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Abstract
We consider the problem of identifying the causal relationships among a set of variables in the
presence of both feedback loops and unmeasured confounders. This is a challenging task which,
for full identification, typically requires the use of randomized experiments. For linear systems,
Eberhardt et al (2010) recently provided a procedure for integrating data from several experiments,
and gave a corresponding, but demanding, identifiability condition. In this paper we (i) charac-
terize the underdetermination of the model when the identifiability condition is not fully satisfied,
(ii) show that their algorithm is complete with regard to the search space and the assumptions, and
(iii) extend the procedure to incorporate the common assumption of faithfulness, and any prior
knowledge. The resulting method typically resolves much additional structure and often yields
full identification with many fewer experiments. We demonstrate our procedure using simulated
data, and apply it to the protein signaling dataset of Sachs et al (2005).

1 Introduction

Researchers are frequently interested in discovering
the causal relationships among some given set of
variables under study. Such relationships are often
represented as directed graphs, in which the vari-
ables constitute the nodes of the graph, and a di-
rected edge from one variable xi to another vari-
able x j indicates that xi is a direct cause of x j rel-
ative to that set of variables. Since causal rela-
tions are not directly observable they must be in-
ferred from available experimental or passive obser-
vational data. Several algorithms have been devel-
oped that discover as much as possible about such
causal relations from passive observational data.
One of the difficulties these algorithms confront is
the almost inevitable underdetermination of the true
causal structure. This problem is exacerbated when
there are unmeasured (latent) common causes of
the set of variables under consideration, or when
there are feedback loops. Consequently, constraints
are typically placed on the search space the algo-
rithms consider: The ‘FCI’ algorithm (Spirtes et
al., 2000) only considers acyclic causal structures
but allows latent variables, while the ‘CCD’ algo-
rithm of Richardson (1996) can handle cyclic causal

systems but does not allow for latents. Even with
these restrictions, both algorithms can at best return
equivalence classes of causal graphs.

Thus, it is common to turn to experimental data.
While randomized experiments break confounding
and feedback loops, they pose different challenges.
Given that experiments are often costly, how can
we identify the causal structure from as few ex-
periments as possible? How can we integrate the
data from several existing experiments to yield as
much information as possible about the causal re-
lationships among the variables? In this paper, we
show how to efficiently perform such causal discov-
ery in linear models from a combination of obser-
vational and experimental data, while allowing both
feedback loops and confounding hidden variables.

We consider a standard class of models known as
linear non-recursive structural equation models with
correlated disturbances (Bollen, 1989). Specifically,
let V = {x1, . . . , xN} denote the set of observed vari-
ables. Arranging these variables into the vector x,
the linear model is given by

x := Bx + e, (1)

where each element b ji of B gives the direct ef-
fect from xi to x j, also denoted b(xi → x j), and
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Figure 1: (a) Example model. (b) Manipulated
model, corresponding to an experiment (Jm,Um)
where Jm = {x1, x3} and Um = {x2, x4}. Disturbance
variables are not shown.

the random vector e contains zero-mean disturbance
(error) variables with a covariance matrix Σe =
E{eeT }. An example model is given in Figure 1a.

An experiment Em = (Jm,Um) divides V into two
mutually exclusive and exhaustive sets Jm and Um.
Jm contains the variables subject to an intervention
in Em and Um contains the variables that are pas-
sively observed in that experiment. In such an ex-
periment, all variables xi ∈ Jm are independently
and simultaneously randomized. In terms of the di-
rected graph, this is represented by cutting all edges
into any such variable (Pearl, 2000). In terms of
the parameters, we thus have a manipulated model
(Bm,Σm

e ), where Bm is equal to B except that all
rows corresponding to such randomized variables
are set to zero, and Σm

e equals Σe but with all rows
and columns corresponding to randomized variables
set to zero, except for the corresponding diagonal
element which is set to equal one due to the fixed
variance of the randomization. See Figure 1b.

If the variables cannot be ordered such that the
corresponding B is lower-triangular we have a truly
non-recursive system that cannot be represented as
a directed acyclic graph (DAG). If Σe has non-zero
off-diagonal entries the system is said to exhibit
confounding due to latent variables. In each ex-

periment Em the data are generated such that a ran-
dom sample of disturbance vectors e are drawn with
(manipulated) covariance Σm

e , and we observe the
vectors x (and hence their covariance Σm

x ) generated
(at equilibrium) from the model with (manipulated)
coefficient matrix Bm. For the feedback system to
reach equilibrium, the absolute values of all eigen-
values of Bm must be smaller than one.1 A passive
observational dataset is obtained in an ‘experiment’
in which Jm = ∅ and Um = V.

In an experiment in which xi ∈ Jm and x j ∈
Um, the experimental effect of xi on x j, denoted
t(xi�x j || Jm), is defined as the covariance of xi and
x j in this experiment, i.e. Σm

x [i, j]. This is equal to
the sum of the strenghts of all uncut directed paths
from xi to x j, where the strength of a path is simply
the product of the edge coefficients (direct effects)
on that path.2

Our task is to devise a sequence of experiments
(E1, . . . ,EM), and corresponding estimation proce-
dure, that fully identifies the parameter matrices B
and Σe, in the sense that the estimates are consistent
(converge to the true values in the infinite sample
limit). Alternatively or in addition, for a fixed set of
experiments one would like to recover as many as
possible of these parameters. Note that if all but
one variable is randomized in an experiment (i.e.
Jm = V \ {x j}) one can consistently estimate all
direct effects b(xi → x j), ∀i � j, since in this
experiment the direct effects equal the experimen-
tal effects. Thus one solution to identify B con-
sists of M = N such experiments each interven-
ing on N − 1 variables. If in addition a passive
observational dataset were available, one can ob-
tain a consistent estimate of Σe from the identity
Σx = (I − B)−1Σe(I − B)−T , where Σx is the co-
variance of x in a passive observational dataset.

Can we get by with fewer experiments? Recently,
Eberhardt et al (2010) provided a procedure that
identifies the full matrix B if and only if the follow-
ing pair condition holds for each ordered variable
pair (xi, x j) ∈ V × V, with i � j: there is an ex-
periment Em = (Jm,Um) in the sequence in which
xi ∈ Jm and x j ∈ Um.

1As in (Eberhardt et al., 2010) we assume that this condition
is satisfied for all possible manipulations of the B-matrix.

2Note that this sum has an infinite number of terms when
the model is cyclic.



However, several questions were left unanswered
in their study. First, if the pair condition is not sat-
isfied for all ordered pairs, which direct effects are
identified and which are not? Second, is it possible
that some alternative procedure might identify the
full model even when for some pairs the condition
is not satisfied? Finally, satisfying the pair condition
for all ordered pairs is a very high bar for the identi-
fiability of the underlying causal structure, as it re-
quires that each variable must be subject to at least
one intervention at some point in the sequence of
experiments. For any observed variable that is not
subject to an intervention their algorithm can only
discover the causal structure marginalized over that
variable. Thus, can we make use of prior knowl-
edge when available, or strengthen some of the as-
sumptions, to avoid requiring the pair condition for
all pairs? We answer these three questions in Sec-
tions 2–4, respectively. Then, in Section 5, we de-
scribe a simple adaptive procedure for selecting the
sequence of experiments, while providing simula-
tions in Section 6 and an application to the protein
signaling dataset of Sachs et al (2005) in Section 7.
Conclusions are given in Section 8.

2 Characterization of underdetermination

Eberhardt et al (2010) showed that if the pair con-
dition (see Section 1) is not satisfied for all or-
dered pairs then their estimation procedure leaves
some total effects undetermined, and hence some
elements of the direct effects matrix B are unde-
termined as well. They then suggested a numerical
heuristic to identify the set of edges that are not yet
determined. Here we show how, using an alterna-
tive formulation of the procedure, we obtain a char-
acterization of the remaining underdetermination in
the direct effects.

From an experiment Em = (Jm,Um), with xi ∈ Jm
and x j ∈ Um, Eberhardt et at (2010) showed that one
can derive linear constraints on the total effects en-
tailed by the model. For the purposes of the present
paper, it is much more useful to work with the direct
effects. We can similarly derive the following linear
constraints expressing the experimental effects as a
linear sum of direct effects:

t(xi�x j || Jm) =
�

xk∈Um\x j

t(xi�xk || Jm) b(xk → x j)

+ b(xi → x j) (2)

For instance, for the experiment of Figure 1b, with
i = 3 and j = 4, we get t(x3�x4 || Jm) =
t(x3�x2 || Jm)b(x2 → x4) + b(x3 → x4), which is
easily verified. This equation holds for cyclic as
well as acyclic systems, and derives from the def-
inition of the experimental effect from xi to x j (see
Section 1). When grouping all directed paths from
xi to x j according to the final edge into x j, each
such group represents another experimental effect
obtainable from Em. Note that the experimental ef-
fects t(xi�x j || Jm) and t(xi�xk || Jm) are numerical
quantities estimated from the experiments, and the
unknowns are the direct effects b(xk → x j), ∀xk ∈
Um \ x j, and b(xi → x j).

This alternative representation immediately lends
itself to the identification of the underdetermination
in the direct effects. All linear equations of the form
of equation 2 can be written into a matrix equation
Kb = k, where the unknown vector b groups the
elements of the unknown matrix B. A given element
of b (and hence of B) is undetermined if and only
if that element is involved in the nullspace of the
constraint matrix K.

The above characterization does not provide
much of an understanding of the underdetermina-
tion in terms of the graph structure. Nevertheless,
consider the following. Any direct effects b( • →
x j) into x j are only constrained by experiments in
which x j ∈ Um. That is, the direct effects occur only
in constraints of this type and there is only one (lin-
early independent) such constraint for each ordered
pair (•, x j) that the pair condition is satisfied for.
Thus, in the general case, when the pair condition
is not satisfied for a particular pair (xi, x j) then the
entire j:th row of B is undetermined. Conversely,
since the direct effects into x j are the only direct
effects that enter into these types of constraints, it
follows that if the pair condition is satisfied for all
pairs (•, x j), then n−1 constraints can be determined
and the row in B specifying the direct effects into x j
is fully identified. Hence, to guarantee the identifi-
ability of a given direct effect b(xi → x j), it is nec-
essary to satisfy the pair condition for all ordered
pairs (xk, x j) with k � j. Note that in particular



graphs it may be possible to identify a direct effect
b(xi → x j) even when the above condition is not
true. In all cases, our code package provides the
user with an explicit characterization of which co-
efficients are determined and which are not, given
the results of any provided set of experiments.

3 Completeness of the procedure

An important question concerns whether the pro-
cedure introduced by Eberhardt et al (2010) fully
exploits all the available data. Each experiment
Em = (Jm,Um) supplies a data covariance matrix
Σm

x , in which each entry Σm
x [i, j] specifies the co-

variance between xi and x j in the experiment Em.
The procedure as described (and the related pair
condition theorem the authors gave) is based ex-
clusively on constraints due to the experimental ef-
fects t(xi�x j || Jm) = Σm

x [i, j] where xi ∈ Jm and
x j ∈ Um. These covariances only constitute part
of the information contained in a data convariance
matrix Σm

x . In particular, the covariances between
non-intervened variables, Σm

x [ j, k] with x j, xk ∈ Um,
were not utilized at all.3 It is tempting to think
that this additional source of information could pro-
vide further leverage to identify the causal structure,
and thereby reduce the demands for identifiability.
However, we have the following negative result:
Lemma 1. Let the true model generating the data
be (B,Σe). For each of the experiments (Em)m=1,...,M
the obtained data covariance matrix is Σm

x . If there
is a direct effects matrix �B � B such that for all
(Em)m=1,...,M and all xi ∈ Jm and x j ∈ Um it produces
the same experimental effects t(xi�x j || Jm), then
the model (�B,�Σe) with �Σe = (I − �B)(I − B)−1Σe(I −
B)−T (I−�B)T has data covariance matrices�Σm

x = Σ
m
x

for all m = 1, ...,M.
Proof. The proofs for all results given in this paper
are provided in online supplementary material at:
http://cs.helsinki.fi/u/ajhyttin/exp/

When B is underdetermined Lemma 1 constitutes
a constructive proof that any measure of the co-
variance between two non-intervened variables pro-
vides no additional help with the identifiability of

3Obviously, when two variables are both in Jm, then the co-
variance between them in that experiment is zero by assump-
tion, since simultaneous interventions are assumed to make the
intervened variables independent.

B in the model space considered in (Eberhardt et
al., 2010). Intuitively, this result is a consequence
of the dependence of the covariances between non-
intervened variables on the model’s disturbance co-
variance matrix Σe. The additional (n2 + n)/2 un-
known parameters of Σe swamp the gains these co-
variance measures provide. Lemma 1 implies that
the pair condition theorem can be strengthened to
state that the method of Eberhardt et al. (2010) is
complete with regard to the information contained
in the data covariance matrices for the search space
they consider.

Theorem 1 (Completeness Theorem). Given the
data covariance matrices from a sequence of exper-
iments (Em)m=1,...,M over the variables in V, all di-
rect effects b(xi → x j) are identified if and only if
the pair condition is satisfied for all ordered pairs
of variables w.r.t. these experiments.4

However, measures of the covariances between
non-intervened variables are necessary to identify
the disturbance covariance matrixΣe (specifying the
latent variables). In the original procedure Σe was
determined using measurements from an additional
passive observational dataset (with Jm = ∅). It can
be shown that a much weaker condition, similar to
the pair condition for experimental effects, is neces-
sary and sufficient for the identification of Σe, if B is
already determined. We can thus state the following
general theorem of model identifiability:

Theorem 2 (Model Identifiability Theorem). Given
a sequence of experiments (Em)m=1,...,M over the
variables in V the model (B,Σe) is fully identified if
and only if for each ordered pair of variables (xi, x j)
there is an experiment Eb = (Jb,Ub) with xi ∈ Jb
and x j ∈ Ub and another experiment Ee = (Je,Ue)
with xi, x j ∈ Ue.

Thus, the good news is that the algorithm given
by (Eberhardt et al., 2010) does as well as it possibly
could with regard to identifiability. The bad news is
that the generality of its search space implies that
the conditions for identifiability are very demand-
ing. Hence, in the following section we consider
how the use of background knowledge or an addi-
tional assumption of faithfulness can help.

4Note the inevitable limitation of identifiability with regard
to self-loops discussed in (Eberhardt et al., 2010).



4 The faithfulness assumption

When two variables are independent one commonly
assumes that they are not causally connected. How-
ever, this assumption is non-trivial, since it pre-
cludes, for example, cases where two variables are
connected by two separate pathways that exactly
cancel each other out. The two variables are then
probabilistically independent, while they are still
causally connected by a directed path.

For instance, in the model of Figure 2a, in an
experiment where x1 is randomized, and x2 and x3
are (passively) observed, x1 and x3 would be found
marginally independent, but dependent conditional
on x2. Such an observation could have many possi-
ble alternative explanations, two of which are shown
in Figures 2b and 2c. In such cases scientists do of-
ten make the assumption that an absence of a cor-
relation is an indication of the absence of a causal
connection, and hence favor explanations (b) and (c)
over (a). In this section we introduce inference rules
that take advantage of this intuition.

The structure of a model entails certain marginal
and conditional independencies in the resulting dis-
tribution; these are characterized by the Markov
condition, and Spirtes (1995) has shown that the fa-
miliar concept of d-separation specifies all and only
the independencies entailed in all linear structural
equation models, including cyclic (non-recursive)
models. The intuition given above is then formal-
ized in the faithfulness assumption, which states that
all independencies in the population distribution are
derived from the structure of the graph, rather than
specific parameter values (Spirtes et al., 2000; Pearl,
2000).

For maximum generality, the algorithm in (Eber-
hardt et al., 2010) did not use the assumption of
faithfulness. However, given the demanding iden-
tifiability conditions (see Section 1), it is worth in-
vestigating whether faithfulness might add substan-
tial benefit when the pair condition is not satisfied
for all ordered pairs of variables.

In general, causal discovery based on faithfulness
proceeds in two steps. First, independence tests are
used to detect the absence of edges between pairs of
variables. Subsequently, the detected absences are
used to ‘orient’ as many as possible of the remaining
edges. We here employ an analogous approach.

(a) ��������x1
a ��

−ab

����������x2
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u
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����������x1 �� ��������x2 ��������x3

Figure 2: Example graphs. In (c) u is unmeasured.

First, we rely on the fact that if, in any experi-
ment Em = (Jm,Um), two non-intervened variables
xi, x j ∈ Um are marginally or conditionally indepen-
dent (with any conditioning set not including xi and
x j), then by faithfulness b(xi → x j) = b(x j → xi) =
Σe[i, j] = 0. Similarly, if xi ∈ Jm and x j ∈ Um
are found marginally or conditionally independent,
faithfulness requires that b(xi → x j) = 0. (Note that
while independencies imply the absence of edges,
dependencies do not necessarily imply the presence
of any edge between a given pair of edges.) In our
implementation we run the statistically and compu-
tationally efficient schedule of independence tests
suggested by the PC-algorithm (Spirtes et al., 2000)
on the data from each experiment separately. Al-
thought PC is designed for a different search space,
any indepencies found are usable in our procedure
as well. Any obtained constraints are termed skele-
ton constraints.

The orientation rules of the second step of the in-
ference are more intricate. We cannot simply adopt
the orientation rules from existing constraint-based
algorithms since they only provide orientation rules
for search spaces where the true causal structure
either contains latent variables but no cycles (FCI,
(Spirtes et al., 2000)) or contains cycles but no la-
tent variables (CCD, (Richardson, 1996)). Since our
model space contains both latent variables and cy-
cles, and we have the advantage of experiments, dif-
ferent orientation rules are required. We employ the
following two rules that take advantage of the ori-
entation supplied by interventions. Any constraints
thus obtained are termed orientation constraints:

(1) If in a given experiment we have xi ∈ Jm
and x j, xk ∈ Um, and t(xi�x j || Jm) � 0 but
t(xi�xk || Jm) = 0, then b(x j → xk) = 0 by faithful-



ness. For instance, in the model of Figure 1a, in an
experiment with Jm = {x3}, we see an experimental
effect from x3 to x2, but no experimental effect from
x3 to x1. We would thus infer that b(x2 → x1) = 0.
Similarly we would infer that b(x4 → x1) = 0. This
rule is sound because by the antecedent there is a
directed path from xi to x j so that, were there a non-
zero direct effect b(x j → xk) it would follow that
there would be a directed path from xi to xk, which
for a faithful model would imply a non-zero experi-
mental effect of xi on xk.

(2) Again, if we have xi ∈ Jm and x j, xk ∈ Um,
and observe t(xi�x j || Jm) � 0, and in addition xi
is conditionally independent of xk given x j, then we
infer that b(xk → x j) = 0 and Σe[ j, k] = 0. The rule
is correct under faithfulness because we must have
a directed path from xi to x j, so if there existed a
direct effect from xk to x j (or a confounder between
the two) by faithfulness this would cause a depen-
dence between xi and xk when conditioned on the
collider x j.

Since all the new constraints are (trivially) linear
in the direct effects, they can be directly added to
the set of constraints on the direct effects given by
the experimental effects described in Section 2. The
combined system can then be solved and the under-
determination characterized as before.

We note that the above rules clearly do not
exhaust the inferences that could (potentially) be
drawn by faithfulness. It is an open (and intrigu-
ing!) problem to devise a set of complete rules for
causally insufficient, cyclic discovery.

Finally, if by domain knowledge we are guaran-
teed that xi does not have a direct effect on x j (with
respect to V), then we may naturally add the con-
straint b(xi → x j) = 0. Such prior knowledge may
be particularly useful for dense graphs or models
which are close to unfaithful, when the faithfulness
rules would not apply or would be unreliable.

5 Adaptive selection of experiments

While the form of the constraints obtained from the
experimental effects (given in Section 2) can be pre-
dicted ahead of performing the experiments, con-
straints due to faithfulness come as an unexpected
‘bonus’: We cannot know ahead of time which inde-
pendencies will be uncovered. Hence, to minimize

the total number of experiments, one must react and
adapt the sequence to newly discovered constraints.

We have found that a simple greedy selection pro-
cedure works well. As in the original procedure of
Eberhardt et al (2010), we keep a list of which or-
dered pairs have the pair condition satisfied. How-
ever, in addition to pairs satisfied purely on the ba-
sis of the choice of previous experiments Em, we
also treat any pair (xi, x j) as if it is satisfied when-
ever, using the characterization of underdetermina-
tion in Section 2, the coefficient b(xi → x j) is de-
termined. This includes both coefficients directly
determined by background knowledge or our faith-
fulness rules, as well as coefficients indirectly deter-
mined by the collection of all existing constraints.
The next experiment is selected such that we maxi-
mize the number of ordered pairs for which the pair
condition is guaranteed to be satisfied after the ex-
periment, arbitrarily breaking ties. In the following
simulations, we demonstrate that, for sparse graphs,
this is an effective selection protocol.

6 Simulations

In this section, we describe a set of simulations on
random graphs that we used to investigate the power
provided by the faithfulness assumption.5

We generated a large number of random graphs
over 10 variables, with sparsity ranging from zero
edges up to 60 edges (out of 135 possible, count-
ing both direct and confounding edges). The coef-
ficients were drawn uniformly from [0.3, 0.8] with
random sign, and stability was examined by check-
ing the eigenvalues of the resulting B.

First, we study the theoretical limit behavior (in-
finite sample limit) of our procedure. In Figure 3a,
we plot the average number of experiments needed
to completely identify the model, as a function of
the underlying model sparsity and the number of in-
terventions per experiment. For one intervention per
experiment (left panel), in the absence of faithful-
ness rules the full 10 experiments are needed regard-
less of sparsity, while for relatively sparse graphs on
average a few experiments can be saved by utiliz-
ing faithfulness. When intervening on three vari-
ables per experiment (right panel), 7 experiments

5We encourage the interested reader to try out the method.
A complete implementation (reproducing all the simulations) is
available at: http://cs.helsinki.fi/u/ajhyttin/exp/



are needed in the basic case to satisfy the pair con-
dition for all pairs, and significant savings can be
obtained when using the faithfulness assumption.
Meanwhile, Figure 3b shows the number of ordered
pairs (a lower bound of the rank of the constraint
matrix) satisfied after only three experiments, as a
function of sparsity. It can be seen that for sparse
graphs, most of the structure of the graph has al-
ready been discovered at this stage of the sequence
of experiments.

Second, we look at finite sample behavior. Fig-
ure 4 shows the number of experiments used, as well
as the resulting accuracy (linear correlation between
estimated and true coefficients). In each experiment,
10,000 samples were used. We note the following:
To guarantee high accuracy in dense graphs, the pair
condition must be satisfied for all pairs based on
the experimental setup alone (as in the ‘no faithful-
ness’ procedure). However, when the true model is
sparse, significant savings in terms of the number
of experiments are possible. Especially when inter-
vening on several variables in each experiment, the
full model is typically identified with high accuracy
in just 4 experiments. Accuracy drops markedly for
dense graphs, as the number and size of possible
conditioning sets is so large that inevitably some de-
pendent variables are mistakenly inferred to be in-
dependent, yielding large errors. These erroneous
inferences cause the number of experiments to stay
roughly constant as a function of the number of
edges in the graph, in marked contrast to the infi-
nite sample limit of Figure 3a.

7 Application to flow cytometry data

Finally, we applied the algorithm (with the faithful-
ness rules) to the flow cytometry data of Sachs et al
(2005). In this data set only 4 of the 11 measured
variables were manipulated with no changes made
to the background conditions, see (Eberhardt et al,
2010) for details. This meant that the pair condition
was satisfied for only 40 ordered pairs out of the
total of 110. Together with the faithfulness rules,
however, these experiments were enough to deter-
mine a majority of the direct effects in the model.

We ran the inference procedure with a variety of
parameter settings (significance threshold for statis-
tical dependence, using the full faithfulness rules or
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Figure 3: Performance of the procedure in the
infinite-sample limit. (a) Number of experiments
needed to identify the full model, and (b) amount
of structure discovered after three experiments, as a
function of the number of edges in the graph.

only the skeleton rules, threshold for detecting de-
termined vs undetermined coefficients, etc). A typ-
ical result is shown in Figure 5. We emphasize that
our method assumes linearity, while the true model
is likely to be at least somewhat non-linear. Thus
the main interest lies in the resulting structure, and
possibly the signs of the direct effects. While there
were differences in the inferred graphs, many fea-
tures were common to all of our results.

In particular, we always find (a) the well known
Raf→Mek→Erk pathway (and invariably, in addi-
tion, Mek seems to have a direct effect on Raf),
(b) PKC influences (directly or indirectly) a num-
ber of targets, including Raf, PKA, and Jnk, and (c)
a strong association between PIP2 and PIP3 (and
these are sometimes though not always connected
with Plcg). These features are quite compatible with
the ‘ground truth’ (from the literature) model given
by Sachs et al (2005). However, our procedure also
suggests that many of the variables have effects into
PKA, something not supported by their model. Fi-
nally, we note that our method quite often detects
bidirectional relationships; at this point, we do not
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Figure 4: Results on simulated (sample) data.
(a) Number of experiments needed to identify the
model, and (b) accuracy (correlation between the
estimates and the true values), as a function of the
number of edges in the graph.

know whether this is due to the nature of our proce-
dure or whether this is a true feature of the data.

8 Conclusions

The discovery procedure is relatively unique in the
generality of the model space considered. While
there exists a large body of work on learning acyclic
causal structures with or without hidden variables,
there is comparatively little on learning models in-
volving feedback loops. Richardson (1996) gave
a constraint-based discovery procedure for passive
observational data, but did not allow for latent
variables. More recently, both Schmidt and Mur-
phy (2009) and Itani et al (2010) have introduced
probabilistic models for cyclic structures involving
discrete-valued variables, and given related discov-
ery procedures. While all of these methods use
somewhat different models and assumptions, ulti-
mately they nevertheless all share the goal of elu-
cidating causal structure among variables that are
recurrently connected. A thorough empirical study,
comparing the various methods both on simulations
and on a number of real datasets, would be an im-
portant next step.
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Figure 5: Protein interaction graph inferred from the
dataset of Sachs et al (2005), with ‘NA’ denoting
non-identified edge strengths (which could poten-
tially be zero, hence these edges are plotted with
dotted lines). Settings: significance threshold 0.05,
only skeleton rules.
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