
Current problems list

It is sometimes tacitly assumed that a given linear order is not isomorphic to 0 or 1.

(1) Prove that if X and Y are dense linear orders, then so is XY . Prove that if Y is not dense,
then neither is XY . Find necessary and sufficient conditions on Y so that XY is dense for every
non-empty linear order X, regardless of density.

(2) Fix a linear order X.
i. Prove that if X has at most one endpoint, then Xω is a dense linear order, regardless of whether

or not X is dense.
ii. Prove that if X has both a left and right endpoint, then Xω is dense if and only if X is dense.

Prove that even if X is not dense, Xω contains a dense suborder.
(3) Given two orders X and Y , write X ≤c Y if there is an embedding f : X → Y such that f [X] is an

interval of Y . Write X <c Y iff X ≤c Y and Y ̸≤c X. Prove that:
a. There is a continuum-indexed ≤c-descending chain of countable orders. That is, there is a

family of countable orders {Xr : r ∈ R}, such that if r < s then Xr <c Xs.
b. There is a family of countable orders {Xr : r ∈ R} that are pairwise ≤c-incomparable.

(4) Prove that if X2 ∼= Y 2 then at least one of the following is true:
i. X embeds into Y ,
ii. Y embeds into X.

Must both be true? (I don’t know.)
(5) Fix an order A. Which suborders X ⊆ Aω have the property that AX ∼= X?
(6) Can you find an order X such that X ∼= X2? An uncountable such order?
(7) Prove that (X + Y )∗ = Y ∗ +X∗. What about (XY )∗?
(8) i. Prove that if f : X → X∗ is an order-isomorphism from a linear order X onto its reverse, then

either there is a unique fixed point x ∈ X such that f(x) = x, or there is a unique “fixed gap,”
that is, X can be decomposed as X = I + J in such a way that f [I] = J∗ and f [J ] = I∗.

ii. (Sierpiński; Tarski/Lindenbaum) Conclude that a linear order X is isomorphic to its reverse X∗

if and only if X can be decomposed as X = Y + Y ∗ or X = Y +1+ Y ∗ for some order type Y .
iii. Suppose that R = A ∪ B is a partition of the real numbers into two suborders A and B, both

dense in R. Prove that A ̸∼= B∗.
(9) Suppose that f : X → X is an order-automorphism of X. Prove that if f is an involution (i.e.

f(f(x)) = x for every x ∈ X) then f is the identity.
(10) Prove that X is additively left absorbing (i.e. A+X ∼= X for some A ̸= 0) if and only if there is a

self-embedding f : X → X such that f [X] is a strict final segment of X.
(11) Prove that XY is scattered if and only if X and Y are scattered.
(12) Prove the following generalization of Cantor’s theorem, due to Skolem:

Fix k ∈ {1, 2, . . . , ω}. Suppose X and Y are countable dense linear orders without endpoints, and
we have partitions X =

⋃
i<k Xi and Y =

⋃
i<k Yi, such that each Xi is dense in X and each Yi is

dense in Y . Then there is an order-isomorphism f : X → Y such that f [Xi] = Yi for every i < k.
(This says that if we have two copies of the rationals X and Y and color their points with k-many

colors such that each color appears densely often, then there is an isomorphism between X and Y
that respects the coloring.)

(13) Verify that ωω is complete.
(14) Prove that Zω ∼= R \Q.
(15) Prove that ωω ∼= [0, 1).
(16) Prove that 2ω ∼= 3ω.

(17) Is 2ω+ω ∼= 3ω+ω? What about 2ω
2

and 3ω
2

?
(18) Prove that R and 2ω are bi-embeddable (i.e. each embeds in the other), but not isomorphic.
(19) Prove that R \Q contains a suborder isomorphic to R.
(20) Prove that any uncountable suborderX ⊆ R is not scattered. (Recall: a countable union of countable

sets is countable.)
(21) Suppose that X is a countable order. Prove that X is countable if and only if X is scattered.
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(22) (Morel, Sierpiński) Let A = Qω and B = Qω+ω. Prove that A ̸∼= B but A2 ∼= B2 ∼= Qω. This shows
that Qω does not have a unique square root. Prove that A and B are the only orders satisfying
the equation X2 ∼= Qω. Can you find an order A such that there are exactly three solutions to the
equation X2 ∼= A?

(23) (Morel) Are there distinct uncountable orders X,Y such that X2 ∼= Y 2?
(24) Prove that ifX is a countably infinite linear order, then there is a non-trivial embedding f : X → X.

For the problems on ordinals below, recall that α · β denotes the ordinal product of α and β
(“β-many copies of α”), while α × β denotes the usual lexicographical product (“α-many copies of
β”). We have α · β = β × α. When it isn’t explicitly indicated which product is being used, assume
the lex product.

(25) Verify the following basic arithmetic facts about ordinal arithmetic that we used in lecture.
i. If α and β are ordinals, then so are α+ β and α · β.
ii. More generally, if α is an ordinal and for every i ∈ α we fix an ordinal βi, then the replacement

α(βi) is also an ordinal.
(26) Verify by induction on the second exponent γ that for all ordinal α, β, γ we have αβ · αγ = αβ+γ .
(27) Ordinals have unique square roots: if α2 = β2, then α = β.
(28) Ordinals cancel additively on the left: γ + α = γ + β implies α = β.
(29) Ordinals cancel multiplicatively on the left: if α · β = α · γ, then β = γ.

So lexicographically, ordinals cancel on the right: β × α = γ × α ⇒ β = γ.
(30) In fact, ordinals cancel lexicographically on the right even for non-ordinal products. That is, if X

and Y are linear orders and X × α ∼= Y × α for some ordinal α, then X ∼= Y .
(31) Show that α · β is a successor ordinal if and only if α and β are both successor ordinals.
(32) (Sierpiński) Show that the diophantine equation X2 +1 = Y 2 has no solution in the ordinals. Show

the same for the equation X3 + 1 = Y 3.
(33) Verify the uniqueness of the Cantor normal form. That is, verify that if α is an ordinal, and

α = ωβ0 · k0 + ωβ1 · k1 + . . .+ ωβn · kn = ωγ0 · l0 + ωγ1 · l1 + . . .+ ωγm · lm

for descending sequences of ordinals β0 > β1 > . . . > βn and γ0 > γ1 > . . . > γm and positive
integers ki, li, then n = m and βi = γi and ki = li for all i ≤ n.

(34) Verify that the combinatorial definition of ordinal exponentiation corresponds with the inductive
definition. (Theorem 9 from the “Ordinals” section of the notes.)

Recall that for points x, y from a linear order X, the notation [{x, y}] refers to the closed interval
between x and y, regardless of whether x ≤ y or y < x.

(35) Fix a linear order X. Prove that the relation ∼C , defined by x ∼C y if [{x, y}] is complete, is a
convex equivalence relation on X.

(36) Prove that if X is complete and has neither a top nor bottom point, then X is right canceling: for
any linear orders A,B we have AX ∼= BX ⇒ A ∼= B. In particular, R is right canceling.

(37) Is X = [0, 1) right canceling?
(38) Prove that Rm ̸∼= Rn for any distinct n,m ∈ ω.
(39) Prove that Rn ̸∼= Rω for any n ∈ ω.
(40) Prove that Rω ̸∼= Rω+ω.
(41) Fix α, β ∈ ORD. Prove that Rα ∼= Rβ if and only if α = β.
(42) Suppose X is a linear order that does not embed ω1. Fix α ∈ ORD. Prove that Xα embeds ω1 if

and only if α ≥ ω1.
(43) Prove that not one of ω2, ωω∗, ω∗ω, (ω∗)2 embeds in any other. What about the 8 triple products

ϵ0ϵ1ϵ2, where ϵi ∈ {ω, ω∗}?
(44) We showed that X embeds neither ω nor ω∗ if and only if X is finite. Characterize the orders that

embed none of ω2, ωω∗, ω∗ω, (ω∗)2.
(45) Characterize the orders that do not embed Z.
(46) (Hausdorff) Prove that if X is uncountable and scattered, then X embeds either ω1 or ω∗
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(47) An alternating sum is an order of the form α0 + α∗
1 + α2 + α∗

3 + . . .+ α∗
n, where αi is an ordinal for

every i ≤ n. Note that α0 and αn may be 0, so that alternating sums can begin and end with either
a well-ordered part or reverse well-ordered part.

i. Fix an order X and define a relation ∼alt on X by the rule x ∼alt y if [{x, y}] is an alternating
sum. Prove that ∼alt is a convex equivalence relation on X, that is, a condensation of X.

ii. Call an order A an extended alternating sum if A/ ∼alt
∼= 1. Can you characterize the order

types of extended alternating sums?
iii. Extend Hausdorff’s constructive characterization of the countable scattered orders to all scat-

tered orders, as follows. Define a hierarchy Sα, α ∈ ORD, of classes of orders:
– S0 = {0, 1}.
– Sα consists of all orders of the form A(La), where A is an extended alternating sum and

Li ∈ Sβ for some β < α.
Prove that S =

⋃
α Sα is exactly the set of scattered orders.

(48) Say that two orders X and Y are finitely equidecomposable, and write X ≈F Y , if for some n ∈ ω
there are partitions X =

⋃
i<n Xi and Y =

⋃
i<n Yi such that Xi

∼= Yi for all i < n. Prove that ≈F

is an equivalence relation on the class of linear orders.
(49) Prove that the ≈F -class of ω is exactly {α ∈ ORD : ω ≤ α < ω2}.
(50) Prove that if X and Y are bi-embeddable, then X ≈F Y . Prove that the converse is false in general.
(51) Prove that the ≈F -class of Q is exactly the collection of non-scattered countable orders.
(52) What is the ≈F -class of Z?

Recall that for orders X,Y we write X ≾ Y if X embeds in Y .

(53) Suppose A,A′, B,B′ are linear orders. Show that if A ≾ A′ and B ≾ B′ then AB ≾ A′B′.
On the other hand, if X ≾ A′B′ it need not be true that X can be factored as AB for some

A ≾ A′ and B ≾ B′. What is the correct generalization for which a converse does hold?
(54) We observed that in general X ≾ Y and Y ≾ X does not imply X ∼= Y . However, we do have the

following result:
(Lindenbaum) Suppose that X and Y are linear orders. Prove that if there is an embedding

f : X → Y such that f [X] is an initial segment of Y , and an embedding g : Y → X such that g[Y ]
is a final segment of X, then X ∼= Y .

(55) Using Lindenbaum’s theorem, prove that if 2X ∼= 2Y then X ∼= Y . So 2 is left canceling. What if
3X ∼= 3Y ?

(56) Show that Z is not left canceling, that is, there are non-isomorphic orders X and Y such that
ZX ∼= ZY .

(57) i. Let A be a fixed order. Prove that A×Aω ∼= Aω. In particular, Z× Zω ∼= Zω.
ii. Prove ω × Zω ∼= Zω and symmetrically ω∗ × Zω ∼= Zω. (Hint: use Lindenbaum.)
iii. Conclude 2× Zω ∼= Zω and by extension n× Zω ∼= Zω for every n ∈ ω, n > 0.
iv. Generalize the above: prove that if A has a jump (i.e. there are points x < y in A with no point

z lying strictly between them), then Aω ∼= 2×Aω.
v. R has no jumps, and yet still 2× Rω ∼= Rω. Can you prove it?

(58) Prove that if 2X ∼= 3X, then X ∼= 2X.
(59) Prove that there is a family or 2ℵ0 -many pairwise non-isomorphic countable orders. Conclude there

are exactly 2ℵ0-many countable order types.
(60) Can you find a scattered order such that its number of distinct suborders is 2ℵ0? Can you find two

such scattered orders, neither or which embeds in the other? Can you find three such orders, none
of which embeds in any other?

(61) Prove that if X is countable, the number of non-isomorphic suborders of X is either countable or of
size 2ℵ0 . (Hint: it is enough to prove the statement for scattered orders. It may help to consider the
previous problem, as well as the alternating equivalence relation ∼alt introduced above.)


