BERNOULLI DISJOINTNESS (AFTER BERNSHTEYN)

FORTE SHINKO

Fix an infinite (not necessarily countable) discrete group G. A G-flow is a nonempty compact Hausdorff space X equipped with a continuous action of G. A very important G-flow is the Bernoulli shift n^G, where n is finite.

A subflow of a G-flow X is a non-empty closed G-invariant subset of X. Given two G-flows X and Y, a joining of X and Y is a subflow of $X \times Y$ which projects onto X and Y. We say that X and Y are disjoint, denoted $X \perp Y$, if the only joining of X and Y is the trivial joining $X \times Y$. This is equivalent to saying that if Z is a G-flow which has X and Y as factors, then these factor maps factor through $X \times Y$.

A G-flow X is minimal if every orbit of X is dense. If a G-flow X is disjoint from n^G, then it is easy to show that X must be minimal. It was shown in [GTWZ] that this is the only restriction:

Theorem 1 (Glasner-Tsankov-Weiss-Zucker). $X \perp n^G$ for any minimal G-flow X.

This property is called **Bernoulli disjointness** for obvious reasons.

1. **Proof of Bernoulli disjointness**

The original proof of Theorem 1 involved casework depending on various properties of G, and using many difficult results as a blackbox. Recently Anton Bernshteyn found a nicer proof of this result using the Lovász Local Lemma, which works uniformly for all groups G (see [Ber]). His proof is as follows:

Proof of Theorem 1. Let $Z \subset X \times n^G$ be a joining. To show that $Z = X \times n^G$, it suffices to show that Z is dense. So fix nonempty open sets $U \subset X$ and $V \subset n^G$. We need to show that $Z \cap (U \times V)$ is nonempty.

We claim that it suffices to find a subset $F \subset G$ satisfying the following two conditions:

1. $\bigcap_{f \in F} f \cdot U$ meets every orbit (in X).
2. $F \cdot V$ contains an orbit (in n^G).

To see this, suppose that the orbit $G \cdot y$ is contained in $F \cdot V$. Then there is some $x \in X$ with $(x, y) \in Z$. Now there is some $g \in G$ with $g \cdot x \in \bigcap_{f \in F} f \cdot U$. Since $g \cdot y \in F \cdot V$, there is some $f \in F$ with $g \cdot y \in f \cdot V$, so since $g \cdot x \in f \cdot U$ as well, we have $g \cdot (x, y) \in f \cdot (U \times V)$. Thus $f^{-1}g \cdot (x, y) \in U \times V$, and this is also in Z since Z is G-invariant.

We first find a family of subsets satisfying Condition 1. Fix any point $x_0 \in X$, and let $S = \{g \in G : x_0 \in g \cdot U\}$. Note that any finite subset F of S satisfies Condition 1, since the intersection is a nonempty open set (since it contains x_0) and thus meets every orbit by minimality of X. We claim that S is infinite. Indeed, let $T \subset G$ be a finite subset such that $X = T \cdot U$ (this exists by minimality and compactness, since minimality implies $X = G \cdot U$). Then for every $g \in G$, we have $X = gT \cdot U$, and thus there is some $t \in T$ with $x_0 \in gt \cdot U$,
and thus \(gt \in S \), i.e. \(g \in t^{-1}S \). Thus \(G = T^{-1}S \), so since \(T \) is finite, \(S \) must be infinite (in fact left-syndetic).

So \(S \) has arbitrarily large finite subsets, and thus it suffices to show that a sufficiently large subset of \(S \) satisfies Condition 2. We will show the following stronger fact, which is interesting in its own right:

Theorem 2 (Bernshteyn). Let \(V \) be a non-empty open subset of \(n^G \). Then for every sufficiently large finite subset \(F \subset G \), the set \(F \cdot V \) contains an orbit.

Proof of Theorem 2. Let \(F \subset G \) be a finite subset. Without loss of generality, we can shrink \(V \) so that \(V = V_{\phi} \), where \(V_{\phi} \) is the basic open neighbourhood defined by a finite partial function \(\phi : G \to 2 \), say with \(\text{dom} \phi = D \).

We claim that we can assume without loss of generality that \(F \) is \(D \)-separated, i.e. such that for any \(f, f' \in F \), we have \(fD \cap f'D = \emptyset \) (i.e. the \(D \)-balls in the Cayley graph are disjoint). To see that this, note that we can recursively construct a \(D \)-separated subset of \(F \) of size \(\geq |F|/2 \) as follows: pick any \(f_0 \in F \), then pick any \(f_1 \in F \setminus (D^{-1}Df_0) \), then pick any \(f_2 \in F \setminus (D^{-1}D\{f_0, f_1\}) \), and so on (each step removes at most \(|D| \) elements from \(F \)).

Now for \(F \cdot V_{\phi} \) to contain an orbit is equivalent to saying that the following intersection is nonempty:

\[
\bigcap_{g \in G} gF \cdot V_{\phi}.
\]

By compactness, it suffices to show that each finite intersection is nonempty.

Endow \(n^G \) with the product of the uniform probability measures. We recall the Lovász Local Lemma:

Theorem 3 (Lovász Local Lemma). Let \(\mathcal{A} \) be a set of events in a probability space, each with probability \(\leq p \), such that for \(A \in \mathcal{A} \), there is a subset \(B \subset A \) with \(|A \setminus B| \leq d \) such that \(A \) is independent from \(B \). If

\[
4p(d + 1) < 1,
\]

then for any \(A_0, \ldots, A_k \in \mathcal{A} \), we have \(\mathbb{P}[\bar{A}_0 \cdots \bar{A}_k] > 0 \).

We verify the hypotheses of the Lovász Local Lemma for \(\mathcal{A} = \{ \neg(gF \cdot V_{\phi}) \}_{g \in G} \).

For a given \(g \in G \), since \(F \) is \(D \)-separated, the sets \(gf \cdot D \) are pairwise disjoint for distinct \(f \in F \), and thus

\[
\mathbb{P}[\neg(gF \cdot V_{\phi})] = \prod_{f \in F} \mathbb{P}[\neg(V_{g \cdot \phi})] = \left(1 - \frac{1}{n|D|}\right)^{|F|}.
\]

Now the event \(gF \cdot V_{\phi} \) is independent with the set \(\{ hF \cdot V_{\phi} : hF \text{ and } hF \text{ are disjoint} \} \). If \(gF \) and \(hF \) are not disjoint, then

\[
h \in gFDD^{-1}F^{-1},
\]

and thus the event \(gF \cdot V_{\phi} \) is independent with a set of cocardinality \(\leq |D|^2|F|^2 \). So for the Lovász Local Lemma to hold, we need the following inequality to hold:

\[
4 \cdot \left(1 - \frac{1}{n|D|}\right)^{|F|} \left(|D|^2|F|^2 + 1\right) < 1
\]

which clearly holds for \(F \) sufficiently large. \(\square \)

This concludes the proof of Bernoulli disjointness. \(\square \)
Appendix A. Proof of the Lovász Local Lemma

We restate the Lovász Local Lemma.

Theorem 4 (Lovász Local Lemma). Let \mathcal{A} be a set of events in a probability space, each with probability $\leq p$, such that for $A \in \mathcal{A}$, there is a subset $B \subset \mathcal{A}$ with $|A \setminus B| \leq d$ such that A is independent from B. If

$$4p(d + 1) < 1,$$

then for any $A_0, \ldots, A_k \in \mathcal{A}$, we have $\mathbb{P}[\bar{A}_0 \cdots \bar{A}_k] > 0$.

This is the original proof (see Lemma, p.616 in [EL]):

Proof. We prove the following stronger claim:

Proposition 1. For any distinct $A_0, \ldots, A_k \in \mathcal{A}$, we have

1. $\mathbb{P}[\bar{A}_1 \cdots \bar{A}_k] > 0$ and
2. $\mathbb{P}[A_0 | \bar{A}_1 \cdots \bar{A}_k] \leq 2p$.

Proof. We proceed by strong induction on k.

Note that (1) clearly holds when $k = 0$, and if $k > 0$, then $\mathbb{P}[A_1 | \bar{A}_2 \cdots \bar{A}_k] \leq 2p$, so

$$\mathbb{P}[\bar{A}_1 | \bar{A}_2 \cdots \bar{A}_k] \geq 1 - 2p > 2p \geq 0$$

where we use that $4p < 1$, and thus $\mathbb{P}[\bar{A}_1 \cdots \bar{A}_k] > 0$.

For (2), assume wlog that A_0 is independent from $\{A_{q+1}, \ldots, A_k\}$, where $q \leq d$. Then we have

$$\mathbb{P}[A_0 | \bar{A}_1 \cdots \bar{A}_k] = \frac{\mathbb{P}[A_0 \bar{A}_1 \cdots \bar{A}_q | \bar{A}_{q+1} \cdots \bar{A}_k]}{\mathbb{P}[\bar{A}_1 \cdots \bar{A}_q | \bar{A}_{q+1} \cdots \bar{A}_k]}$$

The numerator is $\leq p$ as follows:

$$\mathbb{P}[A_0 \bar{A}_1 \cdots \bar{A}_q | \bar{A}_{q+1} \cdots \bar{A}_k] \leq \mathbb{P}[A_0 | \bar{A}_{q+1} \cdots \bar{A}_k] \leq \mathbb{P}[A_0] \leq p$$

The denominator is $> \frac{1}{2}$ as follows:

$$\mathbb{P}[\bar{A}_1 \cdots \bar{A}_q | \bar{A}_{q+1} \cdots \bar{A}_k] \geq 1 - \sum_{i=1}^{q} \mathbb{P}[A_i | \bar{A}_{q+1} \cdots \bar{A}_k] \geq 1 - \sum_{i=1}^{q} 2p \geq 1 - 2pd > \frac{1}{2}$$

where the last inequality uses that $4pd < 1$. So we are done.

References

