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Unsupervised Large-Scale Search for Similar Earthquake Signals

by Clara E. Yoon, Karianne J. Bergen,* Kexin Rong, Hashem Elezabi, William L. Ellsworth,
Gregory C. Beroza, Peter Bailis, and Philip Levis

Abstract Seismology has continuously recorded ground-motion spanning up to dec-
ades. Blind, uninformed search for similar-signal waveforms within this continuous data
can detect small earthquakes missing from earthquake catalogs, yet doing so with naive
approaches is computationally infeasible. We present results from an improved version
of the Fingerprint And Similarity Thresholding (FAST) algorithm, an unsupervised
data-mining approach to earthquake detection, now available as open-source software.
We use FAST to search for small earthquakes in 6–11 yr of continuous data from 27
channels over an 11-station local seismic network near the Diablo Canyon nuclear
power plant in central California. FAST detected 4554 earthquakes in this data set, with
a 7.5% false detection rate: 4134 of the detected events were previously cataloged earth-
quakes located across California, and 420 were new local earthquake detections with
magnitudes −0:3 ≤ ML ≤ 2:4, of which 224 events were located near the seismic net-
work. Although seismicity rates are low, this study confirms that nearby faults are active.
This example shows how seismology can leverage recent advances in data-mining algo-
rithms, along with improved computing power, to extract useful additional earthquake
information from long-duration continuous data sets.

Supplementary Content: Figures comparing performance of the improved
Fingerprint And Similarity Thresholding (FAST) earthquake-detection algorithm to a
previous version of the FAST algorithm on a synthetic data set, examples of detected
signals that represent vibrations in the earth but are not the local earthquakes of primary
interest to this study, and historical catalog seismicity in the area near the Diablo Canyon
power plant (DCPP).

Introduction

Seismology has large data sets of continuous ground-
motion measurements, and the rate of data accumulation is
accelerating with the development and deployment of cheap,
capable sensors. For example, the Incorporated Research
Institutions for Seismology (IRIS) Data Management Center
(DMC) archive has over 500 TB of seismic time-series data as
of May 2019 (IRIS-DMC Archive, 2019). This data growth in
seismology is occurring in two complementary directions
(e.g., Lindsey et al., 2017). In one direction, the number of
seismic stations is rapidly growing, and there are examples of
dense temporary seismic networks with hundreds to thousands
of stations that can record the full seismic wavefield.
Recordings from such deployments are sometimes referred to
as large-N data sets (Li et al., 2018; Meng and Ben-Zion,
2018). In the other direction, a single-permanent seismic
station can have recorded continuous data for many years or

decades. We refer to these long-duration data as large-T
data sets.

Advances in computing technology, including increased
computing power, parallel and distributed processing, cheaper
memory, and archival data storage, together with the
development of new scalable data mining and machine-
learning algorithms, make it feasible to search for hidden
patterns in massive data sets. Seismology can benefit by
leveraging these advances to extract useful information. In this
study, we seek to detect more earthquakes from a large-T data
set near a critical facility: a nuclear power plant in central
California.

We focus on the problem of earthquake detection, which
is a fundamental first step in observational seismology.
Given existing seismic data, we would like to detect, locate,
and characterize earthquakes as completely and accurately as
possible. Earthquake catalogs generated either manually or
automatically by seismic networks are incomplete at lower
magnitudes, and the smallest earthquake signals remain hid-
den in continuous seismic data or are detected at too few
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stations to associate and locate. Seismologists have found
that waveform similarity between earthquakes is an effective
criterion for earthquake detection. Waveform matching does
not require impulsive high-energy arrivals as do short-term
average/long-term average (STA/LTA) ratio detectors (Allen,
1982; Withers et al., 1998; Velasco et al., 2016). It can be a
very sensitive detector of small earthquakes, especially when
applied across a network of multiple stations (Gibbons and
Ringdal, 2006). Seismic sources that repeat in time have very
similar waveforms when recorded at the same station, even if
they occur several years apart (Geller and Mueller, 1980;
Schaff and Beroza, 2004), because the velocity structure
of the Earth is essentially constant over time periods of seis-
mological observations (Poupinet et al., 1984; Schaff and
Beroza, 2004). Template matching, which cross-correlates
known catalog template waveforms with continuous data
to detect previously unknown low-magnitude events, is an
example of informed similarity search, because it requires
prior knowledge of a waveform already known to be an earth-
quake signal to detect other previously unknown earthquake
signals similar to it. Informed similarity search has been
applied to large-T continuous data sets, from 8- to 15-yr long
(Shelly, 2017; Skoumal et al., 2018; Ross et al., 2019) and has
successfully detected hundreds of thousands to millions of
smaller events. A limitation of this informed search is that
it requires prior knowledge of the desired signal.

We seek to search systematically for earthquakes using
similarity as a detection criterion in the absence of prior sig-
nal information, which is the case if template waveforms are
unknown or incomplete with respect to earthquake signals of
interest. In this situation, we need to perform uninformed, or
blind, search for similar earthquakes, checking pairs of short-
time windows from all possible times in the continuous data
for similarity. This is an example of an unsupervised
machine-learning approach to discover similar patterns in an
unstructured data set (James et al., 2017). Autocorrelation, a
brute-force uninformed search in which every time-window
pair within the continuous data is cross-correlated to deter-
mine their similarity (Brown et al., 2008; Aguiar and Beroza,
2014), is useful for detecting similar earthquakes within
short-duration data. However, it is computationally imprac-
tical for large-T data sets because the runtime scales quad-
ratically with the duration of continuous data. The Repeating
Signal Detector (Skoumal et al., 2016) accomplished a large-
T similarity search for earthquakes in 3 yr of continuous seis-
mic data, overcoming this computational limitation by first
setting a low STA/LTA threshold to focus on promising sig-
nals and then using a combination of features in the fre-
quency and time domains to identify earthquakes. The
Fingerprint And Similarity Thresholding (FAST) earthquake
detection algorithm (Yoon et al., 2015) takes a data-mining
approach to achieve an uninformed large-T similarity search
for earthquakes, avoiding comparisons between the vast
majority of times in the continuous data that are likely to
have low similarity. FAST detected a wealth of microearth-
quakes induced by hydraulic fracturing when applied to three

months of continuous data at one seismic station in Guy–
Greenbrier, Arkansas (Yoon et al., 2017). Previous efforts to
extend the uninformed similarity search beyond six months
of data with FAST (Yoon et al., 2015) failed due to memory
and runtime limitations in the original software.

Here, we demonstrate both the detection capability and
scalability of FAST on a large data set, enabled by several
improvements to the algorithm (Bergen et al., 2016; Bergen
and Beroza, 2018b) and software implementation (Rong et al.,
2018). FAST successfully detects small earthquakes missing
from the catalog with an uninformed search for similar earth-
quake signals on a large-T data set, with 6–11 yr of data at a
given station. FAST searches for times of similar earthquake
signals independently on one channel of seismic data at a time,
but detecting with multiple stations plays an essential role in
reducing false-positive detections. Therefore, we used a new
association algorithm (Bergen and Beroza, 2018a), originally
designed to work with FAST outputs, to associate pairs of
similar earthquakes across multiple stations within a seismic
network. FAST software is widely applicable to continuous
data of any duration, including large-T data, from any seismic
network.

Methods and Results

Data

The Diablo Canyon Power Plant (DCPP), located in the
central California coast (Fig. 1, star), is a nuclear power plant
operated by Pacific Gas and Electric Company (PG&E) to
generate electricity for northern and central California. The
presence of several Quaternary active faults near the DCPP
raises concerns about the possibility of an earthquake that
might damage this critical facility (Pacific Gas and Electric
Company [PG&E], 2011, 2014, 2015). PG&E installed a
relatively dense seismic network near DCPP, resulting in a
high-quality earthquake catalog, but the low-seismicity rate
limits the available information on the character of nearby
faults. To improve this situation, we perform an uninformed
search for similar earthquakes on up to 11 yr of continuous
data on an 11-station network (Fig. 1, inverted triangles)
within 30 km of the DCPP to detect small earthquakes missing
from the catalog.

These 11 stations are operated by PG&E (network code
PG) and the Northern California Seismic Network (NCSN,
network code NC), with a total of 27 channels of continuous
seismic data, each sampled at 100 Hz. Eight of these stations
have three components (east, north, and vertical), whereas
the other three stations (PG.SH, NC.PABB, and NC.PPB)
have one vertical component. The size of the raw time-series
data is about 500 GB (Table A1). For each channel, we
search for similar earthquakes, starting from the first avail-
able date of continuous recording and ending on 24 October
2017 00:00:00 coordinated universal time (UTC). The ear-
liest starting dates are 1 September 2006 at Station PG.SH
and 1 June 2007 at Station PG.DCD (resulting in over 10 yr
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of continuous data at these stations), whereas the latest
starting dates are 1 October 2011 at Station NC.PABB and
1 November 2011 at Station NC.PPB (resulting in 6 yr of
continuous data at these stations).

Large-T Earthquake Detection

The FAST earthquake-detection algorithm (Yoon et al.,
2015) finds small earthquakes hidden in continuous seismic
data through an uninformed, or blind, search for similar signals
at all times. FAST performs this similarity search over long-
duration continuous data by adapting data-mining techniques
originally developed for audio and image search within
massive databases. FAST converts seismic waveforms into
compact binary features called fingerprints, based largely on
time–frequency information from short-overlapping segments
of the spectrogram. The fingerprints are designed to be dis-
criminative: similar earthquake waveforms have highly similar
fingerprints, whereas fingerprints extracted from noise have
low similarity. FAST then uses locality-sensitive hashing
(LSH; Andoni and Indyk, 2006) to organize the fingerprints
into a database and efficiently search for similar fingerprints

with high probability by avoiding unnecessary comparison of
dissimilar fingerprints. Postprocessing software condenses the
similar fingerprint information into a list of times with earth-
quake detections. Before this study, the longest duration of
data processed by FAST was six months (Yoon et al., 2015).
Attempts to process longer data sets were hindered by memory
limitations and lack of parallel processing capability.

FAST Software and Algorithm Improvements. We introduce
the first demonstration of FAST earthquake detection on a
long-duration continuous data set, with 6–11 yrs of data for
each channel. This capability is enabled by a new FAST soft-
ware implementation in Python and C++ (Rong et al., 2018).
The improved FAST software contains the following new
capabilities and optimizations, missing from the original
version used in Yoon et al. (2015, 2017):

• Parallel processing capability for fingerprint, similarity
search, and postprocessing. We ran FAST on a Linux server
with 512 GB memory and two 28-thread Intel Xeon
E5-2690 v4 2.6 GHz central processing units (Rong et al.,
2018), using up to 56 processes.
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Figure 1. Map of area near Diablo Canyon Power Plant (DCPP) (star) on the central California coast (box in inset). Inverted triangles
denote labeled seismic stations with continuous data used in earthquake detection and an additional Station PG.EC used only for location.
Quaternary fault traces are from Pacific Gas and Electric Company (PG&E, 2015). The color version of this figure is available only in the
electronic edition.
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• The LSH database size now can handle arbitrarily large
data sets without being limited by the amount of available
memory. It is now possible to divide the LSH database into
a user-defined number of partitions (Table A2), so that
each partition fits into memory. The runtime increases by
∼20% with each additional partition, mainly from the over-
head of initializing and deleting each partition. Fingerprints
from one partition are compared with fingerprints from
other partitions, so the similarity search results should be the
same regardless of how many partitions are used.

• An occurrence filter is capable of removing frequently
repeating wideband nonearthquake signals (Rong et al.,
2018) that cannot be removed with a simple band-pass fil-
ter but would significantly degrade detection performance
and increase runtime. This nonearthquake repeating noise
is often anthropogenic (e.g., Velasco et al., 2016). To use
this occurrence filter, the user-input number of partitions
should be set such that when the continuous data duration
is divided by the number of partitions, each partition has a
relatively short duration of data (such as a day or a month).
Then a threshold on the frequency of occurrence is set as a
fraction between 0 and 1, so that a fingerprint that matches
at least this fraction of the total number of fingerprints dur-
ing each short partition is excluded from the similarity
search (Table A2). The increased runtime from using many
partitions is negligible relative to the vast speedup achieved
by avoiding comparisons between repeating nonearth-
quake signals.

• Flexibility in input data formats: time gaps in the continuous
data are permitted, and the continuous data can be distrib-
uted within an arbitrary number of Seismic Analysis Code
(SAC) or miniSEED files. A global index assigns consistent
time-stamp information to fingerprints from different chan-
nels and stations of continuous data that may start and end at
different times, with variable time gaps.

The new FAST software also includes the following
algorithm changes, compared to the original version used in
Yoon et al. (2015, 2017):

• During fingerprint generation, each wavelet coefficient is
normalized by its median and median absolute deviation
(MAD) across the continuous data set. Bergen et al. (2016)
and Bergen and Beroza (2018b) showed that fingerprints
generated with median and MAD normalization are more
discriminative than those generated by normalizing each
wavelet coefficient by its mean and standard deviation, as
used in Yoon et al. (2015, 2017). For large data sets, it is
sufficient to calculate the median and MAD for each wave-
let coefficient from a smaller random sample of the con-
tinuous data set; Rong et al. (2018) found that calculating
median and MAD with a 1% random sample of the
continuous data reproduced the fingerprints with 98.7%
accuracy. The sample is selected with two user-input
parameters (Table A2): the fraction of the entire continuous
data set to include in the sample and the sampling fre-
quency as a time interval.

• The spectrogram is cutoff at the corners of the band-pass
filter applied to the continuous data, before fingerprints are
generated, because including frequencies outside the target
filter band can hurt detection performance (Bergen and
Beroza, 2018b). Previously, Yoon et al. (2015, 2017) used
the entire spectrogram, even after it was filtered.

• During spectrogram generation, time windows are tapered
by a Hanning window before taking the Fourier transform.
The resulting spectrogram has lower background noise lev-
els because a Hanning window has less broadband spectral
leakage than a Hamming window, which was previously
used by Yoon et al. (2015, 2017).

• During spectral-image generation, when resizing and down-
sampling the image to a power of 2 for thewavelet transform,
the new FAST software runs scipy.misc.imresize()
with bilinear interpolation, which includes an antialias filter
(SciPy, 2019). Previously, this step used a proprietary algo-
rithm in MATLAB’s imresize() (see Data and
Resources).

• During database generation, min-max hash (Ji et al., 2013)
is used instead of min-hash (Broder et al., 2000). Min-max
hash estimates Jaccard similarity with comparable or better
accuracy than min-hash, while halving the number of hash
function calculations (Rong et al., 2018). FAST uses a
multiple hash function implementation of min-max hash,
and the number of hash functions r is an important input
parameter.

These algorithm changes significantly improve the preci-
sion–recall performance on synthetic data (Ⓔ Fig. S1, avail-
able in the supplemental content to this article) relative to the
original FAST version from Yoon et al. (2015), meaning that
there are not only fewer false detections but also fewer missed
detections. The fingerprints generated by the new FAST soft-
ware in Rong et al. (2018) are discriminative and robust to
noise, even when the signal-to-noise ratio is less than 1.

FAST Processing Pipeline: Continuous Time-Series Data to
Candidate Events. Preprocessing the continuous data set
is an essential first step before running FAST. This study is
explicitly focused on detecting high-frequency local earth-
quakes of tectonic origin. We apply a station-specific band-
pass filter (Table A1) to each channel of continuous data to
select the frequency band that is likely to contain our desired
small local earthquakes and to remove repeating noise that is
correlated in time. The amplitude and frequency band of this
repeating noise can vary significantly between different sta-
tions. The minimum frequency of the band-pass filter is set
to 3 or 4 Hz, because most repeating noise is present at lower
frequencies, and we can also avoid detecting teleseismic
earthquake signals that are not of primary interest to our study.
To remove repeating noise within the passband, we apply
the occurrence filter later in FAST to selected channels
(Table A2), for which signals that repeat too often are assumed
not to be from earthquakes. If repeating noise is not removed
with a band-pass filter, both detection performance and
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runtimewould significantly degrade, because the vast majority
of detections from FAST would be pairs of similar noise sig-
nals. For the same reason, we do not run FAST on continuous
data with time gaps that are filled with zeros, from when the
station was not recording data, because time windows with
zeros are identical; we either removed or replaced these zero
sections with uncorrelated random noise. After filtering, we
decimate each channel of continuous data to 25 samples
per second, because the maximum frequency of the band-pass
filter over all channels was 12 Hz. The resulting decimated,
filtered time-series data have a total size of about 100 GB
(Table A1).

FAST runs independently on one channel of continuous
time series data at a time. We used the same FAST param-
eters in Table A2 on every channel. For event detection using
continuous data from multiple stations, we advise using
the same fingerprint parameters (first eight parameters in
Table A2) across all channels and stations for consistency.
For the similarity search parameters (last five parameters in
Table A2), it is easiest to use the same values for all channels
and stations. On the other hand, it is also possible to use dif-
ferent similarity search parameters on different channels and
stations, especially if some stations are noisier than others,
to adjust the threshold for a successful search. Fingerprint
generation on one channel of data, split into month-long
miniSEED files, took between 3 and 8 hr to run in parallel
on 56 processes, depending on the duration of available con-
tinuous data. For one channel, the number of fingerprints
ranged from 150 million to almost 300 million, and the
fingerprint file size was between 75 and 137 GB; the total
size of fingerprint files from all 27 channels was ∼2:6 TB
(Table A1). For similarity search, the runtime for one channel
was 3–16 hr when run in parallel on 48 processes (Rong
et al., 2018). The output of FAST is a list of pairs of times
within the continuous data with their associated FAST sim-
ilarity (defined as the number of hash tables with this finger-
print pair in the same bucket), when the fingerprints (and
therefore waveforms) are similar. We can visualize this out-
put as an extremely sparse similarity matrix (Bergen and
Beroza, 2018a; Rong et al., 2018). This similarity search out-
put file is written to disk as a binary file; this file size was
between 38 and 549 GB for a given channel, indicating that
some stations had more repeating noise signals than others,
and the total size of these output pairs files from all 27 chan-
nels was ∼4:7 TB (Table A1). The similarity search param-
eter r for the number of hash functions per hash table has the
most significant effect on both detection performance and run-
time. Through trial and error, we found that r � 6 was the
best compromise for this long-duration data set (Table A2);
setting r � 7 would result in too few earthquake detections,
whereas setting r � 5 would increase false detections, make
the output pairs files too large, and unacceptably increase the
runtime. At this point, we have FAST output for one channel
of continuous data: candidate pairs of times with similar
signals, in binary format.

We perform additional postprocessing to obtain candidate
pairs of times with similar signals at a given station by com-
bining the similarity information from each channel. The
binary FAST output from each channel is converted to text
format using a parallel sort-merge-reduce procedure (Rong
et al., 2018) that increases the size of the output files between
94 and 1500 GB for an individual channel and a total of
12.4 TB for all 27 channels (Table A1). For the eight stations
with three components, we combine the FAST similarity out-
puts in the text files by adding the similarity matrix from each
component at that station (with an initial-pair threshold of
v � 2 on the FAST similarity, Table A2) (Yoon et al.,
2017; Rong et al., 2018), then setting a higher station-pair
threshold τ0 � �v � 2� × (3 components) = 6 on the FAST
similarity, which significantly reduces the size of the detection
results (Table A3). For the three remaining one-component
stations (NC.PPB, NC.PABB, and PG.SH), we multiplied
the FAST similarity value from every pair by 3, so that their
FAST similarity values would be weighted equally to those
from the three-component stations. (Alternatively, one could
use only the vertical component of continuous data from each
station for detection, which would require running FAST on
only 11 channels and converting the similarity search output
from binary to text format, without any need to add the sim-
ilarity matrix across components or reweight the similarity at
single-component stations. Users might consider this option if
the data quality is poor at some but not all channels at a station
or for shorter-duration data sets in which reducing the detec-
tion results to a more manageable size is not as essential.) At
this point, we have the FAST output from each station, with a
total size of 867 GB for 11 stations: a list of candidate pairs of
detections as [dt � t1 − t2, t1, sim] values, in which t1 and t2
are two different times in the continuous data with similar
fingerprints at that station, and sim is their FAST similarity,
with sim ≥ τ0.

Finally, we use a network-detection algorithm (Bergen
and Beroza, 2018a; Rong et al., 2018), with parameters in
Table A4, to perform event association of FASToutputs from
each station. This algorithm has three main steps: first, it
summarizes the FASToutput into similar event-pair informa-
tion for each station (reducing the data size from 867 to
119 GB); second, it associates candidate event pairs of
similar signals across multiple stations in a sparse seismic
network; and third, it extracts a list of detected events. This
algorithm performs the association by recognizing that the
interevent time dt � t1 − t2 between two earthquakes at dif-
ferent times t1 and t2, even if dt is many years long, remains
the same at different stations. This step is essential in sup-
pressing false detections from repeating noise signals that
occur at a single station, whereas retaining signals that are
likely to be from an earthquake. Bergen and Beroza (2018a)
introduced the network-detection algorithm on a data set
with five stations, and Rong et al. (2018) applied it on a
five-station data set. This study extends network detection
to a larger 11-station data set that required about 9 hr of serial
processing. Network detection led to a list of 33,383
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candidate events that were detected on at least two stations
(Table A4), with an approximate event-detection time at
every station that registered each event. For each detected
event, the network-detection algorithm also outputs a start
time and event duration over all stations that detected it; dupli-
cate events often occur, in which the duration of one event
overlaps that of another event. We identified and removed
these duplicate events by aggregating the events with overlap-
ping duration and keeping only the one event with the highest
number of stations that detected it and the highest total FAST
similarity over all stations. After this automatic pruning step,
29,623 candidate events remained.

Candidates for Earthquakes: FAST Output Analysis

FAST detects and builds a list of candidate earthquake
events. Most of these candidates are seismic signals, but fur-
ther analysis with additional automatic or manual methods is
needed to determine what specific types of seismic signals
were found. We investigated the 29,623 candidate events in
further detail to determine which local earthquakes are of
interest. We sorted these events in descending order of the
number of stations that detected them and then in descending
order of the peaksum similarity value, which is the total
FAST similarity over all stations for the strongest similarity
value involving this event (Bergen and Beroza, 2018a). We
visually inspected the waveforms of these 29,623 candidate
events, plotted at all stations (up to 11) that were available at
their detection time. We displayed 3-min time windows
around each event, starting 1 min before the earliest detection
time at the nearest station, to capture the full range of pos-
sible waveform durations. This manual inspection process
guided our choices for additional thresholds and decision
rules, which we then used to automatically discard more non-
earthquake signals. We kept all candidate events that were
detected at five or more stations. For candidate events detected
at three or four stations, we excluded events that occurred
between 28 September 2011 and 1 November 2011, which
were dominated by regularly repeating signals from a seismic
reflection survey of the Shoreline fault (PG&E, 2011, 2014,
2015) with prominent recordings on Stations DCD, DPD,
VPD, and SHD (Ⓔ Fig. S2). For candidate events detected
at two stations, we only included events that happened before
4 September 2011, when fewer continuously recording sta-
tions were available (Table A1). We also excluded candidate
events during 1 December 2009 to 16 April 2010, which
mostly consisted of repeating signals on stations SH and SHD
from another seismic-reflection survey in the area (PG&E
2011, 2014, 2015). After removing these nonearthquake sig-
nals, 5048 candidate events remained.

4134 of the 5048 candidate events were earthquakes in the
existing catalog, with magnitudes 0:3 ≤ M ≤ 6:8 (Fig. 2a,
white circles). Because these stations are located in central
California, near the boundary of the NCSN and the
Southern California Seismic Network (SCSN), we looked for
matching events in earthquake catalogs from both networks.

2080 events were only in the NCSN catalog; 453 events were
only in the SCSN catalog; and 1601 events were in both cata-
logs. In addition, 18 of the 5048 candidate events were quarry
blasts from the earthquake catalogs; four blasts were only in
the NCSN catalog; seven blasts were only in the SCSN cata-
log; and seven blasts were in both catalogs.

We visually inspected the 3-min waveforms of the
remaining 1073 candidate events that are not accounted for in
the NCSN and SCSN catalogs. 30 candidate events were
duplicate detections of earthquakes that were previously
detected with higher similarity; we do not consider these as
separate detections, because we do not want to double-count
earthquakes. Five candidate events were deep teleseismic
earthquakes, with longer duration and lower frequency wave-
forms compared to local earthquakes (Ⓔ Fig. S3); we would
have detected many more teleseismic earthquakes had we not
filtered out frequencies below 3–4 Hz (Table A1) before run-
ning FAST. 62 candidate events were infrasound signals
(sound waves with frequencies <20 Hz) that are similar
across the network used for detection but propagate at the
speed of sound (∼0:33 km=s) rather than at seismic velocities
(Ⓔ Fig. S4); they are most likely sound waves from human
activity, such as sonic booms from aircraft or artillery explo-
sions at nearby military bases (Cates and Sturtevant, 2001;
Cochran and Shearer, 2006; Walker et al., 2011). 379 out of
the 5048 candidate events (∼7:5%) were manually interpreted
to be low-amplitude background noise that we consider false
detections.

The remaining 420 candidate events were newly detected
local earthquakes. These small earthquakes have local magni-
tudes in the range −0:3 ≤ ML ≤ 2:4 (Fig. 2a, dark circles).
Figure 3 shows their magnitude distribution that we calculated
using peak amplitudes on synthesized Wood–Anderson seis-
mograms with a distance correction, calibrated to catalog-
event magnitudes (see details in Appendix).

Table 1 summarizes the 5048 candidate events detected
by FAST in this multiyear continuous seismic data set, catego-
rized by event type. ∼90% of the detected events were earth-
quakes. Only ∼8% of the events were newly detected local
earthquakes, indicating that the existing seismic network is
generating reasonably complete catalogs in this low-seismicity
area. Because we set our detection threshold relatively low, to
include early events detected on only two stations, ∼7:5% of
our detections are false positives. We discuss false negatives
(catalog earthquakes not detected by FAST) in the next sec-
tion, only within the context of a limited local area near the
network. It is not realistic to expect FAST to detect the small-
est catalog earthquakes that were detected by other nearby sta-
tions not processed by FAST, at greater distances from the
stations used for detection; FAST is intended to supplement,
not entirely replace, existing earthquake-detection methods.

Earthquake Location

The 4134 catalog earthquakes detected by FAST using
continuous data from an 11-station local seismic network are
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located across California (Fig. 4). Plotting their magnitudes
against their epicentral distance allows us to estimate a detec-
tion limit (solid black line) for a given magnitude and dis-
tance. The maximum epicentral distance from the network
in which magnitude 1, 2, and 3 events are no longer detected
(dotted lines) are 100, 320, and 1000 km, respectively.

We locate 351 of the 420 newly detected earthquakes
using P- and S-wave arrival time picks on up to 12 stations
as inputs into VELEST (Kissling et al., 1994) (see parame-
ters in Appendix), and a 1D P-wave velocity model for this
region from McLaren and Savage (2001) (Table A5) with
VP=VS � 1:66 (Hardebeck, 2010). We were unable to locate
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Figure 2. Magnitude–time plot for earthquakes detected by Fingerprint And Similarity Thresholding (FAST) from June 2007 (when
PG.DCD started recording continuous data, providing two stations for detection) to October 2017. Earthquakes (circles and X symbols) are
plotted according to their magnitude (left axis) and time. Background horizontal bands indicate the data availability of each channel of
continuous seismic data used for detection (Table A1), labeled by the network, station, and channel (right axis); alternating light and dark
bands represent different stations, whereas time gaps are white. Long-duration time gaps on channels NC.PPB.EHZ, NC.PABB.EHZ, and
PG.SH.EHZ indicate noisy time periods purposely excluded from detection. Tick marks on the horizontal axis indicate 1 January of the
labeled year. (a) All events detected by FAST, regardless of location: 4134 catalog earthquakes (white circles) and 420 new local earthquakes
(dark circles). (b) 725 earthquakes near the DCPP and 11-station network, located within the box in Figure 6: 265 catalog earthquakes
detected by FAST (white circles), 236 catalog earthquakes missed by FAST (X symbols), and 224 new local earthquakes detected by
FAST (dark circles). The color version of this figure is available only in the electronic edition.
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69 predominantly low-magnitude new events (Fig. 3, white
bars), because they lacked sufficient high-quality arrival-time
measurements.

Figure 5 displays a regional overview of the earthquakes
detected by FAST with the 11-station network near the
DCPP. There are 3106 catalog earthquakes (white circles sized
by magnitude) within the area shown in Figure 5 that were
used to calibrate the local magnitude calculation for the
new detected earthquakes (see details in Appendix). Most
of the catalog earthquakes are located far from the DCPP,
in areas known to have higher rates of seismicity: long-lived
aftershocks of the 2003 Mw 6.5 San Simeon earthquake
(McLaren et al., 2008) and earthquakes on the creeping sec-
tion of the San Andreas fault (e.g., Nadeau and McEvilly,
2004) and on the Kettleman Hills blind-thrust fault system
(Ekstrom et al., 1992; Stein and Ekstrom, 1992). Out of the
351 new detected events we were able to locate, 224 of them
are located near the network within the black box in Figure 5;
most of their magnitudes are between 0.0 and 1.5 (Fig. 3, gray

bars). The remaining 127 new events, many of them over
50 km away from the network, are located offshore to the
south where the SCSN coverage is sparse; they have slightly
higher local magnitudes between 1 and 2 (Fig. 3, black bars).

We conducted additional detailed analysis of seismicity
for the region near the DCPP and seismic network, within the
box defined by 34.9°–35.45° N, 121.2°–120.4° W (Fig. 6).
This area contains 265 out of the 4134 catalog earthquakes
that were detected by FAST (Fig. 6, hollow circles sized by
magnitude), as well as 224 new detected local earthquakes
(Fig. 6, dark diamonds sized by magnitude). Also, 6 of the
18 detected catalog quarry blasts are located inside this area.
236 catalog earthquakes within this region, with magnitudes
−0:3–2:9, were missed detections that FAST failed to iden-
tify (Fig. 6, X symbols sized by magnitude); 210 missed
events were only in the NCSN catalog, 23 only in the SCSN
catalog, and three in both catalogs. Most of the missed
catalog events are located outside and to the north of the
11-station network used for detection, in which there are sev-
eral other stations in the PG and NC networks that we did not
use for detection. In addition, about one-third of the missed
catalog events occurred from 2007 to 2009, when only three
of our selected stations had available continuous data to use
for detection (Fig. 2b); there were other triggered stations in
the network that detected catalog events during this time.
Figure 2b displays the magnitude–time information for the
725 known earthquakes that occurred between June 2007
and October 2017 within this box: 265 detected catalog
earthquakes (hollow circles), 236 missed catalog earthquakes
(X symbols), and 224 new detected earthquakes (dark
circles). The catalog and new events detected by FAST in
Figure 2b are a subset of the events shown in Figure 2a.

For 715 out of the 725 local earthquakes near the DCPP,
we located both the catalog and newly detected events with
VELEST (see details in Appendix) using a consistent pro-
cedure: we ignore poor quality P and S picks, allow slight
changes to the velocity model (Table A6), and calculate sta-
tion corrections to reduce errors from near-surface variations
in the velocity model. Figure A2 shows the starting locations
for this second VELEST run, whereas Figure 6 displays our
resulting preferred locations for these earthquakes, especially
for those located inside the network. In Figure 6, some of the
new detected earthquakes (dark diamonds) have different
locations from the catalog events, which demonstrates that
a blind search for similar earthquakes in continuous data is
capable of finding unknown sources of low-magnitude seis-
micity. Large-T earthquake detection with FAST revealed
many uncataloged earthquakes within the seismic network,
especially in the Irish Hills (Fig. 1), where the NCSN and
SCSN catalogs between 1967 and June 2007, before the
10-yr time period in this study, show low levels of seismicity
(Ⓔ Fig. S5). These earthquake locations confirm that the
faults located near DCPP are seismically active, even though
the overall rate and magnitude of seismicity in the area was
relatively low during 2007–2017 (Fig. 2b), and reinforces the
importance of continued earthquake monitoring in this area.
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Figure 3. Magnitude distribution of 420 new local earthquakes
detected by FAST, with −0:3 ≤ ML ≤ 2:4. The 69 unlocated earth-
quakes (white) have lower magnitudes. Out of the 351 located earth-
quakes, 224 lower-magnitude events (gray) are located near the
network within the box boundaries in Figure 6, whereas 127 other
events (black) are located farther from the network, outside this box
(Fig. 5).

Table 1
Summary of the 5048 Candidate Events Detected by

Fingerprint and Similarity Thresholding (FAST)
Categorized by Event Type after Visual Inspection

and Catalog Comparison

Number
of Events

Percentage
of Events Category

4134 81.90 Catalog earthquakes
420 8.32 New local earthquakes
18 0.35 Catalog quarry blasts
5 0.10 Teleseismic earthquakes
30 0.59 Duplicate earthquake detections
62 1.23 Infrasound signals (sound waves)

379 7.51 Background noise
(false positive detections)

5048 100.00 Total candidate event detections
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Discussion and Conclusions

An uninformed search for earthquake signals within con-
tinuous seismic data over long time periods, using waveform
similarity as a detection criterion, is possible with the enhanced
FAST software (Rong et al., 2018). The improved algorithms
overcame many of the challenges and limitations described in
the initial implementation of FAST (Yoon et al., 2015), while
also demonstrating improved detection performance on

synthetic data (Ⓔ Fig. S1). Detecting earth-
quakes with FAST on decadal data sets
requires us to leverage significant computa-
tional resources: several Linux clusters with
512 GB memory, over 20 TB of disk space,
and ample computing power with the ability
to run up to 56 processes in parallel. For
best detection results and shorter runtime
using FAST, it is essential to eliminate or
mitigate the presence of correlated noise
that repeats in time, which can be done
by an informed choice of band-pass filter
for each channel of continuous data and
by applying an occurrence filter for fre-
quently repeating nonearthquake signals.
Sometimes it makes sense to exclude
time periods dominated by repeating noise
from the detection process (Fig. 2a,
channels PG.SH.EHZ, NC.PPB.EHZ, and
NC.PABB.EHZ), or even exclude an entire
station with poor quality data (PG.EC).
Also, an appropriate choice of the similarity
search parameter r (number of hash func-
tions per hash table) will maximize the
number of detected earthquakes, without
becoming overwhelmed with false positive
detections that increase both runtime and
output file size. Different choices of r
and other similarity search parameters
(Table A2) can result in nearly identical
detection probabilities with very different
runtimes (Rong et al., 2018). Finally, detec-
tion and association of similar earthquakes
across a seismic network (Bergen and
Beroza, 2018a) is essential to condensing
and reconciling the outputs from FAST at
each station, while removing many false
positive detections, into a list of likely earth-
quake candidates.

This list of earthquake candidates pro-
vides a starting point for further analysis of
these signals, including additional auto-
matic and manual inspection, classification,
removal of duplicate events, phase picking,
location, magnitude estimation, and com-
parison with existing earthquake catalogs.
One limitation of our study was the manual

inspection of 29,623 candidate events; this step could ideally
be replaced with automatic classification of different catego-
ries of seismic signals. We find that FAST will detect earth-
quakes located at different distances from the seismic network
used for detection, although only larger earthquakes can be
detected farther away from the network (Fig. 4). Because
the detection criterion is similarity, a pair of low-magnitude
earthquakes are often detected with very high similarity,
whereas the coda from a larger earthquake often matches a
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Figure 4. Locations of 4134 catalog earthquakes detected by FAST (white circles
sized by magnitude), with 0:3 ≤ M ≤ 6:8. The 11-station seismic network is located
within 30 km of the DCPP (the star). The box indicates the region shown in Figure 5.
Topography data are from Amante and Eakins (2009). Bottom left: magnitude of these
catalog events, as a function of their epicentral distance; the solid black line denotes an
approximate detection limit for a given magnitude and distance beyond which no events
are detected, and dashed lines denote the maximum distance from the station where mag-
nitude 1, 2, 3 events can be detected. The color version of this figure is available only in the
electronic edition.
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smaller earthquake with lower similarity. FAST can also detect
teleseismic earthquakes (Ⓔ Fig. S3), although the number
of detected teleseismic earthquakes depends on the band-pass
filter applied; decreasing the minimum frequency of the band-
pass filter to 1 Hz would result in many more teleseismic earth-
quake detections. In addition, FAST identifies other repeating
signals that are not earthquakes, such as quarry blasts, vibra-
tions from a seismic-reflection survey (Ⓔ Fig. S2), and infra-
sound signals that travel more slowly than seismic waves

(Ⓔ Fig. S4). Most importantly, FAST is
capable of detecting small (ML ≤ 2) local
earthquakes (Fig. 3) missing from existing
catalogs, even in a well-instrumented region
near the DCPP where the seismic network
is relatively dense and a carefully compiled
catalog is complete to lower magnitudes.
Some of the newly detected events appear
to represent previously unknown earth-
quake sources. FAST is especially useful in
situations in which the seismic network is
sparse, but continuously recorded data are
available. For example, this study found
new earthquakes ∼60 km away from the
network, located offshore where there are
no SCSN stations (Fig. 5), and single-sta-
tion FAST detected over 100 times the num-
ber of catalog events in Guy–Greenbrier,
Arkansas, where the seismic network is
sparse (Yoon et al., 2017). The detection
performance of FAST is comparable to
that of supervised detection methods such
as template matching; Yoon et al. (2017)
found ∼90% overlap between events
detected by FAST and events detected by
template matching, with a small minority
of events that were detected by either
FAST or by template matching but not
by both methods. Rong et al. (2018) found
that when the ConvNetQuake supervised
detection method (Perol et al., 2018) was
trained only on existing catalog events, it
failed to identify ∼30% of the new events
detected by FAST. A limitation of FAST is
that a unique earthquake signal occurring
only once during the duration of continuous
data processed, which is not similar to
another earthquake signal that occurs at a
different time, will not be detected. FAST
is not intended to replace existing earth-
quake detection algorithms such as STA/
LTA or template matching but instead
offers a complementary method to identify
additional earthquakes that would other-
wise be overlooked.

The source code for the new FAST
software introduced by Rong et al. (2018) is available on
GitHub (see Data and Resources). For large-T data sets, rang-
ing from months to years, FAST should be run on clusters with
at least a few hundred GB memory, several TB of disk space,
and parallel processing, which are also accessible through
cloud computing services such as Amazon Web Services,
Microsoft Azure, or Google Cloud Platform; it is not meant
to run on a laptop or desktop computer, except perhaps for data
sets of modest duration, ranging from hours to weeks. The
FAST software can be a useful tool for seismologists who have
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a collection of continuous data already recorded at several
seismic stations from either a permanent seismic network or
a temporary deployment but who do not have prior knowledge
about earthquakes or possible template waveforms and are
interested in scanning it for small local earthquakes. The soft-
ware does not yet have the capability for real-time earthquake
detection based on similarity to other existing earthquakes
in the database, which would require significant changes to
the implementation. FAST can be helpful for tracking changes
in low-level seismicity over long-time periods and for detecting
missing events in earthquake sequences such as repeating
earthquakes, swarms, foreshocks, aftershocks, and induced
earthquakes, in which the existence of many events with sim-
ilar waveforms enhances detection capability.

FAST has been applied to only a few data sets to date
(Yoon et al., 2015, 2017; Bergen and Beroza, 2018a; Rong
et al., 2018). Future applications of FAST could include
moving toward large-N applications of large-T seismology.
This study showed the successful application of FAST on an
11-station network, but there were some catalog events that
were not detected by FAST, particularly on the periphery of
the stations used for detection. Running FAST on the entire
archive of continuous seismic data from ∼500 seismic sta-
tions in a regional seismic network, such as the NCSN or
SCSN, would require significant computational resources
and would encounter additional unforeseen challenges when
scaling up to a larger network, but the resulting catalogs would
be more complete andmight reveal unexpected new sources of
earthquake activity. FAST also might detect repeating weak
and unusual events that are not typical earthquakes but still
interesting to geophysicists, such as volcanic drumbeat

earthquakes (e.g., Bell et al., 2017), glacial icequakes (e.g.,
Helmstetter et al., 2015), and tectonic tremor and low-fre-
quency earthquakes (e.g., Shelly, 2017); however, successful
detection of these weak events would require careful treatment
of the data and might require changes in feature selection.

Data-mining techniques are just beginning to have use-
ful impacts on earthquake seismology, and we can anticipate
future discoveries enabled by FAST and related methods.
FAST is an example of an unsupervised machine-learning
algorithm (James et al., 2017) that finds patterns (similar sig-
nals) in an unstructured data set (continuous time-series data
without prior knowledge of earthquake activity). On the
other hand, there are supervised machine-learning algorithms
that take labeled data with known characteristics (e.g., wave-
forms of template earthquakes or known phase arrivals) to
train a model that can classify, or predict a label for, new
unlabeled data. Seismologists used supervised machine-
learning methods, such as artificial neural networks, to ana-
lyze earthquake signals for over 20 yr (see Mousavi et al.,
2016 for a thorough review). Recent machine-learning
developments created new opportunities for seismologists
to extract useful information, with advances in algorithms,
computational resources, and open-source software accessible
to nonexperts. For example, deep learning and convolutional
neural networks, which are supervised machine-learning
methods that require massive labeled data sets to train a model,
were originally developed for image recognition, but seismol-
ogists are starting to harness these powerful techniques to auto-
matically detect earthquakes (Perol et al., 2018; Ross, Meier,
and Hauksson, 2018) and pick phase-arrival times (Ross,
Meier, Hauksson, and Heaton, 2018; Zhu and Beroza,
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2019) with high accuracy and few errors. Unsupervised meth-
ods like FAST can be used to generate more complete training
data sets for supervised earthquake-identification methods.
Data mining and machine-learning techniques are poised to
have more prominent impacts on seismology in the near future
(Bergen et al., 2019; Kong et al., 2019), and we look forward
to new developments that surpass the earthquake-detection
capabilities presented in this study.

Data and Resources

Continuous waveform data and earthquake catalogs for
this study were last accessed in October 2017 through the
Northern California Earthquake Data Center (NCEDC), doi:
10.7932/NCEDC (Northern California Earthquake Data
Center [NCEDC], 2014), operated by the UC Berkeley
Seismological Laboratory and the U.S. Geological Survey
(USGS). Earthquake catalogs were last accessed October
2017, provided by the the Caltech/USGS Southern California
Seismic Network (SCSN), doi: 10.7914/SN/CI, operated by
the Caltech Seismological Laboratory and the USGS, which
is archived at the Southern California Earthquake Data Center
(SCEDC) (2013). Comprehensive Earthquake Catalog
(ComCat) data for teleseismic earthquakes were downloaded
from the USGS website https://earthquake.usgs.gov/data/
comcat/ (last accessed October 2017). We ran Fingerprint
And Similarity Thresholding (FAST) on Linux clusters pro-
vided by the Data Analytics for What’s Next (DAWN) project
(https://dawn.cs.stanford.edu) and Future Data Systems
group (https://futuredata.stanford.edu) in the computer science
department at Stanford University. We used Seismic Analysis
Code (SAC; Helffrich et al., 2013) to manually pick P and S
arrivals as needed, ObsPy for downloading continuous wave-
form data, seismological data processing, and visualization
(Beyreuther et al., 2010), and Generic Mapping Tools (GMT)
to generate maps (Wessel et al., 2013). The source code for the
new FAST software (Rong et al., 2018) is available at https://
github.com/stanford-futuredata/FAST. Several references can
be accessed on the web. Bormann (2012) is available at
https://nmsop.gfz-potsdam.de (last accessed July 2017).
Incorporated Research Institutions for Seismology (IRIS)
Data Management Center (DMC) (2019) is available at
https://ds.iris.edu/files/stats/data/archive/Archive_Growth.jpg
(last accessed May 2019). James et al. (2017) is available at
https://www-bcf.usc.edu/~gareth/ISL/ (last accessed May
2019). PG&E (2011) is available at https://www.pge.com
/mybusiness/edusafety/systemworks/dcpp/shorelinereport
/index.shtml (last accessed May 2019). PG&E (2014) is
available at https://www.pge.com/en_US/safety/how-the
-system-works/diablo-canyon-power-plant/seismic-safety
-at-diablo-canyon/seismic-report.page (last accessed May
2019). PG&E (2015) is available at https://www.pge
.com/en_US/safety/how-the-system-works/diablo-canyon
-power-plant/seismic-safety-at-diablo-canyon/sshac.page
(last accessed May 2019). Rong et al. (2018) is available at
https://www.vldb.org/pvldb/vol11/p1674-rong.pdf (last

accessed May 2019). The scipy.misc.imresize documenta-
tion SciPy (2019) is available at https://docs.scipy.org/doc
/scipy-1.1.0/reference/generated/scipy.misc.imresize.html
(last accessed June 2019). USGS and CGS (2006) is avail-
able at https://earthquake.usgs.gov/hazards/qfaults/ (last
accessed March 2018). MATLAB is avaialble at https://
www.mathworks.com/help/matlab/ref/imresize.html (last
accessed June 2019).
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Appendix

The appendix contains more detailed information about
the data set and Fingerprint And Similarity Thresholding
(FAST) input parameters (Tables A1–A4), local magnitude
estimation for new detected earthquakes, and the earthquake
location procedure including velocity models (Tables A5
and A6).

Local Magnitude Estimation for New Detected
Earthquakes

We report local magnitude ML for the 420 new detected
local earthquakes in this study. We solve for the local-magni-
tude distance-correction parameters by calibrating ML to the
catalog magnitudes Mcat from the 3106 catalog earthquakes
located within the region in Figure 5 (34°–36.5° N, 122°–
119.5° W). We assume that the magnitude can be expressed
as

EQ-TARGET;temp:intralink-;dfa1;55;291

Mcat � log10�ApeakRk� � C

⇒ Mcat − log10 Apeak � k log10 R� C; �A1�

with log10 Apeak computed as

EQ-TARGET;temp:intralink-;dfa2;55;222 log10 Apeak �
1

2
�log10 Apeak;east � log10 Apeak;north�; �A2�

in which Apeak;east and Apeak;north are peak Wood–Anderson
seismogram amplitudes, from the east and north components,
respectively (Bormann, 2012), at each of the 12 stations in
Table A1. The Wood–Anderson seismograms were syn-
thesized from the original data after applying a 1-Hz high-pass
filter to remove low-frequency noise. For stations where only
the vertical component was available, we used the peak
Wood–Anderson amplitude on the 1-Hz high-pass filtered ver-
tical component: Apeak � Apeak;vertical. In equation (A1), R is

the epicentral distance, and there are two distance-correction
parameters to estimate: k (representing the effect of geometric
spreading and attenuation), and a constant C. Equation (A3)
shows equation (A1) in matrix form (d � Gm). Here,G is the
design matrix, in which the number of rows equals 3106
events times the number of stations that recorded each event
(j is the station index from 1 to at most 12), and i is the event
index between 1 and 3106
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Inverting for the best-fit distance-correction parameters
in a least-squares sense, we get k � 1:22 and C � 1:18.
Plugging in these parameters into equation (A1), and assum-
ing Mcat � ML, we calculate local magnitude ML for every
new detected earthquake, given peak amplitudes from 1-Hz
high-pass filtered synthesized Wood–Anderson seismograms
(equation A2) and epicentral distances, as the average of ML

estimates at each station j
EQ-TARGET;temp:intralink-;dfa4;313;169

�log10 Apeak;j � k log10 Rj � C�

⇒ ML �
X12
j�1

�log10 Apeak;j � 1:22338 log10 Rj � 1:17722�:

�A4�
For validation, we calculate ML with equation (A4) for the
3106 catalog events used to calibrate the distance correction,
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which agree reasonably well with their original catalog mag-
nitudes Mcat (Fig. A1).

For the 351 new located earthquakes, the epicentral dis-
tance R to each station is determined from the VELESTevent
location. The 69 new detected earthquakes that we were
unable to locate almost always had one station (usually
LMD or SHD) with both high-quality P- and S arrival-time
picks (tP and tS respectively), so we estimate the epicentral
distance at this station j as

EQ-TARGET;temp:intralink-;dfa5;55;625Rj �
VPVS

VP − VS
�tS − tP�; �A5�

in which VP � 5 km=s, VS � 3 km=s and then calculateML

with equation (A4) at this one station.

Earthquake Location Procedure

Initial VELEST Locations for 351 New Detected
Earthquakes

We automatically pick P- and S-wave arrival times on 12
stations (Fig. 1, Table A1) with the Akaike information-
criteria picker (Maeda, 1985), manually adjust them and
remove noisy picks as needed, and assign integer weights
for pick quality from 0 (best) to 3 (worst). We pick P
phases on the vertical components and S phases on the
horizontal components and estimate the origin time of each
event using the S–P time on the station with either the earliest
arrivals or the highest quality arrivals (usually station LMD
or SHD).

These P- and S-wave picks are input into VELEST
(Kissling et al., 1994), with a 1D P-wave velocity model
(Table A5) and VP=VS � 1:66 (Hardebeck, 2010). P- and S
arrivals are equally weighted. We use the location-damping
parameters othet = xythet = zthet = 0.03. We run VELEST for
50 iterations, without solving for a new velocity model and
without station corrections. The dark diamonds in Figure 5
indicate the resulting initial VELEST locations for these 351
new detected earthquakes.

Refined VELEST Locations for 715 Earthquakes near
Diablo Canyon Nuclear Power Plant

We perform a second VELEST run to carefully locate
only the 715 earthquakes within the box defined by
34.9°–35.45° N, 121.2°–120.4° W (Fig. 6). This location
procedure allows a consistent comparison between all
earthquakes, regardless of whether they were in the NCSN
catalog, SCSN catalog, both catalogs, or neither catalog. We
locate the catalog events and new detected events using
the same procedure, picking P- and S arrival times on the
12 stations (Fig. 1, triangles; Table A1), except that we
already have origin times for the catalog events. In this sec-
ond VELEST run, we do not use poor-quality picks weighted

as a 3. Figure A2 shows the starting locations for
this second VELEST run; we use the catalog locations for
the 265 detected events (hollow circles) and 226 out of
236 missed events (X symbols), whereas we use locations
from the initial VELEST run (Fig. 5) for the 224 new
detected events (dark diamonds). We also calculate locations
for the six catalog quarry blasts in this box, so we actually
locate a total of 721 events. We were unable to locate 10
missed catalog events with VELEST, because they did not
have any reliable picks.

We run VELEST with station corrections turned on
(nsinv = 1), with damping-parameter stathet = 0.1, to reduce
errors from near-surface heterogeneity in the velocity struc-
ture at each station. We allow a different station-correction
value at each of the 12 stations. P- and S arrivals are equally
weighted. We use the location-damping parameters othet =
xythet = zthet = 0.01. For the initial velocity model, we use
the 1D P-wave velocity model from McLaren and Savage
(2001) (Table A5) and VP=VS � 1:66 (Hardebeck, 2010).
We jointly estimate the velocity model, station corrections,
and earthquake locations every invertratio = 3 iterations until
we reach ittmax = 60 iterations. Although the damping param-
eter for the velocity model was very high (vthet = 1000), the
output velocity model (Table A6) still changed relative to the
initial model (Table A5). Figure 6 displays our resulting pre-
ferred locations for these 715 earthquakes from this second
VELEST run.

0 2 4 6

Catalog magnitude M cat

0

2

4

6

Lo
ca

l m
ag

ni
tu

de
 M

L
Figure A1. Magnitude calibration results: comparison of local
magnitude ML (equation A4) with catalog magnitude Mcat for the
3106 catalog earthquakes located within the region in Figure 5
(34°–36.5° N, 122°–119.5° W).
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Table A2
FAST Input Parameters (Yoon et al., 2015; Bergen et al., 2016; Bergen and Beroza, 2018b; Rong et al., 2018) Used to Detect
Earthquakes in Each Channel of Continuous Seismic Data (Band-Pass Filtered and Decimated to 25 Hz Sampling Rate) at

Stations Listed in Table A1

FAST Algorithm Section Parameter Description Value*

Fingerprint Time-window length (s) for spectrogram 6 s (150 [time] samples)
Time-window lag (s) for spectrogram, between adjacent windows 0.12 s (3 [time] samples)
Spectral-image length (samples) 64 (spectrogram time) samples (13.68 s)
Spectral-image lag (samples) = fingerprint sampling period 10 (spectrogram time) samples (1.2 s)
Final spectral-image width (samples) = number of frequency bins 32 (spectrogram frequency) samples
Number of wavelet coefficients to keep 400 (out of 2048)
Median/MAD sampling fraction of continuous data 0.01 (1%)
Median/MAD sampling frequency 86,400 s

Similarity search LSH: number of hash functions per hash table r 6
LSH: number of hash tables b 100
Initial pair threshold: number v (fraction) of tables, pair in same bucket 2 (2/100 = 0.02)
Similarity search: near-repeat exclusion parameter 10 (fingerprint) samples (12 s)
Number of partitions for LSH database† 10

LSH, locality-sensitive hashing; MAD, median absolute deviation.
*Values contained in the FAST software input file, with an equivalent calculated value in parentheses that may be more meaningful, whereas brackets

indicate the specific type of “samples”. LSH, locality-sensitive hashing; MAD, median absolute deviation.
†For the three single-component stations (NC.PPB, NC.PABB, PG.SH), the number of partitions was set to be 72, 73, 134, respectively (instead of

10), so that each partition would be about a month long. At these stations, we applied an occurrence filter to exclude frequently repeating nonearthquake
signals (Rong et al., 2018), in which a fingerprint that matched over 1% of the total number of fingerprints during a month-long partition was excluded
from the similarity search.

LEGEND
Detected catalog events: Magnitudes 

1       2         3    

New detected local events: Magnitudes

Stations
(detection)

Stations
(location)

0       1       2

Missed catalog events: Magnitudes 

1       2         3    

Cities/TownsPower plant

Shoreline

Quaternary faults (PG&E, 2015)

121.2°W 121.1°W 121°W 120.9°W 120.8°W 120.7°W 120.6°W 120.5°W 120.4°W
34.9°N

34.95°N

35°N

35.05°N

35.1°N

35.15°N

35.2°N

35.25°N

35.3°N

35.35°N

35.4°N

35.45°N

Morro Bay

San Luis Obispo

Pismo Beach

Santa Mar0 10 20

km

Figure A2. Initial locations for 715 out of 725 local earthquakes (sized by magnitude) near the DCPP (star), used as input into a second
VELEST location run with station corrections; Figure 6 shows the output locations after the second VELEST run. For the 265 catalog
earthquakes detected by FAST (hollow circles) and 226 out of 236 catalog earthquakes missed by FAST (X symbols), these are the catalog
locations; if an event was in both the Northern California Seismic Network (NCSN) and Southern California Seismic Network (SCSN)
catalogs, we used the NCSN catalog location. (10 missed catalog earthquakes did not have any reliable picks to use in VELEST.) For
the 224 new earthquakes detected by FAST (dark diamonds), we used the locations calculated from the initial VELEST run that located
351 out of 420 new detected events. The seismic network used for event detection (hollow triangles) and an additional station used for
location (solid triangle) are also shown. The color version of this figure is available only in the electronic edition.
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Table A3
Combining FAST Similarity Search Outputs by Adding
the Similarity Matrix from All Three Components at a
Given Station Dramatically Reduces the Size of the

Detection Results (Rong et al., 2018)

Network Station

Similar Pairs
Size (GB) Three

Components, v � 2

Similar Pairs
Size (GB) Combined

Station, τ0 � 6

PG MLD 1202 60
PG LSD 1556 0.13
PG LMD 545 3.4
PG SHD 3244 146
PG EFD 3026 19
PG VPD 556 3.7
PG DPD 1193 4.0
PG DCD 445 0.6

For each component, v � 2 is the initial-pair threshold (Table A2);
column 3 shows the total size (GB) of the output text files from
similarity search on all three components at the station. After
adding the similarity matrix from the three components, we set a
higher station-pair threshold τ0 � �v � 2� × (3 components) = 6;
column 4 shows the size (GB) of the combined similarity output
for the station.

Table A5
1D P-Wave Velocity Model (McLaren and Savage,
2001), with VP=VS � 1:66 (Hardebeck, 2010), Used

to Locate New Detected Earthquakes

Depth (km) P Velocity (km=s)

0.0 4.0
4.0 5.7
10.0 6.0
14.0 6.2
24.0 8.0

Table A6
New 1D Velocity Model, Output from Second
VELEST Run with Station Corrections, for 715

Earthquakes near the Diablo Canyon Nuclear Power
Plant (DCPP)

Depth (km) P Velocity (km=s) VP=VS

0.0 4.01 1.69
4.0 5.58 1.68
10.0 6.00 1.65
14.0 6.20 1.66
24.0 8.00 1.66

Table A4
Input Parameters for Pair-Wise Association and Detection over

the 11-Station Network (Bergen and Beroza, 2018a)

Network-Association
Algorithm Section Parameter Description Value

Event-pair
extraction

Time gap (along diagonal), gL 10 samples (12 s)

Time gap (adjacent diagonal),
gW

3 samples (3.6 s)

Adjacent diagonal merge
iterations, p

2

Event-pair
pruning

Number of votes (station-pair
threshold), τ0

6

Minimum fingerprint-pairs,
jCjmin

3

Minimum total similarity, v�C�min 18
Maximum bounding
box width

8 samples (9.6 s)

Pseudoassociation Minimum number of
stations for detection

2 (out of 11)

Arrival-time constraint:
maximum time gap, gN

15 samples (18 s)

All samples in this table refer to fingerprint samples, in which the time lag
between adjacent fingerprints, also called the fingerprint sampling period, is
1.2 s (Table A2).
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