Ma 116a Homework #1

Due Thursday, January 18th at 1:00pm

- 1) For sets x and y, let $\langle x, y \rangle$ denote the Kuratowski pair $\{\{x\}, \{x, y\}\}$ of x and y.
 - i. Write a first-order formula $\varphi(z, x, y)$ in the language of set theory (i.e. using only the relations \in and =) expressing $z = \langle x, y \rangle$.
 - ii. Verify the claim made in class: for all sets x, y, z, w we have $\langle x, y \rangle = \langle z, w \rangle$ iff x = z and y = w.
 - iii. Show that we could not prove the claim in (ii.) if we had defined $\langle x, y \rangle$ to be $\{x, \{y\}\}$.
- 2) Let \mathcal{M} be the universe of sets consisting of the empty set and a set $x = \{x\}$ that contains itself as a singleton. More formally, $\mathcal{M} = (\{\emptyset, x\}, \in)$, where \in is the binary relation $\{(x, x)\}$ (that is, \in asserts $x \in x$ and nothing else). Argue that \mathcal{M} satisfies Set Existence, Extensionality, and Comprehension. Clearly, \mathcal{M} does not satisfy Pairing. What about Union? Replacement?
- 3) Verify the following facts about ordinals that we stated in class:
 - i. If x is an ordinal and $y \in x$, then y is an ordinal and y = pred(y).
 - ii. If x and y are ordinals and $x \cong y$ (as orders) then x = y (as sets).
 - iii. (Comparison for ordinals) If x and y are ordinals, then exactly one of the following holds: $x \in y$, $y \in x$, x = y.
 - iv. If x, y, and z are ordinals and $x \in y$ and $y \in z$, then $x \in z$.
 - v. If C is a non-empty set of ordinals, then $\exists x \in C \forall y \in C (x \in y \lor x = y)$.
- 4) Suppose α, β , and γ are ordinals.
 - i. Suppose $\alpha < \beta$. Show that $\gamma + \alpha < \gamma + \beta$.
 - ii. Suppose $\alpha \leq \beta$. Show there is a unique ordinal δ such that $\alpha + \delta = \beta$.
 - iii. Show that if there is an order-preserving injection $f: \alpha \to \beta$ (not necessarily onto an initial segment of β), then $\alpha \le \beta$.
 - iv. Suppose $\alpha < \beta$. Show that $\alpha + \gamma \leq \beta + \gamma$. Find an example to show that $\alpha + \gamma < \beta + \gamma$ may fail to hold.