
LEFT ABSORPTION IN PRODUCTS OF COUNTABLE ORDERS

GARRETT ERVIN AND ETHAN GU

Abstract. We classify the countable linear orders X for which there is an
order A with at least two points such that the lexicographic product AX

is isomorphic to X. Given such an X, we determine every corresponding

order A, and identify when X is isomorphic to its square. More generally,
we characterize the countable orders that embed at least two disjoint convex

copies of themselves.

1. Introduction

A linear order X is left-absorbing if there is a linear order A containing at least
two points such that the lexicographically ordered cartesian product AX is order-
isomorphic to X. Left absorption can be thought of as a self-similarity property:
if AX ∼= X, then X can be partitioned into A-many intervals each of which is
isomorphic to the entire order. Our goal in this paper is to classify the count-
able left-absorbing linear orders X, and moreover determine for each such X the
complete list of orders A that X absorbs.

A linear order X is right-cancelling if for every pair of orders K and L such that
KX ∼= LX we have K ∼= L. Left-absorbing orders X are not right-cancelling, since
for some A ̸∼= 1 we have AX ∼= X ∼= 1X, where 1 denotes the order with a single
point. It turns out that being absorbing on the left is the only barrier to being
cancellable on the right for linear orders: in [19], Morel proved that if X is non-
right-cancelling, then X is left-absorbing.1 Thus our classification of the countable
left-absorbing orders may be viewed as a classification of the countable orders X
that cannot in general be cancelled in isomorphisms of the form KX ∼= LX.

Given a linear order X, an interval I ⊆ X is a convex copy of X if I is isomorphic
to X. An order is left-absorbing if and only if it can be covered by a collection
of disjoint convex copies of itself. We will consider more generally linear orders
that simply contain disjoint convex copies of themselves. Say that an order X
is self-similar if it contains two convex copies of itself I and J with I ∩ J = ∅.
Our approach to characterizing the countable left-absorbing orders will be to first
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characterize the countable self-similar orders, and then determine which of these
orders are actually absorbing.

Here is the characterization. Identify each natural number n ∈ N with the set of
its predecessors {0, 1, . . . , n−1}. Let N denote either a fixed natural number n ≥ 1,
or N. Fix a partition of the rationals Q =

⋃
k∈N Qk into subsets Qk, each of which

is dense in Q. For each k ∈ N , fix a countable linear order Ik. Let Q[Ik] denote the
order obtained by replacing each point q ∈ Q by an order from {Ik}k∈N , so that q
is replaced by Ik if q ∈ Qk. Following Läuchli and Leonard [12], we call Q[Ik] the
shuffle of the orders Ik. An interval I ⊆ Q[Ik] is negligible if I is a subinterval of
one of the Ik, otherwise I is non-negligible.

Theorem. Suppose that X is a countable linear order. Then X is self-similar if
and only if there is a shuffle Q[Ik] and a non-negligible interval I ⊆ Q[Ik] such that
X is isomorphic to I.

This appears as Theorem 4.1.1 below. After proving it, we will show that whether
a countable self-similar order X is left-absorbing depends on the location in Q[Ik]
of the cuts made by the left and righthand sides of the interval I. In the cases when
X is left-absorbing, it is where these cuts fall that moreover determines the orders
A that are absorbed by X. We give the precise statement below in Theorem 4.3.6.
Typically there are many such A. In particular, we will show that X absorbs every
countable order if and only if X is isomorphic to a shuffle Q[Ik].

We were originally motivated by the problem of characterizing the countable
orders X that are isomorphic to their lexicographic squares X2. When X has
no endpoints, or only a single endpoint, such orders are characterized in [5, pg.
255]. The case when X has two endpoints turns out to be harder, and inspired the
investigation of self-similar orders that led to our more general characterization.
After we prove it, we will use it to characterize the countable orders with both
endpoints that are isomorphic to their squares.

Morel’s characterization of the left-absorbing linear orders as precisely the non-
right-cancelling linear orders is Theorem 3.10 from [19]. In light of Morel’s theorem,
our classification results may be viewed as part of the larger study of cancellation
and non-cancellation phenomena in products of structures.

Two types of structural products for which cancellation laws have been stud-
ied are the so-called ordinal product (also known as the lexicographic product) and
direct product (also known as the cardinal product or categorical product). These
generalize the familiar ordinal and cardinal products from set theory. A systematic
study of the arithmetic of these products was initiated by Birkhoff [2]; see also
Jónsson [11]. The lexicographic product of linear orders is an instance of the or-
dinal product. Left and right cancellation for ordinal products of structures with
a reflexive binary relation was studied by Chang and Morel in [4]. In that paper,
general left and right cancellation laws are established for such structures when the
structure being cancelled is finite.

For both finite and infinite linear orders, sufficient conditions for an order X
to be cancellable on the left in an isomorphism XA ∼= XB are given by Ginsburg
[6]. (Ginsburg, like Morel, ordered products anti-lexicographically, so that left
cancellation in our convention means right cancellation in that paper.) There is,
however, no known characterization of the left-cancelling linear orders analogous to
Morel’s theorem.
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Cancellation for direct products of structures has also been widely studied. For
example, in several papers including [9] and [10], Hirshon studied cancellation in
direct products of groups. In [7], Hammack completely classified the finite graphs
that can be cancelled in a direct product of finite graphs, extending in the case of
graphs a very general result of Lovász [15] giving sufficient conditions for cancel-
lation in direct products of finite structures. There is a long line of cancellation
results for direct products of partial orders obtained via refinement properties, be-
ginning with Hashimoto [8], continuing with Chang, Jónsson, and Tarski [3], and
culminating in McKenzie [17]. See also Jónnson’s survey [11].

In most of the examples above, cancellation laws for products of structures are
obtained only under the assumption that the structures in question, or at least
the structures being cancelled, are finite or obey a finiteness condition (such as
finite factorability in the case of partial orders). To the best knowledge of the
authors, the present paper contains the first non-trivial classification of countable
non-right-cancelling structures over an ordinal product.

The paper is organized as follows. Section 2 covers the necessary background on
linear orders. In Section 3, we give a number of representative examples of countable
self-similar and left-absorbing orders, and prove that every non-negligible interval
in a shuffle is self-similar. In Section 4, we prove our main results classifying the
countable self-similar and left-absorbing linear orders. In Section 5, we discuss
possible extensions of our work and give some open problems.

Apart from the final section of the paper, we restrict our attention to countable
orders. Though our approach can be used to get information about self-similar
orders in general, that we are able to characterize such orders when they are count-
able relies on the fact that there is a unique (up to endpoints) countable dense
order type, that of the rationals Q. The order types of uncountable dense linear
orders are very diverse, and partly as a result it seems that any classification of the
uncountable self-similar orders, even of a given cardinality, would be significantly
more complicated.

Acknowledgments. We thank the referees for their valuable comments, which
substantially improved the paper.

2. Preliminaries

2.1. General background on linear orders. All linear orders we consider are
ordered strictly. We will refer to a linear order (X,<) by its underlying set X.
The cardinality of a linear order is the cardinality of its underlying set. Countable
means finite or countably infinite. Unless stated otherwise, we assume the linear
orders we deal with are non-empty.

Order always means linear order, and isomorphic always means order-isomorphic.
We write X ∼= Y to mean X is isomorphic to Y . We will not distinguish notation-
ally between the order relations <X and <Y of different orders X and Y , but use
< for all order relations.

An order type is an isomorphism class of linear orders. Two orders have the
same type if and only if they are isomorphic. We occasionally conflate an order
with its order type.

If X is a linear order, then X∗ denotes the reverse order. That is, X and X∗

share the same underlying set of points, but we have x < y in X∗ if and only if
x > y in X.
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Given an order X, a subset I ⊆ X is an interval or convex subset if whenever
x < z < y and x, y ∈ I then z ∈ I. Given x, y ∈ X with x ≤ y, we use (x, y) to
denote the interval {z ∈ X : x < z < y}. Likewise [x, y), (x, y], and [x, y] have their
usual meanings. It need not be true that every interval I ⊆ X can be written in
one of these four forms; this holds if and only if every non-empty subset of X has
both a greatest lower bound and least upper bound. Singletons {x} = [x, x] are
considered intervals. Given an arbitrary pair of points x, y ∈ X, we define [{x, y}]
to be [x, y] if x ≤ y, or [y, x] if y < x.

An interval I ⊆ X is open if it contains neither a left nor right endpoint, half-open
if it has an endpoint on one side but not the other, and closed if it has endpoints
on both sides. Intervals of the form (x, y) need not be open, but intervals of the
form [x, y] are always closed.

If I, J ⊆ X are intervals, we write I < J if I lies entirely to the left of J . That
is, I < J if for every x ∈ I and y ∈ J we have x < y.

An interval I ⊆ X is an initial segment of X if whenever x ∈ I and y < x
then y ∈ I. A final segment is an interval J ⊆ X whose complement is an initial
segment. If I is an initial segment and J = X \I is the corresponding final segment,
the pair (I, J) is called a cut. We think of a cut (I, J) as the place between the
segments I and J . Note that to specify a cut, it is enough to specify one of I or J .

If I ⊆ X is any interval, the left end of I is the cut (I<, I≥), where I< denotes
the initial segment {x ∈ X : ∀y ∈ I(x < y)}. Symmetrically, the right end if I is
the cut (I≤, I>), where I> denotes the final segment of X consisting of points lying
strictly above every point in I.

An order X is dense if for any two distinct points of X there is a third point
lying strictly between them, and moreover X contains at least two points. Given a
pair of points x, y ∈ X, if x < y and there is no z such that x < z < y, we say that
y is the successor of x and x is the predecessor of y. Thus X is dense if and only if
it has at least two points and none of its points has a successor. A subset Y ⊆ X is
dense in X if for any two points of X, either both belong to Y or there is a point
strictly between them that belongs to Y . It is possible for a suborder Y ⊆ X to be
dense as a linear order, but not dense in X. But if X is dense as a linear order and
Y is dense in X, then Y must be dense as a linear order.

A point x ∈ X is a left-hand limit point if x does not have a predecessor and a
right-hand limit point if x does not have a successor. If x is either a left-hand or
right-hand limit point, we say simply that x is a limit point.

We write Q for the set of rationals equipped with its usual order. Likewise we
write N and Z for the sets of natural numbers and integers equipped with their
usual orders. N includes 0. We identify each natural number n ∈ N with the set of
its predecessors in their usual order 0 < 1 < . . . < n− 1.

2.2. Cantor’s characterization of the countable dense linear orders and
Skolem’s generalization. The order types of countable dense linear orders were
characterized by Cantor, who showed that if X is a countable dense linear order
with neither a left nor right endpoint, then X is isomorphic to Q. It follows that,
up to isomorphism, there are exactly four countable dense orders, which we denote
Q, 1 + Q, Q + 1, and 1 + Q + 1. The latter three are, respectively, the rationals
appended with a lefthand endpoint, with a righthand endpoint, and with both
endpoints. Concretely, these orders are isomorphic to Q ∩ [0, 1), Q ∩ (0, 1] and
Q ∩ [0, 1].
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We will need a generalization of Cantor’s theorem, due to Skolem. Suppose
X and Y are countable dense linear orders without endpoints (so that both are
isomorphic to Q). Let N denote either a fixed natural number n, or N. Fix
partitions X =

⋃
k∈N Xk and Y =

⋃
k∈N Yk such that each subset Xk is dense in X

and each Yk is dense in Y . Skolem proved that there is an isomorphism f : X → Y
such that f [Xk] = Yk for all k ∈ N . Informally, this says that if we color two copies
of the rationals X and Y with N -many colors, so that every color appears densely
often in each, then there is an isomorphism f from X to Y that takes each x ∈ X to
some y ∈ Y of the same color. Both Cantor’s theorem and Skolem’s generalization
are proved by essentially the same well-known back-and-forth argument.

2.3. Sums, products, replacements, condensations. Given a linear order X,
and for each x ∈ X an order Ix, we write X(Ix) to denote the replacement of X
by the orders Ix. This is the order obtained by replacing each point x ∈ X by the
corresponding order Ix. Formally, X(Ix) is the set of pairs {(x, i) : x ∈ X, i ∈ Ix}
ordered lexicographically by the rule (x, i) < (y, j) if either x < y (in X), or x = y
and i < j (in Ix = Iy). If there is an order Y such that for every x ∈ X we have
Ix = Y , then we call the replacement X(Ix) the lexicographic product of X and Y ,
and denote it XY .

A replacement X(Ix) is sometimes called an ordered sum and denoted
∑

x∈X Ix.
We will usually use the replacement notation, but specifically for replacements of 2,
N, N∗, and Z we will sometimes use summation notation. More explicitly, given two
orders X and Y , we write X + Y for the order, unique up to isomorphism, with an
initial segment isomorphic to X whose corresponding final segment is isomorphic to
Y . Formally we view X + Y as the replacement of 2 = {0, 1} by the orders I0 = X
and I1 = Y . Given a collection of orders {Xi}i∈Z, we write . . .+X−1 +X0 +X1 +
X2 + . . . for the replacement Z(Xi). We use the expressions X0 + X1 + . . . and
. . .+X1 +X0 for the replacements N(Xi) and N∗(Xi), respectively.

The sum and product are both associative, in that (X + Y ) +Z ∼= X + (Y +Z)
and (XY )Z ∼= X(Y Z) for all orders X,Y, Z. We freely drop parentheses in such
expressions. Neither operation is commutative in general. Products on the right
distribute over sums. That is, we have (X+Y )Z ∼= XZ+Y Z for all X,Y, Z. More
generally, we have the right distributive law X(Ix)Y ∼= X(IxY ) for any replacement
X(Ix) and order Y multiplied on the right. Expressed in summation notation, this
is (

∑
x∈X Ix)Y ∼=

∑
x∈X IxY . On the other hand, products on the left do not

distribute over sums or replacements in general.
Given a linear order X, an equivalence relation ∼ on X is called a condensation if

all of its equivalence classes are intervals. We write X/ ∼ for the set of equivalence
classes of a condensation ∼, and write c(x) for the ∼-class of a given x ∈ X. The
map c : X → X/ ∼ is called the condensation map. Since the members of X/ ∼ are
disjoint intervals of X, they are naturally linearly ordered by the rule c(x) < c(y)
if c(x) ̸= c(y) and x < y in X. We call this the induced order on X/ ∼. Observe
that the condensation map defines an order-homomorphism from X to X/ ∼ under
the induced order. That is, if x < y in X then c(x) ≤ c(y) in X/ ∼. Conversely,
given a linear order L and a surjective homomorphism c : X → L, the relation ∼,
defined by x ∼ y if c(x) = c(y), is a condensation of X, and X/ ∼ is isomorphic to
L. For this reason, we will also sometimes refer to surjective homomorphisms c as
condensation maps.
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The notion of a condensation is inverse to that of a replacement. If L(Il) is
a replacement of an order L, then the relation ∼ on L, defined by x ∼ y if x, y
belong to the same replacing order Il, is a condensation of L(Il) whose equivalence
classes are exactly the Il. Clearly we have that L(Il)/ ∼ is isomorphic to L. And if
L = X/ ∼ is the quotient of an order X by a condensation ∼, then X is isomorphic
to the natural replacement of L by the orders c(x).

2.4. Shuffles. A special kind of replacement of Q called a shuffle will play a central
role in our classification of the left-absorbing orders. These are the replacements
of Q in which every replacing order appears densely often. More precisely, let N
denote a fixed natural number n ≥ 1, or N. Partition the rationals as Q =

⋃
k∈N Qk

so that each subset Qk is dense in Q. For each k ∈ N , fix a linear order Ik. For
each q ∈ Q, let Iq = Ik if q ∈ Qk. We denote the replacement Q(Iq) by Q[{Ik}k∈N ],
and call it the shuffle of the orders Ik.

Strictly speaking, a shuffle Q[{Ik}k∈N ] depends on the background partition⋃
k∈N Qk of Q. When we wish indicate this partition, we will denote the shuffle

by Q[{Ik : Qk}k∈N ], or say that Q[{Ik}k∈N ] is formed relative to the partition
Q =

⋃
k∈N Qk. However, for a fixed N ∈ {1, 2, . . . ,N}, up to isomorphism there

is only one way to shuffle a given set of orders {Ik}k∈N , which justifies calling
Q[{Ik}k∈N ] the shuffle of the Ik. For if Q =

⋃
k∈N Rk is another partition of the

rationals into N -many sets Rk, each dense in Q, then by Skolem’s theorem there
is an isomorphism f : Q → Q that such that f [Qk] = Rk for all k ∈ N . This f
determines an isomorphism between the shuffle Q[{Ik : Qk}k∈N ] and the shuffle
Q[{Ik : Rk}k∈N ], namely the map defined by the rule (q, i) 7→ (f(q), i). Thus in
many situations there is no harm in not specifying the particular partition used to
shuffle the orders Ik.

We will often be even less precise and denote a given shuffle Q[{Ik}k∈N ] simply
by Q[Ik], using the square brackets to indicate that the index k runs over a fixed
N ∈ {1, 2, . . . ,N} and not over Q, as in a replacement Q(Iq). We will also write
listed expressions like Q[A,B,C] to denote the shuffle of a collection of orders
{A,B,C}, or Q[A0, A1, . . .] to denote the shuffle of the orders {Ai}i∈N, etc.

While the order type of a shuffle Q[Ik] = Q[{Ik : Qk}k∈N ] depends only on the
collection of orders {Ik}k∈N , on occasion we will need to view Q[Ik] as a concrete
replacement Q(Iq) of Q. In this case, if we need to refer to a particular instance
of a replacing order, say the order Ik0

as the order that replaces a specific point q0
belonging to the partition piece Qk0

⊆ Q, then we will denote Ik0
by Iq0 to indicate

we are thinking of Q[Ik] as a concrete replacement Q(Iq).
Given a shuffle Q[Ik] and an interval I ⊆ Q[Ik], we say that I is negligible if there

is q ∈ Q such that I ⊆ Iq. We note that this definition depends on viewing the
shuffleQ[Ik] as a concrete replacementQ(Iq), with each Iq drawn from the collection
{Ik}. It is possible that for distinct collections of orders {Ik}k∈N and {Jl}l∈M , the
shuffles Q[{Ik}k∈N ] and Q[{Jl}l∈M ] are isomorphic. Moreover, an order type I may
appear as a negligible interval in the first representation Q[{Ik}k∈N ] but not in the
second. We return to the issue of non-uniqueness in the representation of shuffles
in Section 4. We will show that while a given shuffle can always be represented in
more than one way, it has a canonical representation. If the notion of negligible is
defined with respect to this canonical representation, it becomes a property of the
order type of the shuffle as opposed to a specific representation.
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The term shuffle originates from Läuchli and Leonard’s paper [12]. As the au-
thors note in that paper, Morel previously used shuffles extensively in her paper
[19], but without their terminology. Laver made use of a generalized shuffle oper-
ation in his landmark paper [13], taking sums over the orders ηαβ that appear in
that paper, which generalize the rationals Q ∼= ηω1ω1

.

3. Examples

Our aim in this section is to give a sense of what countable self-similar and left-
absorbing orders look like. In the first part we show that every linear order that
appears as a non-negligible interval in a shuffle is self-similar. In Section 4, we will
prove conversely that every countable self-similar order, and hence every countable
left-absorbing order, appears as such an interval.

In the second part of this section we give several typical examples of countable
left-absorbing linear orders, as well as an example of a countable self-similar order
that is not left-absorbing.

3.1. Shuffles and their intervals. In order to show that every non-negligible
interval of a shuffle is self-similar, we first need to understand the possible forms
such an interval can take.

Lemma 3.1.1. Fix a shuffle Q[Ik]. If I ⊆ Q[Ik] is a non-negligible interval, then
I ∼= L+Q[Ik] +R, where either L = ∅ or there exists k0 such that L is isomorphic
to a final segment of the shuffled order Ik0

, and either R = ∅ or there exists k1 such
that R is isomorphic to an initial segment of the shuffled order Ik1

.
Conversely, every order X ∼= L+Q[Ik]+R of the form just described, is isomor-

phic to a non-negligible interval I ⊆ Q[Ik].

Proof. First, observe that it follows from Cantor’s theorem that every interval J ⊆
Q with at least two points is isomorphic to one of Q, 1 + Q, Q + 1, or 1 + Q + 1,
depending on whether J is open, half-open to the right, half-open to the left,
or closed, respectively. If Q comes equipped with a partition into dense subsets
Q =

⋃
k Qk, then J =

⋃
k(Qk ∩ J) is a partition of J into dense subsets. If J

is open, then by Skolem’s theorem there is an isomorphism f between Q and J
that respects the two partitions. It follows that Q[Ik] ∼= J [Ik], as witnessed by the
isomorphism (q, i) 7→ (f(q), i).

Now consider the interval I ⊆ Q[Ik]. Let c : Q[Ik] → Q be the natural condensa-
tion map onto Q defined by c(x) = q if x ∈ Iq. Then c[I] = {q ∈ Q : I ∩ Iq ̸= ∅}. If
c[I] were a singleton {q0}, we would have I ⊆ Iq0 , giving that I is negligible. Since
I is not negligible, it must be that c[I] is an interval in Q. Let c[I]− denote the
interval obtained by deleting any endpoints from c[I], if they exist. Then (since
Q is dense) c[I]− is an open interval in Q, and hence (by the observations in the
previous paragraph) c[I]−[Ik] is isomorphic to Q[Ik].

If c[I] has a left endpoint l, then Il is the leftmost interval among the Iq for which
I ∩ Il ̸∼= ∅. Notice that I ∩ Il is a final segment of Il, namely the final segment L
whose left end coincides with the left end of I. We have L = Il if the left ends of I
and Il coincide, that is, if Il is an initial segment of I. Symmetrically, if c[I] has a
right endpoint r, then I has a final segment R that is an initial segment of Ir, and
is equal to Ir if the right ends of I and Ir coincide. Combining these observations
with those in the previous paragraph, we see that if I is a non-negligible interval
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of Q[Ik], we have I ∼= L + Q[Ik] + R, where L is the final segment of some Ik0 , or
empty, and R is an initial segment of some Ik1

, or empty, as desired.
Conversely, every order X ∼= L + Q[Ik] + R of this form can be realized as a

non-negligible interval in Q[Ik]. For example, say, if L is a final segment of Ik0
and

R is an initial segment of Ik1
, choose l, r ∈ Q with l < r such that Il = Ik0

and
Ir = Ik1 . This is always possible since the points in Q replaced by Ik0 are dense,
and likewise for Ik1 . Let I ⊆ Q[Ik] be the interval whose left end corresponds with
the left end of L in Il, and whose right end corresponds with the right end of R in
Ir. Then I ∼= L+Q[Ik] +R ∼= X, as desired. The cases when one or both of L and
R are ∅ are similar. □

The lemma gives in particular that every non-negligible interval I in a shuffle
Q[Ik] contains a convex copy of Q[Ik].

We can use the lemma to prove the self-similarity of non-negligible intervals.

Proposition 3.1.2. If I ⊆ Q[Ik] is a non-negligible interval, then I is self-similar.

Proof. By Lemma 3.1.1, we have I ∼= L+Q[Ik] + R for L a final segment of some
Ik0

, or empty, and R an initial segment of some Ik1
, or empty. Fix two disjoint

non-negligible intervals K0 and K1 in Q[Ik]. As noted above, K0 and K1 contain
convex copies Q0 and Q1 of Q[Ik], which in turn contain convex copies I0 and I1
of I. Identifying I with L + Q[Ik] + R, we have that I contains the two disjoint
convex copies I0 and I1 of itself, and hence is self-similar. □

We will show in Section 4 that conversely if X is a countable self-similar order,
then X is isomorphic to a non-negligible interval I ∼= L+Q[Ik] +R of some shuffle
Q[Ik]. Moreover, we will show that such an X is left-absorbing if and only if either
L = R = ∅, or L = Ik0

and R = Ik1
for some shuffled orders Ik0

and Ik1
, or

R+ L = Ik for some shuffled order Ik.

3.2. Specific examples. Proposition 3.1.2 gives a general way of producing count-
able self-similar orders. We now give some examples of countable orders that are
not only self-similar, but left-absorbing. We also give an example of a countable
order that is self-similar but not left-absorbing.

Our first examples are of countable orders X that absorb every countable order
A on the left.

Example 1. Consider X = Q. Then for any countable linear order A we have
AX ∼= X. This is because, regardless of whether A is dense or has any endpoints,
AX is countable, dense, and has no endpoints, and hence is isomorphic to Q by
Cantor’s theorem.

More generally, every shuffle absorbs every countable order on the left. This was
observed by the first author in [5, pg. 243]. For completeness, we provide a proof
here.

Proposition 3.2.1. Suppose that X = Q[Ik] is a shuffle of some finite or count-
ably infinite collection of orders {Ik}k∈N . Then for every countable linear order A
we have AX ∼= X.

Proof. Fix a countable order A. Let Q =
⋃

k∈N Qk be the partition of Q corre-
sponding to the shuffle Q[Ik]. Then AQ ∼= Q, and moreover AQ naturally inherits
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a partition into N -many dense subsets from the partition of Q. Explicitly, define
Rk = {(a, q) ∈ AQ : q ∈ Qk}. Then AQ =

⋃
k∈N Rk is a partition of AQ into

N -many subsets, each of which is dense in AQ. We may view AQ[Ik] either as the
product of A with the shuffle Q[Ik], or as the replacement of AQ (which is isomor-
phic to Q) by the orders Ik according to the partition AQ =

⋃
k Rk. By Skolem’s

theorem there is an isomorphism f : Q → AQ such that f [Qk] = Rk for all k ∈ N .
This isomorphism determines an isomorphism of X = Q[Ik] with AX = AQ[Ik],
namely the map F : Q[Ik] → AQ[Ik] defined by F (q, i) = (f(q), i). This map is
well-defined exactly because q ∈ Qk if and only if f(q) ∈ Rk, so that the second
coordinates i are always from the same replacing order Ik. Since F is well-defined,
it follows immediately from its definition that F is an isomorphism of AQ[Ik] and
Q[Ik], that is, of AX and X. □

In Section 4 we will show conversely that if X is a countable order that left-
absorbs every countable order A, then X is a shuffle. This was also established in
[5], but by a different proof.

Proposition 3.2.1 a general way of producing countable left-absorbing orders X
that absorb every countable factor A. Can we find examples of countable left-
absorbing orders that do not absorb every countable factor? We first consider the
three other countable dense order types.

Example 2. Suppose X = 1+Q. Then if A is countable and has a left endpoint,
AX will also be countable and have a left endpoint. Furthermore, regardless of the
density of A and regardless of whether A has a right endpoint, AX will be dense
and have no right endpoint, so that AX ∼= 1 +Q ∼= X.

On the other hand, if A does not have a left endpoint, then AX will also have
no left endpoint but will still be dense, so that AX ∼= Q. Hence AX ∼= X if and
only if A is countable and has a left endpoint.

Symmetrically, if X = Q+1, we have AX ∼= X if and only if A is countable and
has a right endpoint.

Example 3. The case when X = 1 + Q + 1 is peculiar. For AX ∼= X to hold,
A must have both a left and right endpoint, since otherwise AX will be missing at
least one endpoint. But unlike in the previous cases, A must also be dense. For if
there are points a, b ∈ A with b the successor of a, then since in the product AX
the interval Ia ∼= 1+Q+1 has a top point x, and Ib = 1+Q+1 has a bottom point
y, there is a point in AX (namely x) with a successor (namely y), so that AX is
not dense and thus not isomorphic to X = 1 +Q+ 1. Up to isomorphism there is
only one countable dense linear order with both endpoints, namely 1+Q+1. It is
not hard to see that (1 +Q+ 1)(1 +Q+ 1) ∼= 1 +Q+ 1.

Hence in this case AX ∼= X if and only if A ∼= X = 1 +Q+ 1, or A ∼= 1.

Thus each of the ordersQ, 1+Q, Q+1, and 1+Q+1 is left-absorbing. The class of
orders A absorbed by a given one of the four depends on its endpoint configuration.
This dependence reappears in more complicated left-absorbing orders, though in
a generalized form. We will see that which orders A are absorbed by a given
countable left-absorbing order X depends on whether X has an initial segment
(akin to a left endpoint) that contains no convex copy of X, and also whether X
has a final segment (akin to a right endpoint) that contains no convex copy of X.
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We illustrate this phenomenon with some more examples.

Example 4. Suppose X = Z + QZ. We claim that AX ∼= X if and only if A is
countable and has a left endpoint. To see this, fix a countable order A with a left
endpoint. We have AX = A(Z + QZ) ∼= A(1 + Q)Z ∼= (1 + Q)Z ∼= X, as desired.
And if A has no left endpoint, then AX ∼= A(1 + Q)Z ∼= QZ. Since X = Z + QZ
has an initial segment isomorphic to Z and QZ does not, we have AX ̸∼= X in this
second case, which shows the claim.

Notice that in this case there is an initial segment of X that does not contain
a convex copy of X (for example the initial copy of Z), but every non-empty final
segment of X contains a convex copy of X. We will see that all countable left-
absorbing orders with this property absorb the same orders as 1 +Q.

Symmetrically, if X = QZ+Z we have AX ∼= X if and only if A is countable and
has a right endpoint. In this case, X has a non-empty final segment containing no
convex copy of X, but no such initial segment. We will show that all such countable
left-absorbing orders absorb the same orders as Q+ 1.

Example 5. Suppose X = Z + QZ + Z. By combining the observations in
the previous two examples, it is not hard to check that AX ∼= X if and only if
A ∼= 1 + Q + 1. Observe that X has both an initial and final segment embedding
no convex copy of X, and X absorbs the same orders as 1 +Q+ 1.

But here there arises a difference: not all absorbing orders X with both an initial
and final segment not containing a convex copy of X absorb the same orders as
1+Q+1. Consider X = N+QZ+N∗. We check that X is left-absorbing. Consider
2X = N + QZ + N∗ + N + QZ + N∗ ∼= N + QZ + Z + QZ + N∗. The middle three
terms are isomorphic to (Q + 1 + Q)Z. Since Q + 1 + Q is countable, dense, and
has no endpoints, we have Q+ 1+Q ∼= Q. Hence 2X ∼= N+QZ+N∗ = X. Hence
X is left-absorbing.

Just as with Z+QZ+Z, this X has both an initial and final segment embedding
no convex copy of itself, for example the initial N and final N∗ in the sum N +
QZ + N∗. Despite this, the spectrum of orders A absorbed by X is different than
for 1 +Q+ 1, since for example 2X ∼= X, as we have just shown.

It can be shown that in fact X absorbs A if and only if A is countable, has both
a left and right endpoint, and every point in A that is not the left endpoint has a
predecessor, and every point that is not the right endpoint has a successor. We will
analyze absorption of this kind in Section 4.

All of our concrete examples so far have been of left-absorbing orders. Here is
our example of a countable self-similar order that is not left-absorbing.

Example 6. Let X = N+QZ. Since N is a final segment of some (actually every)
replacing order Iq in the shuffle QZ = Q[Z], we have by Proposition 3.1.2 above
that X is self-similar.

But X is not left-absorbing. For suppose that A is an order with at least two
points a < b. The initial copy of N in the sum N+QZ = X has the property that it
is the unique interval I ⊆ X such that I ∼= N and for every interval I ′ ⊇ I strictly
containing I we have I ′ ̸∼= N. But in AX there are at least two such intervals, since
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the initial copies of N in the intervals Ia ∼= X and Ib ∼= X both have this property.
Hence AX ̸∼= X. It follows that X absorbs no non-trivial order A on the left.

One might notice that this example differs from the previous one in that the
initial copy of N in X is no longer complemented by a final copy of N∗. This pre-
empts placing copies of X next to one another to get a middle copy of N∗+N ∼= Z,
which can then be absorbed into the surrounding copies of QZ.

We can modify this example to again get a left-absorbing order. Before we do,
we prove a simple proposition that will help in identifying when a given order X is
isomorphic to a shuffle.

Proposition 3.2.2. Suppose that X is a linear order. If there is a condensation
map (that is, surjective order-homomorphism) c : X → Q such that for every q ∈ Q
the set of points {p ∈ Q : c−1(p) ∼= c−1(q)} is dense in Q, then X is isomorphic to
a shuffle.

Proof. Define an equivalence relation ≈ on Q by the rule q ≈ p if the intervals
c−1(q) and c−1(p) are isomorphic. By assumption, each ≈-equivalence class Q is
dense in Q. Since Q is countable, there are at most countably many ≈-classes,
so that for some N ∈ {1, 2, . . . ,N} we may enumerate these classes as Qk, k ∈ N .
Then Q =

⋃
k∈N Qk is a partition of Q into dense subsets. For each k ∈ N , choose

a representative qk ∈ Qk, and define Ik = c−1(qk). For every q ∈ Qk, fix an
isomorphism fq : c−1(q) → Ik.

We claim that X is isomorphic to Q[Ik], where the shuffle is formed relative
to the partition Q =

⋃
k∈N Qk. Indeed, the map F : X → Q[Ik] defined by

F (x) = (c(x), fc(x)(x)) is an isomorphism. This map is well-defined, since for every

x ∈ X we have x ∈ c−1(c(x)), and fc(x) is an isomorphism of this interval with
Ic(x). It is surjective, since c is surjective and for each q ∈ Q, fq is onto Iq. And it
is order-preserving, since if x < y in X, then either c(x) < c(y) in Q, which gives
F (x) < F (y), or c(x) = c(y), in which case fc(x) = fc(y) and fc(x)(x) < fc(y)(y),
which also gives F (x) < F (y). □

We will frequently use Proposition 3.2.2 to justify that a given order is isomorphic
to a shuffle.

We can generalize Proposition 3.2.2 slightly, as follows. If c : X → Q is a
condensation map and Q =

⋃
k∈N Qk is a partition of Q into dense subsets such

that for all k ∈ N and all q, p ∈ Qk we have c−1(q) ∼= c−1(p), thenX is isomorphic to
a shuffle. Namely X ∼= Q[Ik], where the shuffle is formed relative to the partition
Q =

⋃
k∈N Qk, and for each k we have chosen some qk ∈ Qk and defined Ik =

c−1(qk). (The difference here from the proof of Proposition 3.2.2 is that now it may
be that for k ̸= l we have Ik ∼= Il.)

We can also extend Proposition 3.2.2 and its proof to condensations of the form
c : X → 1+Q, c : X → Q+1, and c : X → 1+Q+1. For example, if c : X → 1+Q
is a condensation map such that for each q ∈ 1 + Q (including the left endpoint)
the set of points {p ∈ Q : c−1(p) ∼= c−1(q)} is dense in 1 +Q, then X is isomorphic
to an order of the form L+Q[Ik], where the initial segment L is isomorphic to one
of the shuffled orders Ik.

The following example illustrates the way that Proposition 3.2.2 will be typically
used.
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Example 7. Let X = N + Q[Z,N]. We claim that X is left-absorbing. In fact,
AX ∼= X for every countable order A with a left endpoint. The reason is essentially
the same as for Z+QZ, namely that A(1+Q) ∼= 1+Q, but with Proposition 3.2.2
as the extra ingredient.

For such an A, consider the natural condensation c of AX = A(N + Q[Z,N])
onto A(1 + Q) ∼= 1 + Q that condenses every copy of N and every copy of Z to a
point. Then the set of points in 1 +Q that are condensed images of N and the set
of points that are condensed images of Z are both dense in 1 + Q (with the left
endpoint in 1 +Q a condensed image of N). By the proof of Proposition 3.2.2 and
the discussion following, we get X ∼= N+Q[Z,N], which gives AX ∼= X.

4. Main results

4.1. Classifying the countable self-similar orders. We now prove our main
results. Theorem 4.1.1 characterizes the countable self-similar linear orders as ex-
actly the orders that appear as non-negligible intervals in shuffles. The key step in
the proof is to condense the intervals of a given self-similar order that are maximal
with respect to not containing a convex copy of the order.

Theorem 4.3.6 identifies which countable self-similar orders are left-absorbing,
and for each such order determines the orders it absorbs.

Theorem 4.1.1. Suppose that X is a countable linear order. Then X is self-
similar if and only if there is a shuffle Q[Ik] and a non-negligible interval I ⊆ Q[Ik]
such that X ∼= I.

Proof. Since the backward implication was established by Proposition 3.1.2, it suf-
fices to prove the forward one. Suppose that X is countable and self-similar. Define
a relation ∼ on X by the rule x ∼ y if the closed interval [{x, y}] does not contain
a convex copy of X.

We claim that ∼ is a condensation of X. We must show that ∼ is an equivalence
relation whose equivalence classes are intervals. Reflexivity and symmetry of ∼
follow immediately from its definition. To prove transitivity, fix x, y, z ∈ X and
suppose x ∼ y ∼ z. The six possible orderings of the points x, y, z are x < y < z,
x < z < y, y < x < z, y < z < x, z < x < y, and z < y < x. For the middle
four orderings we get x ∼ z immediately. For example, suppose x < z < y. Since
x ∼ y, there is no convex copy of X in the interval [{x, y}] = [x, y]. But then there
is no convex copy of X in the smaller interval [{x, z}] = [x, z] and we have x ∼ z.
A similar argument applies to the subsequent three orderings.

Assume x < y < z. The argument for the case when z < y < x is symmetric.
If x ̸∼ z, then there is an interval I ⊆ [x, z] that is isomorphic to X. Since X is
self-similar, there are disjoint subintervals I0 and I1 of I that are each isomorphic
to X. Suppose without loss of generality that I0 < I1. We cannot have I0 ⊆ [x, y]
since this contradicts x ∼ y. But if I0 ̸⊆ [x, y], then I0 ∩ [y, z] ̸= ∅. Since I1 lies to
the right of I0 we must have I1 ⊆ [y, z], contradicting y ∼ z. It follows x ∼ z, as
desired.

It remains to show that the equivalence classes of ∼ are convex. But this is
clear: if x < y < z and x ∼ z, then since there is no convex copy of X in [x, z],
there is no such copy in the smaller interval [x, y], and we have x ∼ y. Thus ∼ is a
condensation of X, as claimed.

It follows from the definition of ∼ that for any equivalence class c(x), if I ⊆ c(x)
is an interval that is bounded below by some x0 ∈ c(x) and above by some x1 ∈ c(x),
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then I ̸∼= X. On the surface, this leaves open the possibility that an interval I ⊆ c(x)
that is unbounded to the right or left in c(x) may be isomorphic to X. But this
cannot happen: if there were such an I, then since X is self-similar we could find
subintervals I0 < I1 of I that are also isomorphic to X, and then subintervals
I00 < I01 of I0 that are isomorphic to X as well. But then I01 would be a bounded
convex copy of X in c(x), which is impossible. Thus each condensation class c(x)
contains no convex copy of X.

We next claim that X/ ∼ is dense as a linear order. Note that by the previous
paragraph X/ ∼ cannot be a singleton, as then the unique condensation class
c(x) would be isomorphic to X. Suppose toward a contradiction there are classes
c(x), c(y) ∈ X/ ∼, with representatives x, y ∈ X, such that c(y) is the successor of
c(x) in X/ ∼. Then since x ̸∼ y, the interval [x, y] contains an interval I that is
isomorphic to X. Since X is self-similar, I contains convex subcopies I0 < I1 of
X. It must be that either I0 ⊆ c(x) or I1 ⊆ c(y), a contradiction either way. Thus
X/ ∼ is dense, as claimed.

Since X/ ∼ is the condensation of a countable order, it is countable. Since it
is dense, it is isomorphic to either Q, 1 + Q, Q + 1, or 1 + Q + 1. We will show
that in each of these cases there is a shuffle Q[Ik] and orders L and R such that
X ∼= L+Q[Ik] +R. In the first case we show that L = R = ∅, in the second, that
L is a final segment of some Ik and R = ∅, in the third, that L = ∅ and R is an
initial segment of some Ik, and in the fourth, that L is a final segment of some Ik0

and R is an initial segment of some Ik1
. By Lemma 3.1.1, it will follow that in each

case there is a non-negligible interval I ⊆ Q[Ik] such that X ∼= I, and the theorem
will be proved.

Suppose first that X/ ∼ is isomorphic to Q. For simplicity, identify X/ ∼ with
Q. For every q ∈ Q, let Iq denote c−1(q), the interval of points in X that are
condensed to q. Then X is isomorphic to the replacement Q(Iq).

We claim that X is actually isomorphic to a shuffle Q[Ik]. To prove this, it
suffices to show that for every q ∈ Q, the set of p such that Ip ∼= Iq is dense in Q.
Then, if we identify orders in {Iq} that are isomorphic, each q determines a dense
subset of Q, namely Qq = {p ∈ Q : Ip = Iq}. Enumerating these subsets as Qk,
and selecting a representative qk ∈ Qk for every k, we may take the collection {Ik}
to be {Iqk}, and view the shuffle Q[Ik] as being constructed with respect to the
partition Q =

⋃
k Qk.

Fix q ∈ Q, and also fix q0, q1 ∈ Q with q0 < q1. We find p in the interval
(q0, q1) with Ip ∼= Iq. Fix x0 ∈ Iq0 and x1 ∈ Iq1 . Since x0 ̸∼ x1, there is an interval
J ⊆ [x0, x1] that is isomorphic toX. Since there is no leftmost condensation class in
X, every nonempty initial segment of X contains points from distinct condensation
classes. It follows that every initial segment of X contains a convex copy of X, and
so every initial segment of J also contains a convex copy of X. Thus J ∩ Iq0 = ∅,
since if not, J ∩ Iq0 would be an initial segment of J containing no convex copy
of X. Symmetrically, every non-empty final segment of X, and therefore every
non-empty final segment of J , contains a convex copy of X, so that J ∩ Iq1 = ∅ as
well. Thus J lies strictly between Iq0 and Iq1 , that is, Iq0 < J < Iq1 .

Let f : X → J be an isomorphism. Consider the image f [Iq] of the interval Iq.
Choose y ∈ f [Iq]. Then c(y) = Ip for some p ∈ Q. Since Ip∩J ̸= ∅, we must actually
have Ip ⊆ J . Otherwise, as Ip is an interval, it would contain either an initial or final
segment of J and hence a convex copy of X. It follows then, since Iq0 < J < Iq1 ,
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that we have q0 < p < q1. We claim that f [Iq] = Ip. For the forward containment,
notice that if y′ ∈ f [Iq] then we must have y′ ∼ y. Otherwise f [Iq], which contains
[{y, y′}], would contain a convex copy of X. This is impossible, as f [Iq] ∼= Iq.
For the reverse containment, notice that the same argument applies to the image
f−1[Ip] under the inverse isomorphism f−1 : J → X, giving f−1[Ip] ⊆ Iq. Thus
f [Iq] = Ip, and so Iq ∼= Ip. Since q0 and q1 were arbitrary, the set of condensation
classes Ip that are isomorphic to Iq is dense in X/ ∼. Since q was arbitrary, it
follows that X is isomorphic to a shuffle Q[Ik], as claimed.

Now suppose X/ ∼ is isomorphic to 1+Q. Identify X/ ∼ with 1+Q, so that X
is isomorphic to a replacement (1+Q)(Iq). Let l denote the left endpoint of 1+Q,
so that X ∼= Il +Q(Iq). Observe that an initial segment I of X contains a convex
copy of X if and only if I properly extends Il, but every nonempty final segment
of X contains a convex copy of X.

We claim that for some q ∈ Q, Il is isomorphic to a final segment L of Iq. Fix
points q0 < q1 in Q, and then fix x0, x1 ∈ X from the corresponding condensation
classes Iq0 and Iq1 . Let J ⊆ [x0, x1] be an interval isomorphic to X, and let
f : X → J be an isomorphism. Since f [Il] is initial in J , there is q ∈ [q0, q1) such
that f [Il] ∩ Iq ̸= ∅. We must have f [Il] ⊆ Iq, since otherwise f [Il] would contain
a convex copy of X. Consider the interval L = J ∩ Iq. We have f [Il] ⊆ L. We
show the reverse containment. Since Iq is the leftmost condensation class that J
intersects, L is a final segment of Iq. And since f−1[L] intersects Il, it must be
contained in Il. Otherwise it would contain a convex copy of X, and then so would
Iq. Thus L ⊆ f [Il] and so f [Il] = L, giving Il ∼= L as claimed.

We have X ∼= L+Q(Iq). We show the righthand term is isomorphic to a shuffle
Q[Ik]. As before, it suffices to check that for any q ∈ Q there are densely many
p such that Ip ∼= Iq. Fix q in Q, then fix q0 < q1 in Q, and then x0 ∈ Iq0 and
x1 ∈ Iq1 . We find p such that q0 < p < q1 and Ip ∼= Iq. Let J ⊆ [x0, x1] be an
interval that is isomorphic to X, as witnessed by an isomorphism f : X → J . It
may be that J ∩ Iq0 ̸= ∅. But if this is so, then a similar argument to the one
given in the previous paragraph shows that J ∩ Iq0 = f [Il]. Since l < q, we have
Iq0 < f [Iq]. Since J must lie completely to the left of Iq1 , as otherwise it would
have a final segment containing no convex copy of X, we have also f [Iq] < Iq1 .
Arguing as in the previous case, we have f [Iq] ⊆ Ip for some unique p ∈ (q0, q1),
and then f−1[Ip] ⊆ Iq as well. Thus Ip = f [Iq], and hence Ip ∼= Iq. Since q was
arbitrary, it follows X ∼= L+Q[Ik] as claimed.

The arguments for the cases when X/ ∼ is isomorphic to Q+1 and 1+Q+1 are
similar, and we leave them out. For these, we get respectively that X ∼= Q[Ik] +R
and X ∼= L+Q[Ik] +R, where L is a final segment of some Ik0

and R is an initial
segment of some Ik1 . We are done. □

4.2. The canonical representation of a shuffle. We turn now to the problem
of characterizing the countable left-absorbing linear orders. Before we can state
and prove our characterization, we need to address the issue of uniqueness in the
representation of shuffles Q[Ik].

We will think of two collections of orders {Ik} and {Jl} as being the same if
there is a bijection ι between the sets of indices {k} and {l} such that Ik ∼= Jι(k)
for all k. If there is no such a bijection, we view the collections as being distinct.
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It can happen that for distinct collections of orders {Ik} and {Jl}, the corre-
sponding shuffles Q[Ik] and Q[Jl] are isomorphic. We give two examples to illus-
trate this.

Example 1. Consider the shuffle Q[1, 1 + Q]. Here, we have decomposed Q
into two dense subsets Q1 and Q2, and kept the points in Q1 as singletons while
substituting every point in Q2 with a copy of 1 + Q. The resulting order remains
countable and without endpoints. For the sake of clarifying the next example below,
let us verify in explicit detail that it is also dense.

View Q[1, 1 + Q] as a replacement Q(Iq), and suppose x < y in Q[1, 1 + Q]. It
may be that x and y belong to the same replacing order Iq, in which case we must
have Iq = 1 +Q. But then there is a point between x and y, since 1 +Q is dense.
The other possibility is that x ∈ Iq and y ∈ Iq′ for some q < q′ in Q. But then we
can also find a point between them, specifically in Ir for some r ∈ Q between q and
q′. Thus Q[1, 1 +Q] is dense, so that Q[1, 1 +Q] ∼= Q.

Thus for the distinct collections {1, 1 + Q} and {1}, the corresponding shuffles
Q[1, 1 +Q] and Q[1] are isomorphic.

Example 2. Let X = Q[N,Z+Q[N,Z]]. Here again we have decomposed Q into
two dense subsets, but now replaced points in the first with N and points in the
second with Z+Q[N,Z]. We claim that X ∼= Q[N,Z]. Once more we verify this in
some detail, since going forward we will only sketch any similar arguments.

Let c : Q[N,Z + Q[N,Z]] → Q[1, 1 + Q] be the natural condensation map of X
onto Q[1, 1 + Q], in which each copy of N and each copy of Z is condensed to a
point. We check that the set of points in Q[1, 1 +Q] that are condensed images of
Z is dense in Q[1, 1 +Q]. View the shuffle Q[1, 1 +Q] as a replacement Q(Iq) and
fix x < y in Q[1, 1 +Q]. If x, y ∈ Iq for some q, then it must be Iq = 1 +Q. Since
Iq is a condensed copy of Z+Q[N,Z], there is z ∈ Iq that is a condensed copy of Z
with x < z < y. And if x ∈ Iq and y ∈ Iq′ for some q < q′, then there is an r with
q < r < q′ such that Ir = 1 + Q. Such an Ir contains a point that is a condensed
copy of Z.

By a similar argument, the set of points in Q[1, 1+Q] that are condensed images
of N is dense. Label these two dense subsets as QZ and QN respectively. If we fix
an isomorphism f : Q[1, 1 + Q] → Q, we also get a partition of Q into the two
dense subsets RZ = f [QZ] and RN = f [QN]. Let g : X → Q denote the composite
condensation g = f ◦ c. Under g, the set of points RZ in Q that are condensed im-
ages of Z and the set of points RN that are condensed images of N are both dense
in Q. It follows from Proposition 3.2.2 and its proof that X ∼= Q[N,Z], as claimed.

Fortunately, representations of shuffles become unique once we insist on a small-
ness property for the orders being shuffled.

Definition 4.2.1. A countable collection {Ik} of countable orders is minimal if
none of the Ik contains a convex copy of the shuffle Q[Ik].

A representation Q[Ik] of a shuffle is minimal if the corresponding collection {Ik}
is minimal.

Proposition 4.2.2. Suppose X is a shuffle. Then there is a minimal collection of
orders {Ik} such that X ∼= Q[Ik], and this minimal representation of X is unique.
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Proof. Consider the condensation ∼ employed in the proof of Theorem 4.1.1. Since
every initial and final segment of X contains a convex copy of X, it follows from
the proof of that theorem that X/ ∼ is isomorphic to Q, so that X ∼= Q(Iq). As in
that proof, if we identify any isomorphic orders in the set of condensation classes
{Iq}, we get a representation X = Q[Ik] = Q[Iqk ] of X as a shuffle. Since the
condensation classes Iq do not contain a convex copy of X, this representation is
minimal.

To see the uniqueness of the representation, suppose that Q[Jl] is another rep-
resentation of X with respect to some minimal collection {Jl}. The copies of Jl
appearing in Q[Jl] are the maximal intervals of Q[Jl] that do not (by minimality)
contain a convex copy of Q[Jl]. That is, if I ⊆ Q[Jl] is an interval that contains no
convex copy of Q[Jl], but every interval J ⊇ I strictly containing I does contain
such a copy, then I ∼= Jl for some l. But such intervals are exactly the condensation
classes Iq of the condensation ∼ applied to X = Q[Jl], so that this condensation
identifies the orders in {Jl} (up to isomorphism). It follows that the representations
Q[Jl] and Q[Ik] are the same. □

Observe that more generally, the representations of self-similar orders X as L+
Q[Ik] + R yielded by the proof of Theorem 4.1.1 are minimal, in the sense that L
and R contain no convex copy of X, and hence also no convex copy of Q[Ik].

4.3. Classifying the countable left-absorbing linear orders and their ab-
sorbed factors. We now prove our classification of the countable left-absorbing
linear orders X and the factors A that they absorb.

For the remainder of this subsection, let X denote a fixed countable self-similar
linear order. By Theorem 4.1.1, there is a shuffle Q[Ik] such that X ∼= L+Q[Ik]+R,
where L is either empty or a final segment of one of the shuffled orders Ik, and R is
either empty or an initial segment of one of the shuffled orders Ik. By the proof of
Proposition 4.2.2 and the comment following, we may assume that Q[Ik] is minimal
and neither L nor R embeds a convex copy of Q[Ik].

We will show that X is left-absorbing if and only if each of the segments L and
R is either empty or isomorphic to one of the Ik, or their sum R+L is isomorphic
to one of the Ik. We case out our analysis on these possibilities for L and R and
present our classification as a sequence of lemmas that we then collect in an omnibus
theorem at the end of the subsection.

Before beginning our casework, we emphasize the fact that if I ⊆ X is any
interval, then either I is a subinterval of L or R or one of the Ik, or I contains a
convex copy of Q[Ik], and these possibilities are mutually exclusive.

The case when both L and R are empty has already been handled.

Lemma 4.3.1. Suppose L = R = ∅. Then X is left-absorbing. Indeed for every
countable linear order A we have AX ∼= X.

Proof. This is Proposition 3.2.1. □

Lemma 4.3.2. Suppose L ̸= ∅ and R = ∅. Then X is left-absorbing if and only
if there is an index k0 such that L = Ik0

. In this case, we have AX ∼= X if and only
if A is countable and has a left endpoint.

Proof. Suppose first that L = Ik0
for some index k0. Then X ∼= Ik0

+ Q[Ik]. We
write X = (1 +Q)[Ik]. We show that for a countable order A, we have AX ∼= X if
and only if A has a left endpoint.
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Fix a countable order A with a left endpoint. We explicitly describe an isomor-
phism F : AX → X. Let (1+Q) =

⋃
k Qk be the partition of 1+Q according to the

replacement by the orders {Ik}, so that for each fixed k, each q ∈ Qk is replaced by
Ik. Note that the left endpoint of 1 +Q belongs to Qk0

. Let A(1 +Q) =
⋃

k Rk be
the corresponding partition of A(1+Q), and note that the left endpoint of A(1+Q)
is in Rk0 . By Skolem’s theorem there is an isomorphism f : A(1 + Q) → 1 + Q
such that f [Qk] = Rk for all k. View AX as A(1 + Q)[Ik] and X as (1 + Q)[Ik],
and define F : AX → X by F (a, q, i) = (f(a, q), i). Then F is well-defined by our
choice of f , and readily seen to be an isomorphism of AX with X, as desired.

On the other hand, if A has no left endpoint, then every non-empty initial
segment of AX contains a convex copy of X. It follows there is no initial segment
of AX that is isomorphic to L, and thus AX ̸∼= X.

Now suppose that there is no such index k0, that is, for every k we have L ̸∼= Ik.
We show that X is not left-absorbing.

Fix an order A with at least two points a < b. View the product AX as a
replacement of A in which every point is replaced by X, and consider the interval
Ib ⊆ AX. Since Ib is a convex copy of X, it contains an initial convex copy of L
that we denote Lb. Suppose that J ⊇ Lb is an interval that strictly contains Lb.

We claim that J contains a convex copy of Q[Ik]. If J extends Lb to the right,
this is immediate, since then J contains an initial segment of the copy of Q[Ik]
adjacent to Lb in Ib, and hence J contains a convex copy of Q[Ik].

So suppose J only extends Lb to the left. Either b has a predecessor b′ ∈ A, or
it does not. If there is such a b′, then Ib′ immediately precedes Ib in AX, and J
contains a final segment of the copy of Q[Ik] in Ib′ ∼= L+Q[Ik]. But then J contains
a convex copy of Q[Ik], since every final segment of Q[Ik] contains a convex copy
of itself. And if there is no such b′, then J in fact contains Ic for infinitely many
c < b in A, and therefore many convex copies of Q[Ik]. Thus J always contains a
convex copy of Q[Ik], as claimed.

But then Lb is a non-initial interval in AX that contains no convex copy of X,
and all of whose strict superintervals do contain such a copy. The only non-initial
intervals in X = L+Q[Ik] that have this property are isomorphic to one of the Ik.
But Lb is not isomorphic to any of the Ik. It follows AX ̸∼= X. □

Lemma 4.3.3. Suppose L = ∅ and R ̸= ∅. Then X is left-absorbing if and only
if there is an index k0 such that R = Ik0

. In this case, we have AX ∼= X if and
only if A is countable and has a right endpoint.

Proof. By a symmetric argument. □

The case when both L and R are nonempty is the most elaborate. To analyze it,
it will be helpful to recall some basic facts about the so-called finite condensation.
For more on the finite condensation, see [20, Ch. 4].

Given a linear order M and x, y ∈ M , define x ∼Fin y if the interval [{x, y}] is
finite. It is easily verified that ∼Fin is a condensation. Given x ∈ M , it need not be
true that the condensation class cFin(x) is finite. However, cFin(x) is either finite,
or isomorphic to one of N,N∗, or Z.

Suppose that we have condensation classes cFin(x) and cFin(y), and cFin(y) is
the successor of cFin(x) in M/ ∼Fin. Then if cFin(x) has a right endpoint (i.e.
cFin(x) is finite or isomorphic to N∗), it must be that cFin(y) does not have a left
endpoint (i.e. cFin(y) is isomorphic to either N∗ or Z). Otherwise this left endpoint
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would be related by ∼Fin to the right endpoint of cFin(x), contradicting that these
points come from distinct condensation classes. Symmetrically, if cFin(y) has a left
endpoint, it must be that cFin(x) does not have a right one. It follows that, in
general, if a given class cFin(x) has any endpoints, these endpoints are either limit
points in M or are endpoints of M .

Returning to our final case with both L and R nonempty, there are essentially
two ways that X can be left-absorbing. The first, that mirrors the previous cases,
is that there are indices k0 and k1 such that L is isomorphic to Ik0

and R is
isomorphic to Ik1

. The second, more novel way is that there is an index k such that
L is isomorphic to a final segment of Ik and R is isomorphic to the corresponding
initial segment, that is, R+ L ∼= Ik. These conditions are not exclusive. Indeed in
the second case it may be that neither, one, or both of R and L are isomorphic to
one of the Ik and we still get left absorption. Which orders A are absorbed by X
depends on which combination of these conditions holds.

We case out on whether there is an index k such that R+ L ∼= Ik.

Lemma 4.3.4. Suppose L ̸= ∅ and R ̸= ∅. Suppose moreover that for every index
k we have R+ L ̸∼= Ik. Then X is left-absorbing if and only if there are indices k0
and k1 such that L = Ik0

and R = Ik1
. In this case, we have AX ∼= X if and only

if A ∼= 1 or A ∼= 1 +Q+ 1.

Proof. Suppose there exist indices k0 and k1 such that L ∼= Ik0 and R ∼= Ik1 . We
show that AX ∼= X if and only if A ∼= 1 +Q+ 1, or A ∼= 1.

If A ∼= 1+Q+1, view AX as (1+Q+1)(Ik0
+Q[Ik] + Ik1

). Condense AX onto
(1+Q+1)(1+Q+1) by condensing every Ik to a point. View (1+Q+1)(1+Q+1)
as (1 + Q + 1). It is not hard to check that for each fixed index k, set of points
in 1 + Q + 1 that are condensed images of Ik is dense in (1 + Q + 1). Moreover,
the left endpoint of (1 +Q+ 1) is a condensed copy of Ik0 and right endpoint is a
condensed copy of Ik1

. It follows that AX ∼= Ik0
+Q[Ik] + Ik1

= X.
Conversely, suppose A ̸∼= 1 + Q + 1 and A has at least two points. If A is

uncountable, then certainly AX ̸∼= X. If A has no left endpoint, then every initial
segment of AX contains a convex copy of Q[Ik], so that AX ̸∼= X. Symmetrically,
if A has no right endpoint we have AX ̸∼= X.

Finally, suppose that A is not dense. Fix a, b ∈ A with b the successor of a.
View AX as a replacement. The convex copies Ia and Ib of X are adjacent in AX.
Since Ia contains a final segment Ra that isomorphic to R and Ib contains an initial
segment Lb that is isomorphic to L, the interval Ra + Lb is isomorphic to R + L.
Since neither R nor L contains a convex copy of Q[Ik], neither does Ra + Lb, by
the self-similarity of Q[Ik]. It is not hard to see however that every interval that
strictly contains Ra + Lb contains a copy of Q[Ik]. The only intervals in X that
are neither initial nor final segments, and that are maximal with respect to not
containing a convex copy of X, are the intervals Ik. But by hypothesis Ra + Lb is
not isomorphic to Ik for any k. Since Ra + Lb is neither initial nor final in AX, it
follows AX ̸∼= X as claimed.

Now suppose that at least one of the segments R,L is not isomorphic to any
shuffled order Ik. We may suppose it is L, without loss of generality. We show that
X is not left-absorbing.

Suppose that A is a countable order with at least two points. A similar argument
to the one given above shows that if A is missing either a left or right endpoint, or
if A is not dense, then AX ̸∼= X.
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It remains only to check that AX ̸∼= X when A = 1+Q+ 1. Fix any q ∈ Q and
consider the convex copy Iq of X in AX. This copy contains an initial segment Lq

that is isomorphic to L. Any interval extending Lq to the right intersects the copy of
Q[Ik] in Iq ∼= Lq+Q[Ik]+Rq and hence contains a convex copy of Q[Ik]. And since
q is a limit point (from the left) of A = 1 +Q+ 1, any interval properly extending
Lq to the left contains infinitely many of the Ir for r < q, and thus infinitely many
convex copies of Q[Ik]. Thus AX contains an interval that is neither final nor initial,
that is not isomorphic to any Ik, and is maximal with respect to not containing a
convex copy of Q[Ik]. There is no such interval in X, so that AX ̸∼= X. □

Finally we consider the case when R + L is isomorphic to one of the shuffled
orders Ik.

Lemma 4.3.5. Suppose L ̸= ∅ and R ̸= ∅. Suppose moreover that for some
index k0 we have R + L ∼= Ik0 . Then X is left-absorbing. The orders A such that
AX ∼= X are determined as follows.

i.) If neither L nor R is isomorphic to any of the shuffled orders Ik, we have
AX ∼= X if and only if A is countable and has a left and right endpoint,
and every point in A that is not the left endpoint has a predecessor, and
every point that is not the right endpoint has a successor.

ii.) If there is an index k1 such that L ∼= Ik1 , but there is no index k such that
R ∼= Ik, then AX ∼= X if and only if A is countable, has a left and right
endpoint, and every point other than the right endpoint has a successor.

iii.) If there is an index k2 such that R ∼= Ik2
, but there is no index k such that

L ∼= Ik, then AX ∼= X if and only if A is countable, has a left and right
endpoint, and every point other than the left endpoint has a predecessor.

iv.) If there are indices k1 and k2 such that L ∼= Ik1 and R ∼= Ik2 , then AX ∼= X
if and only if A is countable and has both a left and right endpoint.

Proof. (i.) Suppose that A has the properties described in (i.) of the statement
of the lemma. We will show AX ∼= X. To do so, it will be useful to get a more
specific description of A.

Consider the finite condensation A/ ∼Fin. There are two possibilities. The first
is that A/ ∼Fin consists of a single condensation class. In this case, it must be that
this condensation class contains both of the endpoints of A, and hence must be
finite, since the only possible ∼Fin-classes with two endpoints are the finite ones.
Thus A is isomorphic to a finite order n.

The second possibility is that A/ ∼Fin has cardinality at least two. Then the
hypotheses on A, along with the facts about the possible forms of∼Fin condensation
classes recalled above, imply that the condensation class containing the left endpoint
of A is isomorphic to N, the class containing the right endpoint is isomorphic
to N∗, and every other condensation class is isomorphic to Z. That is, we have
A ∼= N + BZ + N∗ for some countable order B. It is possible that B is empty, in
which case A ∼= N+ N∗.

In the first case, when A ∼= n, we have

AX ∼= nX
∼= X +X + . . .+X
= L+Q[Ik] +R+ L+Q[Ik] +R+ . . .+ L+Q[Ik] +R
∼= L+Q[Ik] + Ik0 +Q[Ik] + Ik0 + . . .+ Ik0 +Q[Ik] +R.
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If we condense the intervals Ik in this order (leaving L and R uncondensed), we
get a sum of the form L+Q+ 1+Q+ 1+ . . .+ 1+Q+R, which is isomorphic to
L+Q+R. For each fixed k, the points in the central copy of Q that are condensed
images of Ik are dense in Q. It follows from Proposition 3.2.2 that the original
uncondensed order AX ∼= nX is isomorphic to L+Q[Ik] +R ∼= X, as desired.

In the second case we have AX ∼= (N+BZ+N∗)X ∼= NX +BZX +N∗X. The
lefthand term can be expanded as follows:

NX ∼= X +X + . . .
= L+Q[Ik] +R+ L+Q[Ik] +R+ . . .
∼= L+Q[Ik] + Ik0

+Q[Ik] + Ik0
+ . . .

If we condense the intervals Ik in this sum, we get a sum of the form L+Q+ 1 +
Q+1+ . . . which is isomorphic to L+Q. Since for each k, the points in Q that are
condensed images of Ik are dense in Q, we have that NX is isomorphic to L+Q[Ik].

By similar arguments we have that N∗X ∼= Q[Ik] +R and ZX ∼= Q[Ik]. Thus, in
the case when B ̸= ∅, we have

AX ∼= NX +BZX + N∗X
∼= L+Q[Ik] +BQ[Ik] +Q[Ik] +R
∼= L+Q[Ik] +Q[Ik] +Q[Ik] +R
∼= L+Q[Ik] +R
∼= X

as claimed. The case when B = ∅ is similar.
Conversely, suppose that A has at least two points and does not satisfy the

hypotheses in (i.). We show that AX ̸∼= X.
If A is missing either a left or right endpoint, then AX will either have no initial

segment isomorphic to L, or no final segment isomorphic to R, and hence AX ̸∼= X.
So suppose A has both endpoints. Then either there is some a ∈ A, different

from the left endpoint, that has no predecessor, or some a′ ∈ A, different from the
right endpoint, that has no successor. Given such an a, consider the corresponding
convex copy Ia of X in AX. Then Ia has an initial segment La that is isomorphic
to L. Note that La is not initial or final in X. Since a has no predecessor in X,
every interval strictly containing La contains a convex copy of X. But La con-
tains no convex copy of X. The only non-initial and non-final intervals with this
property in X are the Ik, and La is not isomorphic to any such interval by hypoth-
esis. Thus AX ̸∼= X. The argument is symmetric given such an a′. Thus AX ̸∼= X.

(ii.) Suppose that A satisfies the hypotheses described in (ii.) of the lemma’s
statement. We show AX ∼= X.

By considering finite condensation of A, it is not hard to see that either A is
finite, or for some countable order B we have A ∼= N+B(Ib) +M , where for every
b ∈ B either Ib ∼= N or Ib ∼= Z, and either M ∼= n for some finite n, or M ∼= N∗.

If A is finite, then the same argument given in the previous case shows that
AX ∼= X.

So suppose A ∼= N+B(Ib) +M . Then AX ∼= NX +B(Ib)X +MX. As before,
we have that NX ∼= L+Q[Ik]. If M ∼= N∗, then MX ∼= Q[Ik] +R as above, and if
M ∼= n for some finite order n, then MX ∼= L+Q[Ik] +R.
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For the middle term, distributing the X over the replacement we get B(Ib)X ∼=
B(IbX). Each term IbX is isomorphic to either L + Q[Ik] or Q[Ik], depending on
whether Ib ∼= N or Ib ∼= Z.

Putting this together, we have AX ∼= L + Q[Ik] + B(Jb) + L′ + Q[Ik] + R,
where for every b ∈ B, the replacing order Jb is either isomorphic to L + Q[Ik]
or Q[Ik], and L′ is either empty or equal to L. If we condense the intervals Ik
appearing in this sum (including the segments L ∼= Ik1), we get an order of the
form 1 + Q + B(Kb) + p + Q + R, where for each b ∈ B, Kb is either isomorphic
to 1 +Q or Q, and p is either empty or 1. Any replacement in which the replacing
orders are either Q or 1+Q is dense as a linear order and has no right endpoint. It
follows that B(Kb) is isomorphic to one of 1 +Q and Q. Thus our condensation of
AX is isomorphic to (1+Q)+ (p0+Q)+ (p1+Q+R), where p0 is either empty or
1, and likewise for p1. No matter the values of p0 and p1, this order is isomorphic
to 1 + Q + R. Here, the leading 1 here is a condensed image of Ik1

∼= L, and it is
not hard to see that for each fixed k, the points in Q that are condensed images of
Ik are dense in Q. It follows AX ∼= L+Q[Ik] +R = X, as desired.

We implicitly assumed here that B ̸= ∅. The case when B = ∅ is similar.
Now suppose that A does not satisfy the hypotheses described in (ii.). We claim

that AX ̸∼= X.
If A is missing a left or right endpoint, then AX ̸∼= X, since either every initial

segment of AX contains a convex copy of X, or every final segment does. If A has
both endpoints, there must be a point a ∈ A, distinct from its right endpoint, that
has no successor. But then the convex copy Ia of X in the product AX has a final
segment Ra that is not isomorphic to any Ik and is not initial or final in A, and is
maximal with respect to not containing a convex copy of X. Since X has no such
interval, we have AX ̸∼= X.

(iii.) By a symmetric argument to (ii.)

(iv.) Suppose that A is countable. We show that AX ∼= X if and only if A has
both a left and right endpoint.

If A is missing either endpoint, then as argued in the previous cases we have
AX ̸∼= X.

So suppose that A has an endpoint on each side, that we label l and r. Consider
the finite condensation A/ ∼Fin of A. Let B = A/ ∼Fin, so that A ∼= B(Ib), where
each ∼Fin condensation class Ib is isomorphic to some finite order n, or N, or N∗, or
Z. Since A has a left endpoint, B must have a left endpoint also, corresponding to
the condensation class that contains the left endpoint of A. We denote this class as
Il. Correspondingly there is a rightmost condensation class in B(Ib) that we label
Ir. If Il = Ir then there is a single, finite condensation class, and we have AX ∼= X
by the same proof as before.

So assume that Il ̸= Ir. By the properties of the finite condensation, if there are
points b, b′ ∈ B with b′ the successor of b, then if Ib has a right endpoint, it must
be that Ib′ has no left endpoint, and likewise if Ib′ has a left endpoint, then Ib has
no right one.

We have that AX ∼= B(Ib)X ∼= B(IbX). For a fixed b ∈ B, the order IbX is
isomorphic to either L + Q[Ik] + R, L + Q[Ik], Q[Ik] + R, or Q[Ik], depending on
whether Ib is isomorphic to a finite order, or N, or N∗, or Z, respectively. If we
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condense each of the intervals Ik in the terms IbX, including the initial copies of
L ∼= Ik1

and final copies of R ∼= Ik2
in the terms that include them, we obtain from

B(IbX) a condensed order B(Kb), where each Kb is either 1 +Q+ 1, or 1 +Q, or
Q + 1, or Q, respectively. Note that the condensed term Kb has a left endpoint if
and only if the original finite condensation class Ib has a left endpoint, and likewise
for right endpoints.

We claim that the condensed order B(Kb) is isomorphic to 1 + Q + 1. Since
B(IbX) has a leftmost term IlX, and Il is the finite condensation class of A that
includes its left endpoint, it must be that Il is finite or isomorphic to N. Thus IlX
is either L+Q[Ik] +R or L+Q[Ik], so that its condensation Kl is either 1+Q+1
or 1 + Q. In any case, Kl has a left endpoint, which is also the left endpoint of
B(Kb). Symmetrically, B(Kb) has a right endpoint. It remains only to check that
B(Kb) is dense. Fix x < y in B(Kb). Since each individual term Kb is dense,
the only possible way y could be a successor of x is if x is the right endpoint of
some Kb and y is the left endpoint of some Kc, where c is the successor of b in
B. But by our observation in the previous paragraph, this would mean that in
B = A/ ∼Fin the finite condensation class Ib has a right endpoint and is succeeded
by the condensation class Ic with a left endpoint, which is impossible.

Thus B(Kb) is dense, and therefore isomorphic to 1+Q+1. We view it as a copy
of 1 +Q+ 1. It is not hard to verify that for each fixed k, the set of points in this
copy of 1+Q+1 that are condensed images of Ik is dense. Since the first point is a
condensed image of L and the last a condensed image of R, we have by Proposition
3.2.2 and the discussion following that the uncondensed order AX ∼= B(IbX) is
isomorphic to L+Q[Ik] +R ∼= X, as desired. □

This finishes our classification. We collect the lemmas above into a theorem.

Theorem 4.3.6. Suppose that X is a countable linear order. Then X is left-
absorbing if and only if there is a countable, minimal collection {Ik} of non-empty
countable linear orders, and two countable orders L and R, such that X ∼= L +
Q[Ik] +R and exactly one of the following holds:

1. L = R = ∅,
2. There is an index k0 such that L ∼= Ik0

, and R = ∅,
3. There is an index k0 such that R ∼= Ik0

, and L = ∅,
4. There are indices k0 and k1 such that L ∼= Ik0

and R ∼= Ik1
, but there is no

index k such that R+ L ∼= Ik,
5. There is an index k0 such that R+L ∼= Ik0

, but no index k such that L ∼= Ik
and no index k such that R ∼= Ik,

6. There is an index k0 such that R + L ∼= Ik0
and an index k1 such that

L ∼= Ik1
, but no index k such that R ∼= Ik,

7. There is an index k0 such that R + L ∼= Ik0
and an index k1 such that

R ∼= Ik1 , but no index k such that L ∼= Ik,
8. There are indices k0, k1, k2 such that R+ L ∼= Ik0

, L ∼= Ik1
, and R ∼= Ik2

.

Suppose that X is left-absorbing, and A is a countable order. Whether AX ∼= X
is determined by which of the conditions above that X satisfies, as follows.

i. if (1), then AX ∼= X for every countable order A,
ii. if (2), then AX ∼= X if and only if A has a left endpoint,
iii. if (3), then AX ∼= X if and only if A has a right endpoint,
iv. if (4), then AX ∼= X if and only if A ∼= 1 +Q+ 1 or A ∼= 1,
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v. if (5), then AX ∼= X if and only if A has a left and right endpoint, and
every point in A other than the right endpoint has a successor, and every
point in A other than the left endpoint has a predecessor,

vi. if (6), then AX ∼= X if and only if A has a left and right endpoint, and
every point in A other than the right endpoint has a successor,

vii. if (7), then AX ∼= X if and only if A has a left and right endpoint, and
every point in A other than the left endpoint has a predecessor,

viii. if (8), then AX ∼= X if and only if A has a left and right endpoint. □

We conclude with a corollary that answers the following question from [5, pg.
255]: which countable linear orders X with both a left and right endpoint are
isomorphic to their lexicographic squares?

Corollary 4.3.7. Suppose that X is a countable linear order with both a left
and right endpoint, and these endpoints are distinct. Then X2 ∼= X if and only if
there is a countable, minimal collection {Ik} of countable linear orders, a nonempty
countable order L with a left endpoint, and a non-empty countable order R with a
right endpoint such that X ∼= L+Q[Ik]+R and exactly one of the following holds:

1. R ∼= L ∼= 1, and Ik ∼= 1 for every index k, that is, X ∼= 1 +Q+ 1,
2. There is an index k0 such that R+L ∼= Ik0

, but no index k such that L ∼= Ik
and no index k such that R ∼= Ik; furthermore, for every index k, we have
that every point in Ik has both a successor and predecessor,

3. There is an index k0 such that R + L ∼= Ik0
and an index k1 such that

L ∼= Ik1 , but no index k such that R ∼= Ik; furthermore, for every index k,
we have that every point in Ik has a successor,

4. There is an index k0 such that R + L ∼= Ik0
and an index k1 such that

R ∼= Ik1
, but no index k such that L ∼= Ik; furthermore, for every index k,

we have that every point in Ik has a predecessor,
5. There are indices k0, k1, k2 such that R+ L ∼= Ik0

, L ∼= Ik1
, and R ∼= Ik2

.

Proof. Take A = X in cases (4) through (8) of the previous theorem. □

5. Directions and problems

What can we say about uncountable self-similar orders and uncountable left-
absorbing orders? If X is a self-similar order of any cardinality, then as in the
proof of Theorem 4.1.1 we may define a relation ∼ on X by the rule x ∼ y if the
interval [{x, y}] does not contain a convex copy of X. By the same argument given
in the proof, ∼ is a condensation of X that organizes X into convex equivalence
classes c(x) that are maximal with respect to not containing a convex copy of X,
and the condensed order X/ ∼ is dense. If X/ ∼ is countable, it is isomorphic to
one of Q, 1 + Q, Q + 1, or 1 + Q + 1, and it follows that X is isomorphic to an
order of the form L+Q[Ik] +R in the same sense as before, except now the orders
Ik appearing in the shuffle Q[Ik] may be uncountable. Theorems 1 and 2 apply to
such X, otherwise verbatim.

If X/ ∼ is uncountable, the situation may be radically different. Even if we
restrict our attention to self-similar orders of size ℵ1, any classification will depend
on the particular model of set theory in which we work. For example, if the con-
tinuum hypothesis holds, then the class of orders of size ℵ1 contains as a subclass
all suborders of R of the same cardinality as R, a class that is known to behave
wildly and resist classification. It seems plausible therefore that if the continuum
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hypothesis holds there will be no satisfactory classification of the self-similar or
left-absorbing orders of size ℵ1.

A likely more tractable approach than focusing on the class of orders of size ℵ1

in an arbitrary model of set theory is to instead focus on classes of uncountable
orders that possess a reasonable structure theory, and see what can be said about
the self-similar orders belonging to such classes.

There are two natural (and closely related) choices for such classes to consider.
Recall that an order X is scattered if it does not embed Q and σ-scattered if it can
be partitioned into countably many scattered suborders. Every countable order is
trivially σ-scattered, but there are σ-scattered orders of every cardinality.

In [13], confirming and extending a conjecture of Fräıssé, Laver showed that
the class of countable linear orders, and more generally the class of σ-scattered
linear orders, is well-quasi-ordered under the embeddability relation. In that paper
and the sequel [14], Laver develops a structural theory for σ-scattered orders up
to bi-embeddability. This theory makes use of a generalized shuffle operation over
certain orders ηαβ that play a role in higher shuffles analogous to the one played by
Q in countable shuffles. The orders ηαβ may be chosen to be left-absorbing. (More
precisely, in the case when α = γ+ and β = δ+ are successor cardinals, the order
ηαβ as it is defined in [13] is bi-embeddable with an order η′αβ that absorbs γ · δ∗,
where · denotes the anti-lexicographic product.)

However, while shuffles over the ηαβ are well-understood up to bi-embeddability,
up to isomorphism the picture is less clear. In particular, it is not clear which
shuffles over the ηαβ ’s will be left-absorbing in general, or if all left-absorbing σ-
scattered orders are necessarily shuffles over some ηαβ . It is therefore an interesting
question whether Theorems 4.1.1 and 4.3.6 can be adapted to characterize the self-
similar and left-absorbing σ-scattered linear orders.

Problem 1: Classify the self-similar and left-absorbing σ-scattered orders.

A second class of orders worth investigating is the class of Aronszajn lines under
the Proper Forcing Axiom (PFA). A linear order X is Aronszajn if X has size ℵ1

but does not embed either ω1 or ω∗
1 , or any uncountable suborder of R. PFA is a

strong set-theoretic forcing axiom that implies the continuum is ℵ2 and has many
consequences for structures of size ℵ1.

A remarkable series of results by Moore [18], Martinez-Ranero [16], and Barbosa
[1] shows that the class of Aronszajn lines under PFA behaves much like the class
of countable linear orders. In particular, in [16] it is shown that the Aronszajn lines
are well-quasi-ordered by embeddability under PFA, and in [1] it is shown that the
Aronszajn lines under PFA possess a structural theory analogous to that proved
by Laver for the countable orders. In that theory, shuffles over Q are replaced by
shuffles over the so-called Countryman lines C and C∗. The Countryman lines C
and C∗ are the unique minimal Aronszajn lines under PFA.

Given that the class of Aronszajn lines under PFA resembles the class of count-
able linear orders, it is again an interesting question whether the approach taken in
this paper can be adapted to characterize the self-similar and left-absorbing Aron-
szajn lines under PFA.
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Problem 2: Assume PFA. Classify the self-similar and left-absorbing Aronszajn
orders.

Another approach to left-absorption that the the authors feel may be promising
is to study abstractly the classes of orders that are absorbed by some fixed order.
For a linear order X, define the absorption spectrum of X to be the class of order
types AX = {A : AX ∼= X}. Observe that 1 ∈ AX for every X, where 1 denotes
the order type of a singleton. An order X is left-absorbing if AX contains an order
type other than 1.

Theorem 4.3.6 can be viewed as a classification of the classes of order types A
for which there is a countable order X such that A = AX . For example, if A
consists of the countable order types with a left endpoint, then A = AX for any
countable order X of the form X = Ik0 +Q[Ik].

We isolate several abstract properties of absorption spectra.

Proposition 5.0.1. Suppose that X is a linear order and AX is its absorption
spectrum. Then:

1. 1 ∈ AX ,
2. If A ∈ AX , and Ia ∈ AX for every a ∈ A, then A(Ia) ∈ AX ,
3. For all order types A and B, we have A + 1 + B ∈ AX if and only if

A+ 1 ∈ AX and 1 +B ∈ AX .

Proof. We already observed (1.), and (2.) follows from the fact that products dis-
tribute over replacements on the right, so that A(Ia)X ∼= A(IaX) ∼= AX ∼= X.

For (3.), we will need the following fact, due to Lindenbaum: if A and B are linear
orders such that A is isomorphic to an initial segment of B and B is isomorphic to
a final segment of A, then A ∼= B. Suppose first that A + 1 + B ∈ AX . We prove
that A+1 ∈ AX , i.e. that (A+1)X ∼= X. Observe that (A+1)X is isomorphic to
an initial segment of (A+ 1 +B)X ∼= (A+ 1)X + BX. Since A+ 1 +B ∈ AX , it
follows (A+1)X is isomorphic to an initial segment of X. On the other hand, X is
isomorphic to a final segment of (A+ 1)X ∼= AX +X. By Lindenbaum’s theorem,
we have (A+ 1)X ∼= X, as desired. The proof that (1 +B)X ∼= X is symmetric.

Conversely, suppose that A + 1 and 1 + B belong to AX . Then AX + X ∼=
X +BX ∼= X. Observe that (A+1+B)X ∼= AX +X +BX. Since X +BX ∼= X,
we have AX + (X +BX) ∼= AX +X ∼= X, giving A+1+B ∈ AX , as desired. □

Condition (3.) in the proposition may seem peculiar, but in conjunction with
condition (1.) it implies the following perhaps more intuitive closure property of
AX : if A ∈ AX and [a, a′] is a closed interval in A, then [a, a′] (viewed as an order
type) belongs to AX .

Suppose that A is a class of order types satisfying the conditions (1.), (2.), and
(3.) from Proposition 5.0.1. Is A the absorption spectrum for some order X? Not
necessarily. For example, if A consists of all order types of cardinality at most ℵ1,
then A satisfies (1.)− (3.). But for any given order X, we have NX ̸∼= ω1X, since
NX and ω1X have distinct cofinalities. Thus it cannot be that X ∼= NX ∼= ω1X.
Since N and ω1 belong to A , it follows A ̸= AX .

Problem 3. Are there conditions extending those from Proposition 5.0.1 such
that a class of order types A satisfies the conditions if and only if A = AX for
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some order X?

Problem 4. Fix a left-absorbing order X. What can be said about the orders Y
such that AY = AX?
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