equivalence between cuts.

A cut is an ordered pair (I, J) of non-empty linear orders I and J . We often identify a given cut (I, J)

with the linear order X = I + J along with its representation as an ordered sum of I and J , and think of

the cut as the cut at the + sign in X.

Given a cut (I, J) and points x < y in X = I + J , we say that the cut falls between x and y if x ∈ I and

y ∈ J . If S is a segment (i.e. convex subset) of X, we say that S contains (I, J) if (I, J) falls between a pair

of points x < y from S.

Given two non-empty linear orders I and I ′, we say that I and I ′ are right equivalent, and write I ≈r I ′,

if there are non-empty final segments K of I and K ′ of I ′ such that K ∼= K ′. Symmetrically, we say that I

and I ′ are left equivalent, and write I ≈l I
′, if they have non-empty isomorphic initial segments.

Given two cuts (I, J) and (I ′, J ′), we write (I, J) ≈ (I ′, J ′) if I ≈r I ′ and J ≈l J
′. It is not hard to see

that ≈ is an equivalence relation on the class of cuts. We write [(I, J)] or [I + J ] for the ≈-equivalence class

of a given cut (I, J).

Fix a collection of cut types S .

We say that a linear order S contains a cut from S if there is a decomposition S = I + J with both I

and J non-empty such that [(I, J)] ∈ S .

Given a linear order X, we may define a relation ∼X
S on X by the rule x ∼X

S y if the closed interval

[{x, y}] does not contain a cut from S . (Recall: [{x, y}] denotes the closed interval between x and y.)

Proposition. For any linear order X, ∼X
S is a convex equivalence relation on X.

Proof. Since there is no decomposition [x, x] = I + J of a singleton interval [x, x] = {x} with both I and

J non-empty, the relation is reflexive. It is symmetric by definition. It is transitive, since if there are no

cuts from S in the intervals [{x, y}] and [{y, z}], then there are no cuts from S in [{x, z}]. (Note that it

is important that we are actually working with cut types here. For example, suppose we are in the case

when x < y < z. Then more explicitly we have that if there were a cut from S in [x, z], so that there is a

decomposition [x, z] = I+J with [I+J ] ∈ S , then either y ∈ J , in which case [x, y] = I+J ∩ [x, y] ≈ I+J ,

and so [I + J ∩ [x, y]] ∈ S , or y ∈ I, in which case [y, z] = I ∩ [y, z] + J ≈ I + J and so [I ∩ [y, z] + J ] ∈ S .

For the remainder, similar arguments will only be indicated informally.) And it is convex, since if x < y < z

and there are no cuts from S in [x, z], then there are no cuts from S in either [x, y] or [y, z]. □

In the language of Leaf #6, the proposition says that the map X 7→∼X
S is a condensation scheme. Viewing

the scheme as defining a condensation on every linear order, we drop the superscript and write ∼S for this

condensation regardless of the underlying order.
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Let I (S ) denote the class of all linear orders that do not contain a cut from S .

Proposition.

(1.) ∼S is an idealistic condensation scheme.

(2.) I (S ) is a full interval ideal. Moreover, the corresponding condensation scheme ∼, defined on a

given linear order X by the rule x ∼ x′ if [{x, x′}] ∈ I (S ), coincides with ∼S .

Proof. (1.) As observed in Leaf #6, it suffices to check that ∼S is invariant under convex embeddings.

Suppose X,Y are linear orders and f : X → Y is a convex embedding of X into Y . Fix x < x′ in

X. Then there is a cut from S in [x, x′] if and only if there is a cut from S in [f(x), f(x′)], which

gives the desired invariance.

(2.) We verify the conditions in the definition of interval ideal from Leaf #6. That I (S ) is closed

under isomorphism follows from the fact that “not containing a cut from S ” is invariant under

isomorphism. 1 ∈ S holds since no singleton order contains a cut from S . Finally, given a linear

order Z and a decomposition Z = X + 1 + Y , we have that Z contains a cut from S if and only

if either X + 1 or 1 + Y contains the cut. Hence Z ∈ I (S ) if and only if both X + 1 and 1 + Y

belong to I (S ).

Thus I (S ) is an interval ideal. That it is full follows from the fact that an order Z does not

contain a cut from S if and only if all of its closed intervals do not contain such a cut.

That the corresponding scheme ∼ coincides with ∼S follows from the definition of I (S ).

□

Conversely, from a full interval ideal I we can recover a class of cuts S that determines I .

Proposition. Suppose I is a full interval ideal and let ∼ denote the corresponding condensation scheme.

Let S consist of all equivalence classes of cuts of the form [I + J ] where

i. I + J (viewed as a linear order) does not belong to I (i.e. consists of at least two ∼-classes),

ii. I + J (viewed as a cut) is not contained in any ∼-class.

Then I = I (S ).

Proof. Exercise. □


