Ma 116a Homework #5

Due Friday, March 8th at 1:00pm

1) Suppose that X and Y are sets, and $\mathbb{P} = \{p : p \text{ is a finite partial function from } X \text{ to } Y\}$ ordered by $p \leq q$ if $p \supseteq q$. Show that if Y is countable, then \mathbb{P} has the ccc.

Hint: Fill in the details of the following argument. Suppose $A\subseteq \mathbb{P}$ is uncountable. We show A is not an antichain. By the Δ -system lemma we can find $D\subseteq A$ an uncountable Δ -system with root r. Argue that distinct conditions $p,q\in D$ are compatible iff $\mathrm{dom}(p\setminus r)\cap\mathrm{dom}(q\setminus r)=\emptyset$. For $p\in D$, let $d_p=\mathrm{dom}(p\setminus r)$. Let $Dom=\{d_p:p\in D\}$. Argue that Dom must be uncountable, and then argue there must be $d_p,d_q\in Dom$ with $d_p\cap d_q=\emptyset$.

- 2) For functions $f, g \in {}^{\omega}\omega$, define $f < {}^*g$ if there is $n \in \omega$ such that for all m > n we have g(m) > f(m).
 - i. Show that if $\mathscr{F} \subseteq {}^{\omega}\omega$ is countable, then there is $g \in {}^{\omega}\omega$ such that $f <^* g$ for all $f \in \mathscr{F}$.

For the remaining parts of the problem, suppose that MA holds and $\mathscr{F} \subseteq {}^{\omega}\omega$ has size $\kappa < 2^{\omega}$. Our goal is to show there is $g \in {}^{\omega}\omega$ such that $f < {}^*g$ for all $f \in \mathscr{F}$.

- ii. Let \mathbb{P} consist of all conditions $\langle p, F \rangle$ where p is a finite partial function from ω to ω and F is a finite subset of \mathscr{F} . Order \mathbb{P} by the rule $\langle p, F \rangle \leq \langle q, G \rangle$ iff $p \supseteq q$, $F \supseteq G$, and $\forall f \in G$, if $n \in \text{dom}(p) \setminus \text{dom}(q)$ then p(n) > f(n). Show that \mathbb{P} has the ccc.
 - *Hint*: Argue that two conditions of the form $\langle p, F \rangle$ and $\langle p, G \rangle$ are always compatible, and use this to prove the claim.
- iii. Show that for every $f \in \mathscr{F}$, the set $D_f \subseteq \mathbb{P}$ consisting of all conditions $\langle p, F \rangle$ with $f \in F$, is dense in \mathbb{P} . Show that D_n is also dense, where D_n is the set of conditions $\langle p, F \rangle$ with $n \in \text{dom}(p)$.
- iv. By MA there is a filter G intersecting D_f and D_n for every $f \in \mathscr{F}$ and $n \in \omega$. Show that

$$g = \bigcup \{p : \langle p, F \rangle \in G \text{ for some finite } F \subseteq \mathscr{F} \}$$

is as desired.