SELF-EMBEDDINGS OF LINEAR ORDERS

GARRETT ERVIN

ABSTRACT. We study families of self-embeddings of linear orders, distinguish-
ing between families that contain a pair of embeddings whose images can be
enclosed in disjoint intervals, and those for which there is no such pair. For a
family F' of self-embeddings of a linear order X of the second type, we show
that if F' is closed under composition and a natural linking operation, then X
can be canonically decomposed into three intervals that are invariant under F',
the left of which is indecomposable to the right with respect to F'; and the right
of which is indecomposable to the left with respect to F'. As an application,
we obtain convex and piecewise convex versions of Jullien’s indecomposability
theorem.

1. INTRODUCTION

A linear order X is scattered if it does not contain a suborder isomorphic to the
rationals Q. For a countable linear order X, being non-scattered is equivalent to
containing X + X as a suborder. That is, a countable order X is non-scattered if
and only if there are self-embeddings f and g of X whose images are contained in
disjoint intervals. Contrapositively, a countable order X is scattered if and only if
for every pair of self-embeddings f and g, we have that f[X] N g[X] # (), where
f[X] and g[X] denote the smallest intervals containing the images f[X] and g[X]
respectively.

The goal of this paper is to study families of self-embeddings F' of a given linear
order X that satisfy this latter condition: for every pair f,g € F we have f[X]N

g[X] # 0. We call such families centered. Our main result is that if a centered
family F' is closed under composition and a natural linking operation defined below,
then X can be canonically decomposed into an initial segment L, middle segment
C, and final segment R that are invariant under the embeddings in F, and this
invariance witnesses that L is indecomposable to the right with respect to F', and
R is indecomposable to the left with respect to F. The precise statement is given
as Theorem 1 in the next section.

If F' is the family of all self-embeddings of a countable order X, then F'is centered
if and only if X is scattered. In this case, the decomposition given by Theorem 1
yields a proof of Jullien’s indecomposability theorem for countable scattered linear
orders. We also consider when F' is the collection of convex self-embeddings of X,
and when F is the collection of piecewise convex self-embeddings of X, obtaining
analogues of Jullien’s theorem in each case.

2. PROOF OF THE MAIN THEOREM

Given a linear order X and a subset A C X, the right closure of A is the set
A:{xeX:EIaGA(agx)}andtheleﬁclosur@iséz{xGX:EIaGA(aZ
x)}. The convex closure of Ais A = ANA= {r € X :3ap,a1 € A(ao <z <a1)}.
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A subset I C X is an interval if it is convex, that is, if I = I. It is an initial
segment if £ =1, and a final segment if l} = I. Complements of initial segments
are final segments, and vice versa. An interval is a middle segment if it is neither
an initial nor final segment. Singletons are intervals.

If I C X is an initial segment of X and J = X \ I is the corresponding final
segment, the pair (I, J) is called a cut in X. We think of a cut (I, J) as the place
between I and J. It is determined by specifying either I or J. If I does not have
a maximum and J does not have a minimum, the cut (I, J) is called a gap. The
leftmost cut of X is the cut (@, X), and the rightmost cut is (X,0). The leftmost
cut is a gap if X has no left endpoint, and the rightmost cut is a gap if X has no
right endpoint.

For an interval I C X, the left side of I is the cut determined by the final
segment A, and the right side of I is the cut determined by the initial segment é

Given orders X and Y, we write X + Y for the order obtained by placing a copy
of Y to the right of a copy of X.

For a fixed order X, the cuts of X are one-to-one with representations of X as
a sum of two orders, in the sense that if (I,J) is a cut in X then X = I + J, and
conversely if X = I + J for some orders I and J, then (I,J) is a cut in X.

It will sometimes be convenient to think of cuts as being intervals. If we do this,
then the intervals of X are one-to-one with the pairs (L, R), where L is an initial
segment of X and R is a final segment such that LN R = @. The interval associated
to (L, R) is the convex set ] = X \ LU R. When (L, R) is a cut, we think of the
associated “interval” as being the cut itself. This allows us to say that whenever
we have a nested sequence of intervals Ag 2 A1 D ... D A, D ..., the intersection
N, Ao is an interval. When such an intersection is non-empty, it is an interval in
the usual sense. When it is empty, it is the cut (I, J), where I is the union of the
initial segments I, = X\ A# and J is the union of the final segments J, = X'\ é

We will also treat cuts like intervals in our notation, and write expressions of the
form X = L+ C' 4 R to mean that C the is interval or cut in X determined by the
initial segment L and final segment R.

Given an interval I C X and another interval K, we say that K properly contains
I if, in the cases when [ is an initial or final segment of X, K strictly extends I
(to the right or left, respectively), and in the case when I is a middle segment, K
strictly extends I to both the right and left. If T is a cut, say I = (L, R), we say
that K properly extends I if, in the case when L = ), K is a nonempty initial
segment of X, in the case when R = (), K is a nonempty final segment of X, and
in the case when both L and R are nonempty, K intersects both L and R.

A self-embedding of X is an injective order-preserving map f : X — X. Suppose
F is a family of self-embeddings of X. Our goal is to study F' and X by examining
how the intervals f[X] spanned by the images of the embeddings f € F overlap.
We say that X is F-incompressible if for every f € F we have f[X] = X. If there
is an embedding f € F such that f[X] # X, but for every pair f,g € F we have
fIX]Ng[X] # 0, we say that X is F-centered. We will also say that F is centered
if X is F-centered. If there are embeddings f, g € F such that f[X]Ng[X] =0, we
say that X is F-separated, or that I’ separates X. If we drop the F' modifiers in
these terms, we assume that I is the set of all self-embeddings of X.

For example, any finite linear order n =0 < 1 < ... < n — 1 is incompressible.
Even more, n is rigid, that is, there are no self-embeddings f : n — n other than
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the identity. For an example of an incompressible order that is not rigid, consider
the order 1 + Z + 1 obtained by adding a left endpoint and right endpoint to the
order of the integers Z. The order w+ 1+ w™ is centered, where w denotes the order
of the natural numbers 0 < 1 < ... and w* denotes its reverse order ... < 1 < 0.
The order Q of the rationals is separated.

Our objective is to prove that when X is F-centered for a family F' of self-
embeddings satisfying a certain closure property, there is a canonical decomposi-
tion of X as a sum of three orders with certain indecomposability and invariance
properties with respect to F. This decomposition mirrors the decomposition of
w + 14 w* into the left w term, the central 1, and the right w* term.

An order X is F-indecomposable if whenever X = I + J, there is an embedding
f € F with either f[X] C I or f[X] C J. It is F-indecomposable to the right if
whenever X = [ + J and J # (), there is an embedding f € F of X into J. It
is F-strictly indecomposable to the right if moreover for any such decomposition,
there is no embedding f € F sending X into I. F-indecomposable to the left and
F-strictly indecomposable to the left are defined symmetrically. As before, when
the F' modifier is dropped from these terms, we assume that F' is the collection of
all self-embeddings of X.

The following theorem is due to Jullien.

Theorem. (Jullien’s indecomposability theorem) Suppose that X is an indecom-
posable scattered linear order. Then X is either strictly indecomposable to the left
or strictly indecomposable to the right.

After we have proved our decomposition theorem for orders X that are centered
by a family F', we will deduce a generalization of Jullien’s theorem as a corollary.

Fix an order X and suppose that f : X — X is a self-embedding of X such that
f[X] # X. Then at least one of the initial segment Ly = X \ f[_Xl and the final

segment Ry = X \ f[X] is nonempty. We think of f as a compression map.
Define Ly = f[X]\ f?[X]. Observe that L; is an initial segment of f[X] and

f[Lo]) € L. Tt is not hard to see that in fact f[Lg] = L. We continue iteratively,
defining L, = f"[X]\ f"*[X] for every n € N. Symmetrically, define R, =

XN\ fPTHX] for every m. If we consider the nested sequence of intervals X 2D
LNy

fIX] 2 f?[X] 2 ..., we have the decomposition f*[X] = L, + f*"*[X] + R,, for
every n. Letting Cy = (), f"[X], we have

Notice that L, is empty if and only if Ly is empty, and symmetrically for R,,.

Since we are assuming f[X] # X, at least one of the sums Ly + L; + ... and
...+ R1 + Ry is nonempty.
Let Ly = Lo+ Ly + ... and Ry = ...+ Ry + Ry so that X :Lf+Cf+Rf.

Let L'y = Ly \ Lo and let R} = Ry \ Ry. Since for every n we have f[L,] C Ly1
and f[R,] C Rny1, we get f[Ly] € L and f[Ry] C R}. In fact, it is not hard to
see that f[Ly] = L’ and f[Rf] = R;. Consequently we have f[Cy] C Cf, though
it need not always be true that f[C;] = C;. This gives us a more detailed view of

the trivial statement that a self-embedding f : X — X maps X into the interval
f[X], in the case when f[X] # X.
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Now suppose we are given two self-embeddings f and g of X such that for any
natural numbers n and k, we have that f?[X] N g*[X] # 0. Let A = f[X] and
B = g[X]. We claim there is an embedding h : X — X such that h[X] = AN B.
We have AN B # () by hypothesis. If either A C B or B C A there is nothing to
show. So without loss of generality, assume that A extends B to the right, and B
extends A to the left.

Consider the initial segment Ly and final segment R, of X. We claim that Ly
and R, are disjoint, so that L¢ lies completely to the left of R,. If not, then using
our analysis above it is not hard to see that we can find n and k such that f"[X]
lies completely to the right of g*[X], contradicting our hypothesis.

Let C}, be the segment of X between Ly and Ry, so that X = Ly + C) + R,.
Notice by our assumption on A and B that L}—l—Ch —&—R; = ANB. Defineh: X - X
by the rules h | Ly = f, h | Ry = g, and h | Cj, = id. Then since f[Ls] C L’f and
g[Ry] € R;, we have that h is a self-embedding of X. Certainly h[X] C AN B, and
it follows from our work above that actually h[X] = AN B, as desired. We call h
the linking of f and g. S

Suppose that F' is a centered family of self-embeddings of X that is closed under
composition. The centeredness of F then implies f"[X] N g¥[X] # 0 for all pairs
f,g9 € F and all natural numbers n and k. We say that F' is standard if moreover
F is closed under linking, in the sense that whenever A = f[X] extends B = g[X]
to the right and B extends A to the left for a pair f,g € F, the linking of f and ¢
belongs to F.

What are some examples of standard centered families? If f is any embedding
of a linear order such that f[X] # X, the family F' = {f™ : n € N} is centered and,
trivially, standard. At the other extreme, if the family F' of all self-embeddings of
X is centered, then F is standard.

Here are two more natural examples. Say that an embedding f : X — X is
convez if f[X] is an interval, that is, if f[X] = f[X]. Say that f is piecewise convex
if f[X] is a finite union of intervals. It is easy to see that the composition or linking
of two convex self-embeddings is convex, and the composition or linking of two
piecewise convex self-embeddings is piecewise convex. Thus if either family of such
embeddings is centered, it is also standard.

Given a family of self-embeddings F of X, let Zp(X) denote the set of intervals
I C X for which there is an embedding f € F with f[X] C I. It follows from the
above that if F' is a standard centered family and I, J € Zp(X), then INJ € ZTp(X).

Before we state and prove our decomposition theorem, we make an observation
about families of intervals of an order X that are closed under pairwise intersection.
Given an interval I C X, we write L; for the initial segment X \ A below I and
R =X\ [ for the final segment above I. If ' = (L,R) is a cut in X, we write
CCIlif Ly CLand R; CR.

Suppose 7 is a family of nonempty intervals of X such that I, J € Z=INJ € Z.
Let L = U;ez L1 and R = ;7 R;. Observe that L N R = (), since otherwise we
could find I,J € Z with I N J = {), contradicting our hypotheses. If X \ LU R
is nonempty, it is an interval, and is equal to (\Z. If X \ L U R is empty, then
C = (L, R) is a cut, and moreover it is the unique cut in X with the property that
C C I for every I € Z. We identify C' with ()Z in this case as well.

Here is our main theorem.
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Theorem 1. Suppose that X is a linear order and F' is a standard centered family
of self-embeddings of X. Then the intersection C = ((Zp(X) is an interval or a
cut in X, and for any interval I C X, we have I € Zp(X) if and only if I properly
contains C.

Moreover, writing X as X = L 4+ C' 4+ R, we have that the initial segment L
is F-indecomposable to the right, the final segment R is F-indecomposable to the
left, and at least one of L and R is nonempty.

Moreover, for every f € F, we have f[L] C L, f[R] C R, and f[C] C C.

Proof. Since F' is a standard centered family, Zp(X) is closed under intersection.
Thus C' = (Zp(X) is an interval or cut in X by our discussion above.

Since there are embeddings f € F for which f[X] # X, we have C # X. It may
be that C' is an initial, final, or middle segment of X.

We show that for an interval I C X, we have I € Zp(X) if and only if I properly
contains C. For concreteness, we work through the case when C'is a middle segment
of X. (If C = (L, R) is a cut, this means both L and R are nonempty.)

Suppose first that I € Zp(X). Then certainly C' C I, by definition of C'. Suppose
that I does not properly contain C'. Without loss of generality assume that the
left sides of I and C' coincide, say at the cut (L, R), where R = A = Q; Fix an
embedding f : X — I with f € F, which exists since I € Zp(X). Since C is a
middle segment of X, L is nonempty, so that @ is a nonempty initial segment of

f[X] € I. Thus the left side of f.[ﬂ falls strictly to the right of the left side of C,
—

so that C' € ﬂg But f2, which belongs to F since F is closed under composition,
embeds X into Jﬂ, so that ]ﬂ € Z(X) and thus C C JE, a contradiction. Thus

I properly contains C, as claimed.

Conversely, suppose I properly contains C. Then we can find Iy, I} € Zp(X)
such that the left side of Iy is strictly greater than the left side of I and the right
side of I; is strictly less than the right side of I. Since Iy N I; € Zp(X), and since
IpnI; C I, we have I € Zp(X), as claimed. Thus I € Zp(X) if and only if T
properly contains C'. The cases when C is an initial or final segment of X are
similar.

Now, if we write X = L+C+ R, it follows immediately from C' # X that at least
one of L, R is nonempty. It remains to prove that L is F-indecomposable to the
right, and R is F-indecomposable to the left. We show that L is F-indecomposable
to the right; the argument for R is similar. If L is empty, there is nothing to show.
So suppose that L # () and that L = A+ B is a partition of L into an initial segment
A and nonempty final segment B. Consider the interval I = §> in X. This interval
properly contains C and therefore there is an embedding f : X — I with f € F.
We claim f[L] C B. If not, then there is a point « € L such that f(z) € C UR.
Let J = @ This interval properly contains C' and hence there is an embedding

of g : X — J. But then fg is an embedding of X into M ={f(z) i By choice

of z, this interval does not properly contain C, a contradiction. Thus f[L] C B,
as claimed, so that f | L is an embedding of L into its final segment B. Since the
decomposition L = A + B was arbitrary, L is F-indecomposable to the right, as
claimed.

The argument given in the previous paragraph is easily adapted to show that for
every f € F, we have f[L] C L and f[R] C R, from which it follows f[C] C C. O
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We call the segment C' in the decomposition X = L + C + R given by Theorem
1 the F-center of X.

It is worth noting that when F' is the collection of all convex self-embeddings of
X, then if F' is centered the statements above can be significantly strengthened.
In this case, we have that f[X] N g[X] is outright isomorphic to X for every pair
of convex self-embeddings f and ¢g. And if X = L + C + R is the decomposition
yielded by Theorem 1, we have that not only f[L] C L, f[R] C R, and f[C] C C
for every f € F, but actually that f[L] is a final segment of L, f[R] is an initial
segment of R, and f[C] = C.

Whether or not a given order X is F'-centered depends strongly on the choice
of family F', and different centered families may determine different centers. Say
that X is convezly centered if X is F-centered for F' the family of all convex self-
embeddings of F'. Similarly define piecewise convezly centered. Since every convex
embedding is piecewise convex, and every piecewise convex embedding is an em-
bedding, it follows that X is convexly centered = X is piecewise convexly centered
= X is centered. But none of the arrows can be reversed, and it may be that the
convex center of a given X differs from its piecewise convex center, etc.

For example, let M denote the order (w + w*) + (w + w*) + .... Consider the
order X =w+ M+ Q+ M* 4+ w*. Then X is not centered, by virtue of its middle
copy of Q. It is both convexly centered and piecewise convexly centered, but its
convex center is M + Q + M™, whereas its piecewise convex center is the smaller
middle segment Q.

We conclude with a generalization of Jullien’s indecomposability theorem.

Corollary 2. Suppose that X is a linear order and F' is a standard centered
family of self-embeddings of X. Then if X is F-indecomposable, either X is F-
strictly indecomposable to the right or F-strictly indecomposable to the left.

Proof. Since X is F-indecomposable, if we decompose X as X = I + J with both
I and J nonempty, it must be that exactly one of the following holds: there is an
f € F with f[X] C I, or there is an f € F with f[X] C J. Otherwise we would
contradict the F-centeredness of X. Let X = L + C' + R be the decomposition of
X given by Theorem 1. If at least two of the terms L, C, R are nonempty, then by
Theorem 1 we would have that there is no embedding f € F' that embeds X in any
one of the segments L, C', and R. But then X = L+ C + R is a decomposition of X
into three segments, none of which F-embed X, contradicting F-indecomposability.
Thus exactly one of these terms is nonempty. It cannot be C', by Theorem 1. If it
is L, then X = L is F-indecomposable to the right, and if it is R, then X = R is
F-indecomposable to the left. The strictness of the indecomposability follows again
from the F'-centeredness of X. O

When F' is the family of all self-embeddings of a scattered order X, then since
scatteredness implies that X 4+ X does not embed in X, the corollary gives Jullien’s
original theorem.
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