$\underset{\text{Due Tuesday, October 24th at 1:00pm}}{\text{Ma 116a Homework }\#3}$

All numbered exercises are from Marker.

- 1) 2.5.3
- 2) 2.5.4
- 3) 2.5.7 (the axioms for Peano arithmetic can be found on page 18)
- 4) Let \mathcal{L} be a first order language and let \mathcal{C} be a class of structures in \mathcal{L} . Denote by \mathcal{C}' the class of structures that are not in C. Show that if both C and C' are elementary, then there is a single sentence σ such that $\mathcal{C} = \{ \mathcal{M} : \mathcal{M} \models \sigma \}.$
- 5) Consider the language of rings. Let σ be a sentence in this language that is true in every field of characteristic 0. Show that there is a number p such that σ is true in every field of characteristic at least p. Conclude that the theory of fields of characteristic 0 is *not* finitely axiomatizable.

An \mathcal{L} -theory T is finitely axiomatizable if there is a finite \mathcal{L} -theory T' such that for every sentence σ we have $T \models \sigma$ if and only if $T' \models \sigma$. (Observe that if T is finitely axiomatizable, then actually it can be axiomatized by a single sentence.)