
Ma 116a Homework #2
Due Thursday, February 1st at 1:00pm

1) An ordinal α is called indecomposable if for every β < α we have β + α = α. Prove that α is
indecomposable if and only if α = ωδ for some ordinal δ.

Some culture: From (1) we can prove that every nonzero ordinal α has a unique decomposition as a
finite sum of indecomposable ordinals α = ωδ0 · n0 + ωδ1 · n1 + . . . + ωδk · nk in which the exponents
δi are strictly decreasing in i. The proof is as follows. Let δ0 be maximal such that ωδ0 ≤ α. Such a
δ0 exists since ordinal exponentiation is continuous in the exponent. Then it must be that there is a
maximal n0 ∈ ω such that ωδ0 · n0 ≤ α, since otherwise we would have ωδ0+1 ≤ α, contradicting the
maximality of δ0. Let α1 be the unique ordinal such that α = ωδ0 · n0 + α1. If α1 = 0, we have found
our decomposition. If not, we let δ1 be maximal such that ωδ1 ≤ α1. Observe must have α1 < α0. As
before, there must be some maximal n1 ∈ ω such that ωδ1 · n1 ≤ α1, and we write α1 = ωδ1 · n1 + α2.
And so on. Since ωδ0 > ωδ1 > . . . is a decreasing sequence of ordinals, and there are no infinite
decreasing sequences of ordinals, this process must terminate after a finite number of steps.

The decomposition is called the Cantor normal form for α.

2) Prove that α is indecomposable if and only if for all suborders A ⊆ α, at least one of A and α \ A is
isomorphic to α.

3) A class function on the ordinals F : ON → ON is called normal if it satisfies the following two
conditions:

• F is strictly increasing: for all ordinals α, β, we have α < β ⇒ F (α) < F (β),

• F is continuous: for all limit ordinals α, we have F (α) = sup{F (γ) : γ < α}.

Prove that if F is normal, then F has arbitrarily large fixed points. That is, for every β there is α ≥ β
such that F (α) = α. Conclude that there are arbitrarily large ordinals α such that α = ωα.

4) The version of the Axiom of Choice that we stated in class is usually called the Well-Ordering Principle.
Prove that the Well-Ordering Principle is equivalent to the standard formulation of AC:

Axiom 9 (AC). For every family X of non-empty sets, there is a function f : X →
⋃

X such that for
all Y ∈ X, f(Y ) ∈ Y .

This says that if X is a family of non-empty sets, there is a function f that picks out an element f(Y )
from each set Y in the family. Such a function is called a choice function.

5) Without using AC, prove the Cantor-Schroeder-Bernstein (CSB) theorem. That is, prove that if A
and B are sets and there are injections f : A → B and g : B → A, then there is a bijection between A
and B.

Hint : Let A0 = A, B0 = B, An+1 = g[Bn], Bn+1 = f [An], A∞ =
⋂

n An, and B∞ =
⋂

n Bn. Let
h(x) = f(x) if x ∈ A∞ ∪

⋃
n(A2n \A2n+1), otherwise let h(x) = g−1(x). Show that h is a bijection.

6) Fill in the details of the following alternate proof of the CSB theorem.

• Claim: Suppose A′, B,A are sets such that A′ ⊆ B ⊆ A, and there is a bijection f : A → A′.
Then there is a bijection from A to B.

Proof :

– Let Q = B \ f [A]. Let T = {X ⊆ A : Q ∪ f [X] ⊆ X}, and let T =
⋂

T .

– Show that T ∈ T , and conclude Q ∪ f [T ] ⊆ T .

– Show that in fact Q ∪ f [T ] = T , and conclude B = T ∪ (f [A] \ f [T ]).
– Conclude the proof.



• Use the claim to prove CSB.

Some culture: The previous proof of CSB implicitly relies on induction and recursion on the natural
numbers. This proof, due to Zermelo, makes no mention of the natural numbers, much less induction
or recursion!


