Ma 116a Homework #4 Due Thursday, February 29th at 1:00pm

- 1) Suppose κ is a regular uncountable cardinal. Show that if $C \subseteq \kappa$ is club and $S \subseteq \kappa$ is stationary then $C \cap S$ is stationary.
- 2) Suppose T is a tree. Recall that a *subtree* of T is a subset $S \subseteq T$ such that for all $s \in S$ and $t \in T$, if $t \leq s$ then $t \in S$. A *branch* $B \subseteq T$ is a maximal linearly ordered subset of T.

Given a subtree $S \subseteq T$, its outer boundary $\partial(S)$ is $\{t \in T \setminus S : \exists s \in S(s < t) \land \not\exists t' \in T(s < t' < t)\}$.

- i. Prove the following extension of König's lemma: if T is an ω -tree such that for every nonempty finite subtree $S \subseteq T$ we have $|\partial(S)| \ge 2$, then T has at least two infinite branches.
 - You may assume T is rooted, i.e. $|\text{Lev}_0(T)| = 1$. This is not necessary, but simplifies the argument.
- ii. Show by example that the hypothesis "for every finite subtree $S \subseteq T$ we have $|\partial(S)| \ge 2$ " cannot be replaced by "for every $n \in \omega$ we have $|\text{Lev}_n(T)| \ge 2$ " in the previous part.
- 3) Show that any Aronszajn tree T that is a subtree of $\{s \in {}^{<\omega_1}\omega : s \text{ is one-to-one}\}$ cannot be Suslin. (In particular, the Aronszajn tree we constructed in class is not Suslin.)
 - Hint: You have to find an uncountable antichain in T. Show that for each $n \in \omega$, the collection $A_n = \{s \in T : \exists \alpha \in \omega_1(\text{dom}(s) = \alpha + 1 \land s(\alpha) = n)\}$ is an antichain. Why is this sufficient?
- 4) In this problem we give another proof (due to Banach) of the existence of a stationary and co-stationary $S \subseteq \omega_1$.

For $x, y \in \mathbb{R}$, we write $[\{x, y\}]$ for the closed interval with endpoints x, y. (If x = y, then $[\{x, y\}] = [x, x] = \{x\}$, which we consider a closed interval.)

Fix an injection $f:\omega_1\to\mathbb{R}$. Define a relation \sim on \mathbb{R} by the rule $x\sim y$ if $f^{-1}[\{x,y\}]$ is non-stationary.

- i. Prove that \sim is an equivalence relation on \mathbb{R} .
- ii. Prove that in fact \sim is a *convex* equivalence relation, that is, if x < y < z and $x \sim z$, then $x \sim y \sim z$. Conclude that for every $x \in \mathbb{R}$, the equivalence class [x] is an interval.
- iii. Show that there are at least three \sim -equivalence classes.
 - Hint: If not, then either \mathbb{R} is an equivalence class, or \mathbb{R} can be written as a disjoint union of equivalence classes $I \cup J$, where I is an initial segment of \mathbb{R} and J is the corresponding final segment. Show that in either case ω_1 can be written as a countable union of non-stationary sets.
- iv. By (iii.), we can find real numbers x < y < z such that $x \not\sim y \not\sim z$. Then $f^{-1}[[x,y]]$ and $f^{-1}[[y,z]]$ are stationary. Argue $f^{-1}[[y,z]]$ is also stationary. Conclude $S = f^{-1}[[x,y]]$ is stationary and co-stationary.