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Abstract. We study families of self-embeddings of linear orders, distinguish-
ing between families that contain a pair of embeddings whose images can be

enclosed in disjoint intervals, and those for which there is no such pair. For a

family F of self-embeddings of a linear order X of the second type, we show
that if F is closed under composition and a natural linking operation, then X

can be canonically decomposed into three intervals that are invariant under F ,
the left of which is indecomposable to the right with respect to F , and the right

of which is indecomposable to the left with respect to F . As an application,

we obtain convex and piecewise convex versions of Jullien’s indecomposability
theorem.

1. Introduction

A linear order X is scattered if it does not contain a suborder isomorphic to the
rationals Q. For a countable linear order X, being non-scattered is equivalent to
containing X +X as a suborder. That is, a countable order X is non-scattered if
and only if there are self-embeddings f and g of X whose images are contained in
disjoint intervals. Contrapositively, a countable order X is scattered if and only if
for every pair of self-embeddings f and g, we have that f [X] ∩ g[X] ̸= ∅, where
f [X] and g[X] denote the smallest intervals containing the images f [X] and g[X]
respectively.

The goal of this paper is to study families of self-embeddings F of a given linear
order X that satisfy this latter condition: for every pair f, g ∈ F we have f [X] ∩
g[X] ̸= ∅. We call such families centered. Our main result is that if a centered
family F is closed under composition and a natural linking operation defined below,
then X can be canonically decomposed into an initial segment L, middle segment
C, and final segment R that are invariant under the embeddings in F , and this
invariance witnesses that L is indecomposable to the right with respect to F , and
R is indecomposable to the left with respect to F . The precise statement is given
as Theorem 1 in the next section.

If F is the family of all self-embeddings of a countable orderX, then F is centered
if and only if X is scattered. In this case, the decomposition given by Theorem 1
yields a proof of Jullien’s indecomposability theorem for countable scattered linear
orders. We also consider when F is the collection of convex self-embeddings of X,
and when F is the collection of piecewise convex self-embeddings of X, obtaining
analogues of Jullien’s theorem in each case.

2. Proof of the main theorem

Given a linear order X and a subset A ⊆ X, the right closure of A is the set
A−→ = {x ∈ X : ∃a ∈ A (a ≤ x)} and the left closure is A←− = {x ∈ X : ∃a ∈ A (a ≥
x)}. The convex closure of A is A = A−→∩ A←− = {x ∈ X : ∃a0, a1 ∈ A (a0 ≤ x ≤ a1)}.
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A subset I ⊆ X is an interval if it is convex, that is, if I = I. It is an initial
segment if I←− = I, and a final segment if I−→ = I. Complements of initial segments

are final segments, and vice versa. An interval is a middle segment if it is neither
an initial nor final segment. Singletons are intervals.

If I ⊆ X is an initial segment of X and J = X \ I is the corresponding final
segment, the pair (I, J) is called a cut in X. We think of a cut (I, J) as the place
between I and J . It is determined by specifying either I or J . If I does not have
a maximum and J does not have a minimum, the cut (I, J) is called a gap. The
leftmost cut of X is the cut (∅, X), and the rightmost cut is (X, ∅). The leftmost
cut is a gap if X has no left endpoint, and the rightmost cut is a gap if X has no
right endpoint.

For an interval I ⊆ X, the left side of I is the cut determined by the final
segment I−→, and the right side of I is the cut determined by the initial segment I←−.

Given orders X and Y , we write X+Y for the order obtained by placing a copy
of Y to the right of a copy of X.

For a fixed order X, the cuts of X are one-to-one with representations of X as
a sum of two orders, in the sense that if (I, J) is a cut in X then X ∼= I + J , and
conversely if X ∼= I + J for some orders I and J , then (I, J) is a cut in X.

It will sometimes be convenient to think of cuts as being intervals. If we do this,
then the intervals of X are one-to-one with the pairs (L,R), where L is an initial
segment of X and R is a final segment such that L∩R = ∅. The interval associated
to (L,R) is the convex set I = X \ L ∪ R. When (L,R) is a cut, we think of the
associated “interval” as being the cut itself. This allows us to say that whenever
we have a nested sequence of intervals A0 ⊇ A1 ⊇ . . . ⊇ Aα ⊇ . . ., the intersection⋂

α Aα is an interval. When such an intersection is non-empty, it is an interval in
the usual sense. When it is empty, it is the cut (I, J), where I is the union of the
initial segments Iα = X \Aα−→ and J is the union of the final segments Jα = X \Aα←−.

We will also treat cuts like intervals in our notation, and write expressions of the
form X = L+C +R to mean that C the is interval or cut in X determined by the
initial segment L and final segment R.

Given an interval I ⊆ X and another interval K, we say that K properly contains
I if, in the cases when I is an initial or final segment of X, K strictly extends I
(to the right or left, respectively), and in the case when I is a middle segment, K
strictly extends I to both the right and left. If I is a cut, say I = (L,R), we say
that K properly extends I if, in the case when L = ∅, K is a nonempty initial
segment of X, in the case when R = ∅, K is a nonempty final segment of X, and
in the case when both L and R are nonempty, K intersects both L and R.

A self-embedding of X is an injective order-preserving map f : X → X. Suppose
F is a family of self-embeddings of X. Our goal is to study F and X by examining
how the intervals f [X] spanned by the images of the embeddings f ∈ F overlap.

We say that X is F -incompressible if for every f ∈ F we have f [X] = X. If there

is an embedding f ∈ F such that f [X] ̸= X, but for every pair f, g ∈ F we have

f [X] ∩ g[X] ̸= ∅, we say that X is F -centered. We will also say that F is centered

if X is F -centered. If there are embeddings f, g ∈ F such that f [X]∩ g[X] = ∅, we
say that X is F -separated, or that F separates X. If we drop the F modifiers in
these terms, we assume that F is the set of all self-embeddings of X.

For example, any finite linear order n = 0 < 1 < . . . < n − 1 is incompressible.
Even more, n is rigid, that is, there are no self-embeddings f : n → n other than
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the identity. For an example of an incompressible order that is not rigid, consider
the order 1 + Z + 1 obtained by adding a left endpoint and right endpoint to the
order of the integers Z. The order ω+1+ω∗ is centered, where ω denotes the order
of the natural numbers 0 < 1 < . . . and ω∗ denotes its reverse order . . . < 1 < 0.
The order Q of the rationals is separated.

Our objective is to prove that when X is F -centered for a family F of self-
embeddings satisfying a certain closure property, there is a canonical decomposi-
tion of X as a sum of three orders with certain indecomposability and invariance
properties with respect to F . This decomposition mirrors the decomposition of
ω + 1 + ω∗ into the left ω term, the central 1, and the right ω∗ term.

An order X is F -indecomposable if whenever X ∼= I + J , there is an embedding
f ∈ F with either f [X] ⊆ I or f [X] ⊆ J . It is F -indecomposable to the right if
whenever X ∼= I + J and J ̸= ∅, there is an embedding f ∈ F of X into J . It
is F -strictly indecomposable to the right if moreover for any such decomposition,
there is no embedding f ∈ F sending X into I. F -indecomposable to the left and
F -strictly indecomposable to the left are defined symmetrically. As before, when
the F modifier is dropped from these terms, we assume that F is the collection of
all self-embeddings of X.

The following theorem is due to Jullien.

Theorem. (Jullien’s indecomposability theorem) Suppose that X is an indecom-
posable scattered linear order. Then X is either strictly indecomposable to the left
or strictly indecomposable to the right.

After we have proved our decomposition theorem for orders X that are centered
by a family F , we will deduce a generalization of Jullien’s theorem as a corollary.

Fix an order X and suppose that f : X → X is a self-embedding of X such that
f [X] ̸= X. Then at least one of the initial segment L0 = X \ f [X]

−−→
and the final

segment R0 = X \ f [X]
←−−

is nonempty. We think of f as a compression map.

Define L1 = f [X] \ f2[X]
−−−→

. Observe that L1 is an initial segment of f [X] and

f [L0] ⊆ L1. It is not hard to see that in fact f [L0] = L1. We continue iteratively,

defining Ln = fn[X] \ fn+1[X]
−−−−−→

for every n ∈ N. Symmetrically, define Rn =

fn[X] \ fn+1[X]
←−−−−−

for every n. If we consider the nested sequence of intervals X ⊇
f [X] ⊇ f2[X] ⊇ . . ., we have the decomposition fn[X] = Ln + fn+1[X] + Rn for

every n. Letting Cf =
⋂

n f
n[X], we have

X = L0 + L1 + . . .+ Cf + . . .+R1 +R0.

Notice that Ln is empty if and only if L0 is empty, and symmetrically for Rn.
Since we are assuming f [X] ̸= X, at least one of the sums L0 + L1 + . . . and
. . .+R1 +R0 is nonempty.

Let Lf = L0 + L1 + . . . and Rf = . . . + R1 + R0 so that X = Lf + Cf + Rf .
Let L′

f = Lf \ L0 and let R′
f = Rf \ R0. Since for every n we have f [Ln] ⊆ Ln+1

and f [Rn] ⊆ Rn+1, we get f [Lf ] ⊆ L′
f and f [Rf ] ⊆ R′

f . In fact, it is not hard to

see that f [Lf ] = L′
f and f [Rf ] = R′

f . Consequently we have f [Cf ] ⊆ Cf , though

it need not always be true that f [Cf ] = Cf . This gives us a more detailed view of

the trivial statement that a self-embedding f : X → X maps X into the interval
f [X], in the case when f [X] ̸= X.
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Now suppose we are given two self-embeddings f and g of X such that for any
natural numbers n and k, we have that fn[X] ∩ gk[X] ̸= ∅. Let A = f [X] and

B = g[X]. We claim there is an embedding h : X → X such that h[X] = A ∩ B.

We have A ∩ B ̸= ∅ by hypothesis. If either A ⊆ B or B ⊆ A there is nothing to
show. So without loss of generality, assume that A extends B to the right, and B
extends A to the left.

Consider the initial segment Lf and final segment Rg of X. We claim that Lf

and Rg are disjoint, so that Lf lies completely to the left of Rg. If not, then using
our analysis above it is not hard to see that we can find n and k such that fn[X]
lies completely to the right of gk[X], contradicting our hypothesis.

Let Ch be the segment of X between Lf and Rg, so that X = Lf + Ch + Rg.
Notice by our assumption on A and B that L′

f+Ch+R′
g = A∩B. Define h : X → X

by the rules h ↾ Lf = f , h ↾ Rg = g, and h ↾ Ch = id. Then since f [Lf ] ⊆ L′
f and

g[Rg] ⊆ R′
g we have that h is a self-embedding of X. Certainly h[X] ⊆ A ∩B, and

it follows from our work above that actually h[X] = A ∩ B, as desired. We call h
the linking of f and g.

Suppose that F is a centered family of self-embeddings of X that is closed under
composition. The centeredness of F then implies fn[X] ∩ gk[X] ̸= ∅ for all pairs
f, g ∈ F and all natural numbers n and k. We say that F is standard if moreover
F is closed under linking, in the sense that whenever A = f [X] extends B = g[X]
to the right and B extends A to the left for a pair f, g ∈ F , the linking of f and g
belongs to F .

What are some examples of standard centered families? If f is any embedding
of a linear order such that f [X] ̸= X, the family F = {fn : n ∈ N} is centered and,
trivially, standard. At the other extreme, if the family F of all self-embeddings of
X is centered, then F is standard.

Here are two more natural examples. Say that an embedding f : X → X is
convex if f [X] is an interval, that is, if f [X] = f [X]. Say that f is piecewise convex

if f [X] is a finite union of intervals. It is easy to see that the composition or linking
of two convex self-embeddings is convex, and the composition or linking of two
piecewise convex self-embeddings is piecewise convex. Thus if either family of such
embeddings is centered, it is also standard.

Given a family of self-embeddings F of X, let IF (X) denote the set of intervals
I ⊆ X for which there is an embedding f ∈ F with f [X] ⊆ I. It follows from the
above that if F is a standard centered family and I, J ∈ IF (X), then I∩J ∈ IF (X).

Before we state and prove our decomposition theorem, we make an observation
about families of intervals of an order X that are closed under pairwise intersection.
Given an interval I ⊆ X, we write LI for the initial segment X \ I−→ below I and

RI = X \ I←− for the final segment above I. If C = (L,R) is a cut in X, we write

C ⊆ I if LI ⊆ L and RI ⊆ R.
Suppose I is a family of nonempty intervals of X such that I, J ∈ I ⇒ I∩J ∈ I.

Let L =
⋃

I∈I LI and R =
⋃

I∈I RI . Observe that L ∩ R = ∅, since otherwise we
could find I, J ∈ I with I ∩ J = ∅, contradicting our hypotheses. If X \ L ∪ R
is nonempty, it is an interval, and is equal to

⋂
I. If X \ L ∪ R is empty, then

C = (L,R) is a cut, and moreover it is the unique cut in X with the property that
C ⊆ I for every I ∈ I. We identify C with

⋂
I in this case as well.

Here is our main theorem.



5

Theorem 1. Suppose that X is a linear order and F is a standard centered family
of self-embeddings of X. Then the intersection C =

⋂
IF (X) is an interval or a

cut in X, and for any interval I ⊆ X, we have I ∈ IF (X) if and only if I properly
contains C.

Moreover, writing X as X = L + C + R, we have that the initial segment L
is F -indecomposable to the right, the final segment R is F -indecomposable to the
left, and at least one of L and R is nonempty.

Moreover, for every f ∈ F , we have f [L] ⊆ L, f [R] ⊆ R, and f [C] ⊆ C.

Proof. Since F is a standard centered family, IF (X) is closed under intersection.
Thus C =

⋂
IF (X) is an interval or cut in X by our discussion above.

Since there are embeddings f ∈ F for which f [X] ̸= X, we have C ̸= X. It may
be that C is an initial, final, or middle segment of X.

We show that for an interval I ⊆ X, we have I ∈ IF (X) if and only if I properly
contains C. For concreteness, we work through the case when C is a middle segment
of X. (If C = (L,R) is a cut, this means both L and R are nonempty.)

Suppose first that I ∈ IF (X). Then certainly C ⊆ I, by definition of C. Suppose
that I does not properly contain C. Without loss of generality assume that the
left sides of I and C coincide, say at the cut (L,R), where R = I−→ = C−→. Fix an

embedding f : X → I with f ∈ F , which exists since I ∈ IF (X). Since C is a
middle segment of X, L is nonempty, so that f [L]

−−→
is a nonempty initial segment of

f [X]
−−→

⊆ I. Thus the left side of f [I]
−−→

falls strictly to the right of the left side of C,

so that C ̸⊆ f [I]
−−→

. But f2, which belongs to F since F is closed under composition,

embeds X into f [I]
−−→

, so that f [I]
−−→
∈ I(X) and thus C ⊆ f [I]

−−→
, a contradiction. Thus

I properly contains C, as claimed.
Conversely, suppose I properly contains C. Then we can find I0, I1 ∈ IF (X)

such that the left side of I0 is strictly greater than the left side of I and the right
side of I1 is strictly less than the right side of I. Since I0 ∩ I1 ∈ IF (X), and since
I0 ∩ I1 ⊆ I, we have I ∈ IF (X), as claimed. Thus I ∈ IF (X) if and only if I
properly contains C. The cases when C is an initial or final segment of X are
similar.

Now, if we write X = L+C+R, it follows immediately from C ̸= X that at least
one of L,R is nonempty. It remains to prove that L is F -indecomposable to the
right, and R is F -indecomposable to the left. We show that L is F -indecomposable
to the right; the argument for R is similar. If L is empty, there is nothing to show.
So suppose that L ̸= ∅ and that L = A+B is a partition of L into an initial segment
A and nonempty final segment B. Consider the interval I = B−→ in X. This interval

properly contains C and therefore there is an embedding f : X → I with f ∈ F .
We claim f [L] ⊆ B. If not, then there is a point x ∈ L such that f(x) ∈ C ∪ R.
Let J = {x}

−−→
. This interval properly contains C and hence there is an embedding

of g : X → J . But then fg is an embedding of X into f [J ]
−−→

= {f(x)}
−−−−→

. By choice

of x, this interval does not properly contain C, a contradiction. Thus f [L] ⊆ B,
as claimed, so that f ↾ L is an embedding of L into its final segment B. Since the
decomposition L = A + B was arbitrary, L is F -indecomposable to the right, as
claimed.

The argument given in the previous paragraph is easily adapted to show that for
every f ∈ F , we have f [L] ⊆ L and f [R] ⊆ R, from which it follows f [C] ⊆ C. □
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We call the segment C in the decomposition X = L+C +R given by Theorem
1 the F -center of X.

It is worth noting that when F is the collection of all convex self-embeddings of
X, then if F is centered the statements above can be significantly strengthened.
In this case, we have that f [X] ∩ g[X] is outright isomorphic to X for every pair
of convex self-embeddings f and g. And if X = L + C + R is the decomposition
yielded by Theorem 1, we have that not only f [L] ⊆ L, f [R] ⊆ R, and f [C] ⊆ C
for every f ∈ F , but actually that f [L] is a final segment of L, f [R] is an initial
segment of R, and f [C] = C.

Whether or not a given order X is F -centered depends strongly on the choice
of family F , and different centered families may determine different centers. Say
that X is convexly centered if X is F -centered for F the family of all convex self-
embeddings of F . Similarly define piecewise convexly centered. Since every convex
embedding is piecewise convex, and every piecewise convex embedding is an em-
bedding, it follows that X is convexly centered⇒ X is piecewise convexly centered
⇒ X is centered. But none of the arrows can be reversed, and it may be that the
convex center of a given X differs from its piecewise convex center, etc.

For example, let M denote the order (ω + ω∗) + (ω + ω∗) + . . .. Consider the
order X = ω +M +Q+M∗ + ω∗. Then X is not centered, by virtue of its middle
copy of Q. It is both convexly centered and piecewise convexly centered, but its
convex center is M + Q + M∗, whereas its piecewise convex center is the smaller
middle segment Q.

We conclude with a generalization of Jullien’s indecomposability theorem.

Corollary 2. Suppose that X is a linear order and F is a standard centered
family of self-embeddings of X. Then if X is F -indecomposable, either X is F -
strictly indecomposable to the right or F -strictly indecomposable to the left.

Proof. Since X is F -indecomposable, if we decompose X as X = I + J with both
I and J nonempty, it must be that exactly one of the following holds: there is an
f ∈ F with f [X] ⊆ I, or there is an f ∈ F with f [X] ⊆ J . Otherwise we would
contradict the F -centeredness of X. Let X = L + C + R be the decomposition of
X given by Theorem 1. If at least two of the terms L,C,R are nonempty, then by
Theorem 1 we would have that there is no embedding f ∈ F that embeds X in any
one of the segments L, C, and R. But then X = L+C+R is a decomposition of X
into three segments, none of which F -embed X, contradicting F -indecomposability.
Thus exactly one of these terms is nonempty. It cannot be C, by Theorem 1. If it
is L, then X = L is F -indecomposable to the right, and if it is R, then X = R is
F -indecomposable to the left. The strictness of the indecomposability follows again
from the F -centeredness of X. □

When F is the family of all self-embeddings of a scattered order X, then since
scatteredness implies that X+X does not embed in X, the corollary gives Jullien’s
original theorem.

* * *

Garrett Ervin, Department of Mathematics, California Institute of Technology,
1200 E California Blvd, Pasadena, CA 91125; gervin@caltech.edu.


