Ma 116a Homework #4

Due Tuesday, October 31st at 1:00pm

All numbered exercises are from Marker.

- 1) 2.5.9, 2.5.15 (a)
- 2) Read the definition of an "existentially complete model" of a theory T from Marker's book, Exercise 2.5.17. Let \mathcal{L} be a countable language and T a theory in \mathcal{L} , which is $\forall \exists$ -axiomatizable (see Exercise 2.5.15). Then for any countable model \mathcal{M} of T, there is a countable model \mathcal{N} of T such that $\mathcal{M} \subseteq \mathcal{N}$ and \mathcal{N} is existentially complete. (**Remark.** Exercise 2.5.17 (a) has a more general statement note that in this exercise it should say that \mathcal{N} is a model of T.)
- 3) Let $\mathcal{M} = \langle M, < \rangle$, where M is the set of real numbers whose decimal expansion has an even number of 7's and < is the usual ordering of the reals. Let $\mathcal{N} = \langle \mathbb{Q} \times \mathbb{Q}, <_{\text{lex}} \rangle$, where $<_{\text{lex}}$ is the lexicographical ordering of the set of pairs of rationals. Show that \mathcal{M} and \mathcal{N} are elementarily equivalent.
- 4) Suppose that $\mathcal{M} \subseteq \mathcal{N}$ are two structures for a language \mathcal{L} . Assume that there is a set of partial isomorphisms I between \mathcal{M} and \mathcal{N} that satisfies the back-and-forth property, and the following additional condition: for any $a_1, \ldots, a_n \in \mathcal{M}$, there is $\pi \in I$ such that $\pi(a_i) = a_i, \forall i$. Show then that \mathcal{M} is an elementary substructure of \mathcal{N} . Use this to prove that $\langle \mathbb{Q}, \langle \rangle$ is an elementary substructure of $\langle \mathbb{R}, \langle \rangle$.
- 5) In class we showed that the following is a set of axioms for $Th(\langle \mathbb{N}, S, 0 \rangle)$, where S is the successor function:
 - $\forall x (S(x) \neq 0)$
 - $\forall x \forall y (x \neq y \Rightarrow S(x) \neq S(y))$
 - $\forall y (y \neq 0 \Rightarrow \exists x (S(x) = y))$
 - $\forall x(S^n(x) \neq x), n = 1, 2, \dots$, where S^n means n applications of the function symbol S.

Show that $Th(\langle \mathbb{N}, S, 0 \rangle)$ is not finitely axiomatizable, i.e., there is no finite set of axioms for this theory.