Current problems list

It is sometimes tacitly assumed that a given linear order is not isomorphic to 0 or 1.

- (1) Prove that if X and Y are dense linear orders, then so is XY. Prove that if Y is not dense, then neither is XY. Find necessary and sufficient conditions on Y so that XY is dense for every non-empty linear order X, regardless of density.
- (2) Fix a linear order X.
 - i. Prove that if X has at most one endpoint, then X^{ω} is a dense linear order, regardless of whether or not X is dense.
 - ii. Prove that if X has both a left and right endpoint, then X^{ω} is dense if and only if X is dense. Prove that even if X is not dense, X^{ω} contains a dense suborder.
- (3) Given two orders X and Y, write $X \leq_c Y$ if there is an embedding $f: X \to Y$ such that f[X] is an interval of Y. Write $X <_c Y$ iff $X \leq_c Y$ and $Y \not\leq_c X$. Prove that:
 - a. There is a continuum-indexed \leq_c -descending chain of countable orders. That is, there is a family of countable orders $\{X_r : r \in \mathbb{R}\}$, such that if r < s then $X_r <_c X_s$.
 - b. There is a family of countable orders $\{X_r : r \in \mathbb{R}\}$ that are pairwise \leq_c -incomparable.
- (4) Prove that if $X^2 \cong Y^2$ then at least one of the following is true:
 - i. X embeds into Y,
 - ii. Y embeds into X.

Must both be true? (I don't know.)

- (5) Fix an order A. Which suborders $X \subseteq A^{\omega}$ have the property that $AX \cong X$?
- (6) Can you find an order X such that $X \cong X^2$? An uncountable such order?
- (7) Prove that $(X + Y)^* = Y^* + X^*$. What about $(XY)^*$?
- (8) i. Prove that if $f: X \to X^*$ is an order-isomorphism from a linear order X onto its reverse, then either there is a unique fixed point $x \in X$ such that f(x) = x, or there is a unique "fixed gap," that is, X can be decomposed as X = I + J in such a way that $f[I] = J^*$ and $f[J] = I^*$.
 - ii. (Sierpiński; Tarski/Lindenbaum) Conclude that a linear order X is isomorphic to its reverse X^* if and only if X can be decomposed as $X = Y + Y^*$ or $X = Y + 1 + Y^*$ for some order type Y.
 - iii. Suppose that $\mathbb{R} = A \cup B$ is a partition of the real numbers into two suborders A and B, both dense in \mathbb{R} . Prove that $A \ncong B^*$.
- (9) Suppose that $f: X \to X$ is an order-automorphism of X. Prove that if f is an involution (i.e. f(f(x)) = x for every $x \in X$) then f is the identity.
- (10) Prove that X is additively left absorbing (i.e. $A + X \cong X$ for some $A \neq 0$) if and only if there is a self-embedding $f: X \to X$ such that f[X] is a strict final segment of X.
- (11) Prove that XY is scattered if and only if X and Y are scattered.
- (12) Prove the following generalization of Cantor's theorem, due to Skolem:

Fix $k \in \{1, 2, ..., \omega\}$. Suppose X and Y are countable dense linear orders without endpoints, and we have partitions $X = \bigcup_{i < k} X_i$ and $Y = \bigcup_{i < k} Y_i$, such that each X_i is dense in X and each Y_i is dense in Y. Then there is an order-isomorphism $f: X \to Y$ such that $f[X_i] = Y_i$ for every i < k.

(This says that if we have two copies of the rationals X and Y and color their points with k-many colors such that each color appears densely often, then there is an isomorphism between X and Y that respects the coloring.)

- (13) Verify that ω^{ω} is complete.
- (14) Prove that $\mathbb{Z}^{\omega} \cong \mathbb{R} \setminus \mathbb{Q}$.
- (15) Prove that $\omega^{\omega} \cong [0,1)$.
- (16) Prove that $2^{\omega} \cong 3^{\omega}$.
- (17) Is $2^{\omega+\omega} \cong 3^{\omega+\omega}$? What about 2^{ω^2} and 3^{ω^2} ?
- (18) Prove that \mathbb{R} and 2^{ω} are bi-embeddable (i.e. each embeds in the other), but not isomorphic.
- (19) Prove that $\mathbb{R} \setminus \mathbb{Q}$ contains a suborder isomorphic to \mathbb{R} .
- (20) Prove that any uncountable suborder $X \subseteq \mathbb{R}$ is not scattered. (Recall: a countable union of countable sets is countable.)
- (21) Suppose that X is a countable order. Prove that \overline{X} is countable if and only if X is scattered.

- (22) (Morel, Sierpiński) Let $A = \mathbb{Q}\omega$ and $B = \mathbb{Q}\omega + \omega$. Prove that $A \ncong B$ but $A^2 \cong B^2 \cong \mathbb{Q}\omega$. This shows that $\mathbb{Q}\omega$ does not have a unique square root. Prove that A and B are the only orders satisfying the equation $X^2 \cong \mathbb{Q}\omega$. Can you find an order A such that there are exactly three solutions to the equation $X^2 \cong A$?
- (23) (Morel) Are there distinct uncountable orders X, Y such that $X^2 \cong Y^2$?
- (24) Prove that if X is a countably infinite linear order, then there is a non-trivial embedding $f: X \to X$.

For the problems on ordinals below, recall that $\alpha \cdot \beta$ denotes the ordinal product of α and β (" β -many copies of α "), while $\alpha \times \beta$ denotes the usual lexicographical product (" α -many copies of β "). We have $\alpha \cdot \beta = \beta \times \alpha$. When it isn't explicitly indicated which product is being used, assume the lex product.

- (25) Verify the following basic arithmetic facts about ordinal arithmetic that we used in lecture.
 - i. If α and β are ordinals, then so are $\alpha + \beta$ and $\alpha \cdot \beta$.
 - ii. More generally, if α is an ordinal and for every $i \in \alpha$ we fix an ordinal β_i , then the replacement $\alpha(\beta_i)$ is also an ordinal.
- (26) Verify by induction on the second exponent γ that for all ordinal α, β, γ we have $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$.
- (27) Ordinals have unique square roots: if $\alpha^2 = \beta^2$, then $\alpha = \beta$.
- (28) Ordinals cancel additively on the left: $\gamma + \alpha = \gamma + \beta$ implies $\alpha = \beta$.
- (29) Ordinals cancel multiplicatively on the left: if $\alpha \cdot \beta = \alpha \cdot \gamma$, then $\beta = \gamma$. So lexicographically, ordinals cancel on the right: $\beta \times \alpha = \gamma \times \alpha \Rightarrow \beta = \gamma$.
- (30) In fact, ordinals cancel lexicographically on the right even for non-ordinal products. That is, if X and Y are linear orders and $X \times \alpha \cong Y \times \alpha$ for some ordinal α , then $X \cong Y$.
- (31) Show that $\alpha \cdot \beta$ is a successor ordinal if and only if α and β are both successor ordinals.
- (32) (Sierpiński) Show that the diophantine equation $X^2 + 1 = Y^2$ has no solution in the ordinals. Show the same for the equation $X^3 + 1 = Y^3$.
- (33) Verify the uniqueness of the Cantor normal form. That is, verify that if α is an ordinal, and

$$\alpha = \omega^{\beta_0} \cdot k_0 + \omega^{\beta_1} \cdot k_1 + \ldots + \omega^{\beta_n} \cdot k_n = \omega^{\gamma_0} \cdot l_0 + \omega^{\gamma_1} \cdot l_1 + \ldots + \omega^{\gamma_m} \cdot l_m$$

for descending sequences of ordinals $\beta_0 > \beta_1 > \ldots > \beta_n$ and $\gamma_0 > \gamma_1 > \ldots > \gamma_m$ and positive integers k_i, l_i , then n = m and $\beta_i = \gamma_i$ and $k_i = l_i$ for all $i \leq n$.

(34) Verify that the combinatorial definition of ordinal exponentiation corresponds with the inductive definition. (Theorem 9 from the "Ordinals" section of the notes.)

Recall that for points x, y from a linear order X, the notation $[\{x, y\}]$ refers to the closed interval between x and y, regardless of whether $x \leq y$ or y < x.

- (35) Fix a linear order X. Prove that the relation \sim_C , defined by $x \sim_C y$ if $[\{x,y\}]$ is complete, is a convex equivalence relation on X.
- (36) Prove that if X is complete and has neither a top nor bottom point, then X is right canceling: for any linear orders A, B we have $AX \cong BX \Rightarrow A \cong B$. In particular, \mathbb{R} is right canceling.
- (37) Is X = [0, 1) right canceling?
- (38) Prove that $\mathbb{R}^m \ncong \mathbb{R}^n$ for any distinct $n, m \in \omega$.
- (39) Prove that $\mathbb{R}^n \ncong \mathbb{R}^{\omega}$ for any $n \in \omega$.
- (40) Prove that $\mathbb{R}^{\omega} \ncong \mathbb{R}^{\omega + \omega}$.
- (41) Fix $\alpha, \beta \in ORD$. Prove that $\mathbb{R}^{\alpha} \cong \mathbb{R}^{\beta}$ if and only if $\alpha = \beta$.
- (42) Suppose X is a linear order that does not embed ω_1 . Fix $\alpha \in ORD$. Prove that X^{α} embeds ω_1 if and only if $\alpha \geq \omega_1$.
- (43) Prove that not one of $\omega^2, \omega\omega^*, \omega^*\omega, (\omega^*)^2$ embeds in any other. What about the 8 triple products $\epsilon_0 \epsilon_1 \epsilon_2$, where $\epsilon_i \in \{\omega, \omega^*\}$?
- (44) We showed that X embeds neither ω nor ω^* if and only if X is finite. Characterize the orders that embed none of $\omega^2, \omega\omega^*, \omega^*\omega, (\omega^*)^2$.
- (45) Characterize the orders that do not embed \mathbb{Z} .
- (46) (Hausdorff) Prove that if X is uncountable and scattered, then X embeds either ω_1 or ω_1^* .

- (47) An alternating sum is an order of the form $\alpha_0 + \alpha_1^* + \alpha_2 + \alpha_3^* + \ldots + \alpha_n^*$, where α_i is an ordinal for every $i \leq n$. Note that α_0 and α_n may be 0, so that alternating sums can begin and end with either a well-ordered part or reverse well-ordered part.
 - i. Fix an order X and define a relation \sim_{alt} on X by the rule $x \sim_{alt} y$ if $[\{x,y\}]$ is an alternating sum. Prove that \sim_{alt} is a convex equivalence relation on X, that is, a condensation of X.
 - ii. Call an order A an extended alternating sum if $A/\sim_{alt} \cong 1$. Can you characterize the order types of extended alternating sums?
 - iii. Extend Hausdorff's constructive characterization of the countable scattered orders to all scattered orders, as follows. Define a hierarchy S_{α} , $\alpha \in ORD$, of classes of orders:
 - $-S_0 = \{0,1\}.$
 - S_{α} consists of all orders of the form $A(L_a)$, where A is an extended alternating sum and $L_i \in S_{\beta}$ for some $\beta < \alpha$.

Prove that $S = \bigcup_{\alpha} S_{\alpha}$ is exactly the set of scattered orders.

- (48) Say that two orders X and Y are finitely equidecomposable, and write $X \approx_F Y$, if for some $n \in \omega$ there are partitions $X = \bigcup_{i < n} X_i$ and $Y = \bigcup_{i < n} Y_i$ such that $X_i \cong Y_i$ for all i < n. Prove that \approx_F is an equivalence relation on the class of linear orders.
- (49) Prove that the \approx_F -class of ω is exactly $\{\alpha \in ORD : \omega \leq \alpha < \omega^2\}$.
- (50) Prove that if X and Y are bi-embeddable, then $X \approx_F Y$. Prove that the converse is false in general.
- (51) Prove that the \approx_F -class of $\mathbb Q$ is exactly the collection of non-scattered countable orders.
- (52) What is the \approx_F -class of \mathbb{Z} ?

Recall that for orders X, Y we write $X \lesssim Y$ if X embeds in Y.

- (53) Suppose A, A', B, B' are linear orders. Show that if $A \preceq A'$ and $B \preceq B'$ then $AB \preceq A'B'$. On the other hand, if $X \preceq A'B'$ it need not be true that X can be factored as AB for some $A \preceq A'$ and $B \preceq B'$. What is the correct generalization for which a converse does hold?
- (54) We observed that in general $X \lesssim Y$ and $Y \lesssim X$ does not imply $X \cong Y$. However, we do have the following result:

(Lindenbaum) Suppose that X and Y are linear orders. Prove that if there is an embedding $f: X \to Y$ such that f[X] is an initial segment of Y, and an embedding $g: Y \to X$ such that g[Y] is a final segment of X, then $X \cong Y$.

- (55) Using Lindenbaum's theorem, prove that if $2X \cong 2Y$ then $X \cong Y$. So 2 is *left* canceling. What if $3X \cong 3Y$?
- (56) Show that \mathbb{Z} is not left canceling, that is, there are non-isomorphic orders X and Y such that $\mathbb{Z}X \cong \mathbb{Z}Y$.
- (57) i. Let A be a fixed order. Prove that $A \times A^{\omega} \cong A^{\omega}$. In particular, $\mathbb{Z} \times \mathbb{Z}^{\omega} \cong \mathbb{Z}^{\omega}$.
 - ii. Prove $\omega \times \mathbb{Z}^{\omega} \cong \mathbb{Z}^{\omega}$ and symmetrically $\omega^* \times \mathbb{Z}^{\omega} \cong \mathbb{Z}^{\omega}$. (Hint: use Lindenbaum.)
 - iii. Conclude $2 \times \mathbb{Z}^{\omega} \cong \mathbb{Z}^{\omega}$ and by extension $n \times \mathbb{Z}^{\omega} \cong \mathbb{Z}^{\omega}$ for every $n \in \omega$, n > 0.
 - iv. Generalize the above: prove that if A has a jump (i.e. there are points x < y in A with no point z lying strictly between them), then $A^{\omega} \cong 2 \times A^{\omega}$.
 - v. \mathbb{R} has no jumps, and yet still $2 \times \mathbb{R}^{\omega} \cong \mathbb{R}^{\omega}$. Can you prove it?
- (58) Prove that if $2X \cong 3X$, then $X \cong 2X$.
- (59) Prove that there is a family or 2^{\aleph_0} -many pairwise non-isomorphic countable orders. Conclude there are exactly 2^{\aleph_0} -many countable order types.
- (60) Can you find a scattered order such that its number of distinct suborders is 2^{\aleph_0} ? Can you find two such scattered orders, neither or which embeds in the other? Can you find three such orders, none of which embeds in any other?
- (61) Prove that if X is countable, the number of non-isomorphic suborders of X is either countable or of size 2^{\aleph_0} . (Hint: it is enough to prove the statement for scattered orders. It may help to consider the previous problem, as well as the alternating equivalence relation \sim_{alt} introduced above.)